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Abstract. The benchmark theory of mathematical finance is the Black-Scholes-

Merton (BSM) theory, based on Brownian motion as the driving noise process for

stock prices. Here the distributions of financial returns of the stocks in a portfolio are

multivariate normal. Risk management based on BSM underestimates tails. Hence

estimation of tail behaviour is often based on extreme value theory (EVT). Here we

discuss a semi-parametric replacement for the multinormal involving normal variance-

mean mixtures. This allows a more accurate modelling of tails, together with various

degrees of tail dependence, while (unlike EVT) the whole return distribution can

be modelled. We use a parametric component, incorporating the mean vector µ

and covariance matrix Σ, and a non-parametric component, which we can think

of as a density on [0,∞), modelling the shape (in particular the tail-decay) of the

distribution. We work mainly within the family of elliptically-contoured distributions,

focussing particularly on normal variance mixtures with self-decomposable mixing

distributions. We discuss efficient methods to estimate the parametric and non-

parametric components of our model and provide an algorithm for simulating from

such a model. We fit our model to several financial data series. Finally, we calculate

Value at Risk (VaR) quantities for several portfolios and compare these VaRs to those

obtained from simple multivariate normal and parametric mixture models.
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1. Introduction

Standard portfolio selection (based on Markowitz mean-variance theory of risk and

return, from 1952 on, and the Sharpe-Lintner-Mossin capital asset pricing model

(CAPM) of 1964-66) relates to the concepts of risk and return - that is, of the covariance

matrix Σ of our vector of asset prices as well as its mean vector µ. The CAPM allows us

to work with the covariance of each asset with some weighted average, or ‘index’, serving

as a proxy for the market as a whole. However, the role of the (multivariate) normal, or

Gaussian, model for distributions of financial returns (or log-prices) has been questioned

on two principal grounds: the empirical evidence shows that most financial data show

both pronounced asymmetry and much heavier tail behaviour than is consistent with

normality. Given the importance of appropriate tail modelling in the context of modern

risk management based on risk measures such as Value at Risk (VaR) this drawback

has become even more relevant in recent years. Furthermore the role of the covariance

matrix as the only measure of dependence has been questioned.

Because of this, there has been much interest in developing financial models which

preserve at least some of the advantages of the classical normal case - familiarity,

tractability, interpretability of mean vectors µ and covariance matrices Σ - without the

drawbacks of being unable to handle asymmetry or heavy tails - skewness and kurtosis.

The normal-based theory remains, of course, extremely important, as a benchmark

theory against which any theory must first be judged.

Other parametric models have been proposed - principally the stable and hyperbolic

models (see §2). Reality is always more complicated than can be captured by just a

few parameters, and so a non-parametric approach may also be adopted. The thesis of

this paper is that the right way to seek to combine the advantages of the parametric

and non-parametric approaches is to use a semi-parametric model. We use a parametric

component, incorporating the mean vector µ and covariance matrix Σ, and a non-

parametric component, modelling the shape of the distribution - specifically, questions

of tail-decay (kurtosis). Here, shape - which we can think of as a density on [0,∞) -

incorporates what remains when we work up to location and scatter - that is, modulo

affine transformations - while (µ,Σ) represents the affine part. Especially in higher

dimensions we observe that the shapes of most well-known parametric distributions are

too restrictive for an appropriate fit to real financial data.

In §2 below we summarize the theoretical background, largely following Bingham

and Kiesel (2002), to which this paper forms a sequel. We turn to dependence questions

in §3, estimation in §4 and simulation in §5. We apply our results to a number of real

financial data sets in §6 and close in §7 with an outline of further research directions.
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2. The semi-parametric model

2.1. Normal variance-mean mixtures

One framework in which one can escape the limitations of the Black-Scholes-Merton

framework while still retaining some of the convenience of the Gaussian case is that of

normal variance-mean mixtures (NVMM)), for a good review of which see Barndorff-

Nielsen, Kent, and Sørensen (1982). If F is a law on [0,∞), we sample U from F ,

and

X|(U = u) ∼ Nr(µ + uβ, u∆) (NVMM)

- where µ,β are r-vectors and ∆ is a symmetric positive-definite r × r matrix with

determinant one - then X is called a normal variance-mean mixture with mixing law F .

If F has Laplace-Stieltjes transform Φ -

Φ(s) :=

∫ ∞

0

e−sudF (u) (s > 0)

- then X has characteristic function

ψX(t) = exp {it′µ}Φ

(

1

2
t′∆t − it′β

)

. (NVMM ′)

2.2. Normal variance mixtures

If we specialize to β = 0 in the above, we obtain the class of normal variance mixtures:

X|(U = u) ∼ Nr(µ, uΣ); ψX(t) = exp {it′µ}Φ

(

1

2
t′Σt

)

. (NVM)

In this case the law of X is isotropic, and we may - and do - drop the restriction to unit

determinant, imposed above for reasons of identifiability.

The class NVM of normal variance mixtures has important advantages over NVMM.

One that concerns us is that structural information on the mixing law F transfers to

the mixture law. For example, if F is infinitely divisible (F ∈ ID), so too is the law of

X, as follows immediately from (NVM).

Subclasses of ID are also important here. Call the law of X self-decomposable if

for each ρ ∈ (0, 1) there exists a characteristic function ψρ for which

ψX(t) = ψX(ρt) · ψρ(t). (SD)

Then self-decomposable laws are infinitely divisible:

SD ⊂ ID,

and self-decomposability of F again transfers to self-decomposability of (the law of) X.

We write

SDNVM
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for the resulting class of self-decomposable normal variance mixtures.

Examples.

1. Multivariate normal. The law Nr(µ,Σ) is in SDNVM, with

Φ(u) = exp(−u/2).

2. Simple mixtures. As a simple first approach on can use a weighted average of normal

distribution. Here the mixing law is discrete as e.g. in Hull and White (1998), who used

a Bernoulli distribution.

3. Generalised hyperbolic laws. A particular choice of mixing law in the above - the

generalised inverse Gaussian laws, GIG (a three-parameter family) - gives rise to the

generalised hyperbolic laws, GH. Here Φ involves the quotient of Bessel functions Kλ

of the third kind. For details and background and references, see Bingham and Kiesel

(2001a). The class GH, and more generally NVM, has been used in many dimensions in

the context of portfolio theory by Bingham and Kiesel (2001b) and Bauer (2000), or in

particular Eberlein (2001), Eberlein and Prause (2002) and Eberlein and Özkan (2003)

and references therein.

The common feature of the above examples is the use of a mixing distribution from

a parametric family of distributions. We propose to estimate the mixing distribution

non-parametrically, which allows us to use the full flexibility of mixture models (see §2.5

below for a detailed discussion).

We will be using the theory of elliptically-contoured distributions (below). It is more

tractable but less general than NVMM. By contrast, Korsholm (2000) used NVMM for

financial modelling in one dimension, where he was able to handle asymmetry.

2.3. Elliptically-contoured distributions

An r-dimensional distribution is spherically symmetric if it is invariant under the action

of the orthogonal group O(r). It is elliptically symmetric, or elliptically contoured, if it

is the image of a spherically symmetric law under an affine transformation. We confine

attention for convenience to the absolutely continuous, full-rank, L2 case. Then the

mean vector µ and covariance matrix Σ exist; Σ is invertible; the density f(x) exists,

and is a function of the quadratic form

Q := (x − µ′)Σ−1(x − µ) : f(x) = |Σ|−
1

2 g(Q) (EC)

for some scalar function g, called the density generator of X. We write f ∼
ECr(µ,Σ; g). The main building block of this paper refers to the following

semi-parametric elliptically-contoured model: The parameters (µ,Σ) represent the

parametric part of our model (mean and covariance, as in the Markovitz theory),

while the density generator g is modelled as the non-parametric part. In particular,

we are not restricted to the limited flexibility of any parametric density generator (as in

the multivariate normal or generalized hyperbolic case). The analysis of real financial

data in §6 reveals that this limitation might be crucial, especially in higher dimensions.
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Note that the density generator contains information on the shape of the distribution -

tail decay, etc., while escaping the curse of dimensionality. The definition of elliptically-

contoured distributions does not require a distribution to belong to the L2 or L1 space.

In that case Σ denotes some scaling matrix and µ is a location vector.

The characteristic function has the form

ψX(t) = exp {it′X} · φ (t′Σt) (EC ′)

for some function φ called the characteristic generator. For background, see Fang, Kotz,

and Ng (1990), Ch. 2, Bingham and Kiesel (2002). Observe that NVM ⊂ EC, with

φ(u) = Φ(u) in the notation above.

The class EC of elliptically-contoured laws shares many of the structural and closure

properties of the multivariate normal. For our portfolio analysis we need the fact that

linear combinations of elliptically-contoured random vectors are elliptically contoured.

The mean vectors and covariance matrices behave as always under linear transformations

x 7→ Ax + b:

µ 7→ Aµ + b, Σ 7→ AΣA′,

and the density generator and characteristic generator are unchanged.

2.4. Self-decomposable elliptically-contoured laws.

There are a number of theoretical advantages in combining the properties of self-

decomposability with being elliptically contoured: call the resulting class

SDEC.

(i) Self-decomposable distributions are absolutely continuous and unimodal (Sato

(1999), Th. 28.4 and Th. 53.1). So for SDEC, the density generator exists and

is decreasing. This provides a far-reaching and easily visualised generalisation of the

Gaussian case, where

g(u) = exp(−u/2)/(2π)
1

2
r.

It also allows us to incorporate the structural information in our estimation procedure

(see §4).

(ii) Self-decomposability is well adapted to modelling the dynamic (time-series) aspects

of portfolios, as well as the static (distributional) aspects above. For, the defining

property (SD) corresponds well to autoregressive time-series models

X t = ρX t−1 + εt

with εt the innovation or error term. This link is developed in, e.g., Barndorff-Nielsen,

Jensen, and Sørensen (1998).

(iii) In addition, for the normal variance-mixture case, self-decomposability transfers

from the mixing law to the mixture law, as noted above:

NVM ⊂ EC, SDNVM ⊂ SDEC.
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Examples. 1. The generalised hyperbolic laws GH are self-decomposable (Halgreen

(1979)), and - in higher dimensions - elliptically contoured:

GH ∈ SDEC.

See e.g. Bingham and Kiesel (2001b) for background and references.

2. The variance gamma laws are also in SDEC. For background, see Madan and Seneta

(1990), Carr, Chang, and Madan (1998).

3. The multivariate t-distributions are in SDEC; see Fang, Kotz, and Ng (1990), §3.3.6.

2.5. Role of the density generator g

The density generator g relates to the shape of the data-generating distribution. In

particular, the tail-decay of g reflects the tail-decay of the data itself, one of the prime

features under investigation here. Thus, the tail behaviour of g relates most strongly to

risk-management questions involving value at risk (VaR), for background on which we

refer to Dowd (1998) and Jorion (2000).

The motivating data sets for us are time series of financial asset returns. Here

the distributional aspects, and tail behaviour in particular, depend on the frequency

with which returns are calculated (see e.g. Pagan (1996)). Since returns over long

periods are sums of returns over shorter periods, the central limit theorem will give a

tendency towards normality – ‘aggregational Gaussianity’. This is indeed observed, for

returns over longer periods than about 16 trading days – monthly returns, say – and

accords with benchmark Black-Scholes-Merton theory. At the other extreme, very high-

frequency data – returns over the order of minutes, say – display power-law decay, for

reasons involving self-similarity and scaling arguments as in physics; see e.g. Dacorogna,

Müller, and Pictet (1998) and Schmitt, Schertzer, and Lovejoy (1999) for background.

Intermediate between these are, say, daily returns, for which the log-linear tails of the

hyperbolic/NIG model are often used, etc.

For power-law decay, one may appeal also to the methods of extreme-value theory

(EVT: for background, see e.g. Embrechts, Klüppelberg, and Mikosch (1997)), and

in particular the Hill-type estimators (for a recent application to finance see Kiesel,

Perraudin, and Taylor (2003)). However, EVT is only suited to model the tails of

the distribution, while the semi-parametric approach allows to model the whole return

distribution.

The tail behaviour of g is best regarded in context. What really matters is the

behaviour of the whole curve g itself, regarded as a member of the continuum of curves

obtained as the return interval varies.

Several important questions, however, relate not to g but to the parametric part

µ,Σ of our model. For example a decision on whether or not to include an extra asset

in our portfolio is best answered by looking at µ,Σ: a good candidate asset should show

strong growth, and strong negative correlation with existing assets. Preferences between

individual assets can also be settled by looking at µ,Σ: see Embrechts, McNeil, and

Straumann (2001), §3.4.
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To summarize: g focuses on properties of the portfolio as a whole, while (µ,Σ)

focuses on properties of the individual assets within the portfolio. Thus, if we wish

to rank our preferences between the individual assets in a fixed basket of assets,

our preferences are the same in any fixed elliptically-contoured world as in the

normal/Gaussian world (since (µ,Σ) characterize any coherent risk measures in such

settings, see Embrechts, McNeil, and Straumann (2001), §3.4.). By contrast, if we

compare the g of a typical ‘old economy’ (of Germany’s DAX, the USA’s DOW JONES,

etc.) with that of a typical ‘new economy’ portfolio (of Germany’s NEMAX (Neuer

Markt), the USA’s NASDAQ etc.), the extra riskiness of the second is reflected in the

fatter tail of g (as well as in an increased volatility).

3. Dependence

The present section discusses the overall dependence structure of the semi-parametric

model. Several extensions of the latter dependence structure are provided. Further,

we outline a new result about dependencies of extreme events for elliptically-contoured

distributions, which will be utilized in our empirical analysis (see §6).

3.1. Copulae

It is usually more convenient to separate out µ and Σ from the dependence structure,

and this is most conveniently done by using the theory of copulae, for textbook accounts

of which see e.g. Joe (1997), Nelsen (1999). One works to within type, and (by use of

the probability integral transformation) transforms all marginal distributions to uniform

(0, 1). The joint distribution on [0, 1]r now encodes all information on dependence

structure unencumbered by information on marginals (in particular, by µ,Σ), and is

called the copula (it couples the marginal laws to give the joint law).

In particular if X = (X1, . . . , Xr)
′ has joint distribution F with continuous

marginals F1, . . . , Fr, then the distribution function of the transformed vector

(F1(X1), . . . , Fr(Xr))

is a copula C, and

F (x1, . . . , xr) = C(F1(x1), . . . , Fr(xr)).

Hence the t-copula is expressed by:

Ct
ν,R(u) = trν,R(t−1

ν (u1), . . . , t
−1
ν (ur)),

where trν,R denotes the distribution function of an r-variate t-distributed random vector

with parameter ν > 2 and linear correlation matrix R. Furthermore, t−1
ν is the inverse

of the univariate t-distribution function with parameter ν.

For general EC laws, it is immediate that the mean vector µ is no copula

parameter. Further, the covariance matrix Σ enters the dependence structure only
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via the linear correlation matrix R. Although the principal criticisms of elliptically-

contoured distributions concerns their too symmetric distributional structure, the copula

or dependence structure of EC laws turns out to be quite flexible in comparison to many

other copulae, like the well-known Archimedean copulae. There are at least r(r − 1)/2

parameters belonging to the correlation matrix R (even in our semi-parametric model)

that govern the overall (linear) dependence structure of an r-dimensional EC law.

Turning to dependencies of extreme events, an important extremal dependence

measure is given by tail dependence. This measure arises in the context of VaR

quantification for asset portfolios. A bivariate random vector (X1, X2) is called tail

dependent with tail-dependence coefficient λU if

λU = lim
α→0

IP (X2 ≤ V aRα(X2)|X1 ≤ V aRα(X1)) > 0, (1)

i.e. the limit exists and is greater than zero. Consequently, (X1, X2) is called tail

independent if λU = 0. Similarly we define the lower-tail dependence coefficient λL. Tail

dependence of bivariate random vectors describes the amount of asymptotic dependence

in the upper-right quadrant or lower-left quadrant of a bivariate distribution. Thus

extreme events (for example large portfolio losses or gains) are no longer independent if

the corresponding bivariate marginal distributions exhibits tail-dependence. The degree

of tail dependence is completely determined by the bivariate copula, i.e.:

λU = lim
u→1

(1 − 2u+ C(u, u))/(1 − u) and λL := lim
u→0

C(u, u)/u. (2)

The bivariate Gaussian copulae with correlation ρ ∈ (−1, 1) have no lower and

upper-tail dependence, while tν copulae have. In fact, in case of the tν copulae, we have

increasing tail dependence with decreasing parameter ν.

3.2. Tail dependence for elliptically-contoured distributions

It is natural to ask whether there exists a general characterization of tail dependence for

elliptically-contoured distributions. Schmidt (2002) shows that tail dependence within

the latter class of distributions is almost equivalent to density generators possessing a

power law decay. The characterization requires the following well-known definitions: i) A

measurable function f : IR+ → IR+ is called regularly varying (at ∞) with index α ∈ IR

if for any t > 0 : limx→∞ f(tx)/f(x) = tα. ii) A measurable function f : IR+ → IR+

is called O-regularly varying (at ∞) if for any t ≥ 1 : 0 < lim infx→∞ f(tx)/f(x) ≤
lim supx→∞ f(tx)/f(x) < ∞. Thus, regularly varying functions behave asymptotically

like power functions and O-regularly varying functions have growth (or decay) bounded

between powers. For more details regarding regular variation and O-regular variation

we refer the reader to Bingham (1987), pp. 16, and pp. 61, and Resnick (1987), pp. 12.

An elliptically-contoured random vector X ∈ ECr(µ,Σ; g), r ≥ 2, with positive-

definite covariance matrix Σ has tail-dependent bivariate margins if its density generator

g is regularly varying with index −α/2 − 1, α > 0. On the other hand, all bivariate

margins of an elliptically-contoured random vector with positive-definite covariance

matrix Σ are tail-independent (under a minor additional condition) if its density
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generator is eventually decreasing and not O-regularly varying. As all well-known

density generators are either regularly varying or not even O-regularly varying, the

above statements are almost necessary and sufficient.

Suppose (Xi, Xj)
′ is the bivariate margin for an elliptically-contoured random vector

X = (X1, . . . , Xr)
′ ∈ ECr(µ,Σ; g) having a regularly varying density generator with

index −α/2 − 1, α > 0. Then the tail-dependence coefficient λij := λij
U = λij

L is given

by the following formula:

λij =

∫ h(ρij)

0

uα

√
1 − u2

du

∫ 1

0

uα

√
1 − u2

du

, (3)

where h(ρij) =
√

1 +
(1−ρij)2

1−ρ2

ij

and ρij := Σij/
√

ΣiiΣjj denotes the correlation coefficient,

if it exists.

Figure 1. Tail dependence coefficient λU versus regular variation index α for

ρ = 0.5, 0.3, 0.1 for elliptically-contoured distributions

Figure 1 shows for the bivariate case the interplay of the tail dependence coefficient

λ and the regular variation index α for various correlation coefficients ρ. An immediate

consequence for the GH law is tail-independence because of the exponential decay of

the corresponding density generator. For a multivariate extension of the tail-dependence

concept see Schmidt and Stadtmüller (2002).

3.3. Partial symmetry and copulae

The present section is devoted to several extensions of elliptically-contoured distributions

and the corresponding dependence structures, respectively. Note that if we work

within type - reduce to the standardised case µ = 0,Σ = I - we have no reason to

distinguish one component from another, and obtain exchangeability (for background on

exchangeability, see e.g. Aldous (1985), and in the context of multivariate dependence,

Joe (1997)). In the context of portfolio theory in finance, this is too restrictive: what is
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needed instead is partial exchangeability. Thus, our vector X = (X1, . . . , Xr) of r stock

prices (or their returns) will represent the evolution of r individual assets, but these will

typically be chosen so as to balance our holdings between the various economic sectors in

which we choose to invest (petrochemicals, pharmaceuticals, motor manufacturing, etc.).

We need a model which gives exchangeability within sectors (to a first approximation

- as the relevant companies operate within a similar economic environment), but not

between sectors (since we wish to balance our holdings between sectors by Markowitzian

diversification).

Models for partial exchangeability have been studied in considerable generality.

Structure theorems have been obtained (Aldous (1985), §14), which may be loosely

summarised as giving non-linear analogues of the familiar Linear Model of statistics.

The simplest non-trivial example (row-column exchangeability for infinite arrays) has a

representation of the form

Xij = f(α, ξi, ηj, λij)

where f is a deterministic (non-linear!) function, α represents an overall effect, ξi, ηj

row and column effects and λij an individual random effect. Here the ξi, ηj, λij are

independent, and can be taken as uniform on (0, 1). For finite arrays, as here, this

set-up and its relatives provide ways (sufficient but not necessary) to model the types

of partial exchangeability relevant to portfolio theory. Here of course the function f

contains all the structural information - µ and Σ, as well as the dependence structure.

Families of copulae displaying the partial exchangeability structure one requires

may be readily constructed. Perhaps the simplest such construction generalises the idea

of an Archimedean copula (Joe (1997), §4.2). To keep the notation simple, consider a

trivariate case (to model a portfolio of three assets). A trivariate copula of the form

C(u) := ψ(ψ−1 ◦ φ(φ−1(u1) + φ−1(u2)) + ψ−1(u3))

(Joe (1997), §4.7 has, for suitably restricted φ and ψ, (1, 2) bivariate marginals of the

form

C(u1, u2) = φ(φ−1(u1) + φ−1(u2))

and (1, 3) and (2, 3) bivariate marginals of the same form but with ψ for φ. A

quadrivariate version, with

C(u) := ψ(ψ−1 ◦ φ(φ−1(u1) + φ−1(u2)) + ψ−1 ◦ ζ(ζ−1(u3) + ζ−1(u4)))

(with φ, ψ, ζ suitably restricted) has 1, 2 exchangeable and 3, 4 exchangeable, but 1, 2

not exchangeable with 3, 4. Higher-dimensional analogues may be constructed similarly.

The gains and losses here are obvious. The gain is that one can readily model

whatever partial summetry structure reflects the construction of one’s portfolio. The

loss is that the complexity of the model ramifies rapidly with dimension - as inevitably it

must. In particular, one is immediately exposed to the curse of dimensionality, to quote

the late Richard Bellman’s famous and telling phrase. The class Cr of all copulae on

the unit r-cube is very rich for r at all large - too rich for convenience. The obvious way
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to escape the curse of dimensionality is to seek parametric families of copulae, adapted

to modelling partial symmetry (Joe (1997), §5.3) and negative dependence (Joe (1997),

§5.4). A considerable body of theory exists here, and there is much scope for empirical

work. However, even in the fully symmetric case of elliptically-contoured distributions,

we know that parametric treatments are insufficiently flexible to accommodate the full

variety encountered in practice, and this is all the more true in the more complicated

setting of partial symmetry. What is worse, the computational complications arising

from the curse of dimensionality are unavoidable even in principle. There is clearly

much scope for, and need of, both non-parametric modelling of copulae in this setting

of financial portfolios, and empirical work in fitting models to data.

4. Estimation

Fitting data to the semi-parametric model requires estimation of the parametric location

and scatter parameters (µ,Σ) and the non-parametric shape component g. We present

robust and appropriate estimators fulfilling the prerequisite of decreasing density

generators g.

4.1. Estimating the mean and the covariance

Natural estimators for the mean vector µ and the covariance matrix Σ of a multivariate

elliptically-contoured distribution are the sample mean and the Pearson product-

moment covariance. Although the last estimator yields almost surely a positive-definite

covariance matrix, which avoids unpleasant matrix transformations, both estimators are

vulnerable to heavy-tailed and contaminated data: a single grossly aberrant reading can

destroy the accuracy of both. Several robust multivariate estimation techniques for µ

and Σ have been proposed in the literature. Among them we mention:

(i) Multivariate trimming (Hahn, Mason, and Weiner 1991),

(ii) Minimum-volume ellipsoid estimator for Σ (Rousseeuw and van Zomeren 1990),

(iii) Median estimator for µ and LS-estimator for Σ (described below).

The third set of estimators has much to recommend it. First, they provide

robust estimators utilizing exactly the elliptical structure of EC laws. Second, they

are applicable even if the covariance matrix or the mean vector do not exist. In the

following we will give a short description of the LS-estimator, which applies a well-

known stochastic representation of elliptical distributions (cf. Fang, Kotz, and Ng

(1990) Theorem 2.14). Every r-dimensional elliptically distributed random vector X ∈
ECr(µ,Σ; g) with parameters µ and Σ (positive-definite matrix) can be stochastically

represented by

X
d
= µ +RrA

′U (r) (4)

with Cholesky decomposition A′A = Σ. The random variable Rr ≥ 0 is independent of

the r-dimensional random vector U (r) which is uniformly distributed on the unit sphere
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in IRr. We refer to Rr as the random variate of an elliptical distribution. According to

equation (4) we obtain

RrU
(r) d

= (A′)−1(X − µ) and U (r) d
=

(A′)−1(X − µ)

||(A′)−1(X − µ)||2
.

For a bivariate EC law the covariance or scaling matrix Σ is now estimated in a two-

step procedure. Let X1, . . . ,Xn be a random sample, distributed according to an

EC2(µ,Σ; g) law. First the location or mean vector is estimated by the median estimator

µ̂ := µ̂n = x̄0.5. Second an LS-estimator is defined by

Â
′

∗ := argminC
′∈Γ

n
∑

i=1

(

Di(C
′) − 2π

n

)2

with Di(C
′) = min

j:j 6=i
( arccos < U

(2)
i ,U

(2)
j > ),

where U
(2)
i

d
= (C ′)−1(X i − µ̂)/||(C ′)−1(X i − µ̂)||2, Γ denotes the set of all lower

triangle matrices with determinate one and < ·, · > is the scalar-product. 2π/n

matches the minimal angle between n perfectly uniform distributed vectors on the

2-dimensional unit-sphere. Note that the corresponding estimate Σ̂∗ = Â
′

∗Â∗ is not

necessarily a covariance matrix but some scaling matrix. In order to obtain an estimate

Σ̂ = Â
′
Â of the covariance matrix Σ, if it exists, we must rescale Σ̂∗ by µ̂R2/2 with µ̂R2

being some estimator of E(R2
∗) := E(||(Â′

∗)
−1(X − µ̂)||2). The LS estimator has the

advantage of being robust, having a low MSE (see (Frahm, Junker, and Schmidt 2002)

for statistical investigations), and providing an almost-surely positive-definite estimate

of the covariance-matrix. The estimation process in higher dimensions is described in

Frahm and Junker (2003).

4.2. Estimating the density generator g

For the non-parametric estimation of the density generator we utilize the transformed

data

pi = (xi − µ̂)′Σ̂
−1

(xi − µ̂), i = 1, . . . , n,

where xi is a realisation of X i, i = 1, . . . , n. The data points pi are approximate

realisations of the distribution induced by the squared random variate R2
r . In particular

the latter data come from a density fR2
r

which relates to the unknown density generator

g as follows (cf. Fang, Kotz, and Ng (1990), Remark to Theorem 2.9)

fR2
r
(u) =

πr/2

Γ(r/2)
ur/2−1g(u). (DQ)

For the non-parametric estimation of the density fR2
r

given in (DQ), we use standard

results on optimal bandwidth selection, see e.g. Härdle (1990b), Chapter 4, or Wand

and Jones (1995), Chapter 3. In particular, we use the variants of direct plug-in rules

(Wand and Jones (1995), Section 3.6.).
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Let h be some arbitrary density function which is unknown. According to the above

references, the asymptotic integrated mean-squared error (A-MISE) optimal bandwidth

for kernel density estimation is given by

b0 =

(

||K||22
||h′′||22 (µ2(K))2n

)
1

5

(K is a kernel, ||.||2 is the standard L2-norm, µ2(k) =
∫

x2K(x)dx). The problematic

feature here is that the second derivative of the unknown density h is involved. A

first idea is to replace h′′ by the corresponding value of a reference distribution. In

our applications we use the Gaussian kernel and as reference distribution the normal

distribution. This leads to (see Härdle (1990b) (4.1.1)) b̂0 = (4σ̂5/(3n))
1/5

with σ̂ an

estimator for the standard deviation of the unknown distribution. Since in the context

of financial data we are dealing with heavy-tailed distributions, we want to make the

choice of bandwidth insensitive to outliers. Thus instead of σ̂ we use the interquartile

range R̂ = X[0.75n] − X[0.25n] as a more robust estimate for the scale parameter. Thus

we choose the bandwidth according to

b̂0 = 1.06 min{σ̂, R̂/1.34}n− 1

5

(note that for the Gaussian data R̂ = σ̂ · 1.34).

A sophistication of the above idea is to use multi-stage plug-in estimators: Instead

of using a reference distribution immediately, one uses a kernel estimate of the density

functional ||h′′||22, which will again be sensitive to a bandwidth choice. This bandwidth

then can be chosen via a reference distribution, or another estimate of a relevant density

functional can be employed. Motivated by our own simulation study and detailed

comparison studies of data-driven bandwidth selection principles, e.g. Park and Marron

(1990) and Wand and Jones (1995), §3.8. for data from heavy-tailed distributions, we

employed a two-stage plug-in estimator suggested by Sheather and Jones (1991) and

outlined in Wand and Jones (1995), §3.6 for our estimation problem.

A similar problem arises in estimating confidence intervals. Asymptotic confidence

intervals are given by
[

ĥb(x) − n− 2

5

(

c2

2
h′′(x)µ2(K) + dα

)

, ĥb(x) − n− 2

5

(

c2

2
h′′(x)µ2(K) − dα

)]

,

where dα = u1−α/2

√

c−1h(x) ||K||22, u1α/2 is the 1−α/2-quantile of the standard Normal

distribution, and c is obtained from the relation b0 = cn− 1

5 .

Again this formula involves the unknown density and its second derivative. We use

estimates ĥb1 and ĥ′′b1 with a slightly larger bandwidth b1.

Since our data come from a distribution with non-negative support, we face the

problem of density estimation near boundary points. Several possible modifications to

improve performance near boundaries are discussed in Härdle (1990a), §4.4, Wand and

Jones (1995),§2.11 and in the articles Müller (1991) and Jones (1993).



A semi-parametric approach to risk management 14

In the context of elliptically-contoured distribution the problem is discussed in

Stute and Werner (1991), who study the estimation of the d-dimensional density f ,

and Hodgson, Linton, and Vorkink (2002). Like these two studies our simulation

results confirm that a modification suggested by Schuster (1985) works well. Applying

Schuster’s modification to our setting we incorporate the additional information of

positive support of the underlying density by adding a mirror image term to the standard

kernel estimator. That is, we use as an estimator

ĥn(u) =
1

nb̂0

n
∑

i=1

[

K

(

x − xi

b̂0

)

+K

(

x + xi

b̂0

)]

.

According to Section 2.4, one of the main structural features we require, is the

monotonicity of the density generator g. For that we transform the estimated density

generator via a monotone regression method suggested in Härdle (1990a), Section 8.1.

However, this regression method assumes an unimodal density function which has to

be verified (compare also Anderson, Fang, and Hsu (1986) or Fang and Zhang (1990),

Section 4.1). The reason for unimodality is because we mirror the observations on a

possible mode point and then use the monotone regression algorithm of the partially

mirrored data.

Remark. In §6 we compare the non-parametric estimates of the density generator

g (in our semi-parametric model) with various parametric estimates. In the latter

context, we estimate the parameters of the corresponding density fR2
r

(see equation

(DQ)) via maximum-likelihood techniques, utilizing the approximate realizations qi =

||Σ̂−1/2
(xi − µ̂)||2, i = 1, . . . , n.

5. Simulation

Here we address the generation of multivariate random vectors from our semi-parametric

model. Efficient and fast multivariate random-number generators are indispensable

for modern portfolio investigations. Monte-Carlo simulations for Value at Risk (VaR)

and pricing calculations require many random vectors, which have to be sampled in

a reasonable time-frame. For elliptical distributions the multidimensional simulation

problem boils down to a one-dimensional simulation task.

The simulation from the semi-parametric law ECr(µ,Σ; ĝ), with estimated density

generator ĝ via the non-parametric methods introduced in §4, is performed by utilizing

formula (DQ). Observe that the corresponding estimate of the density function f̂R2
r

is discretely evaluated at points u1, . . . , um and the entire function estimate f̂R2
r

is

obtained via linear interpolation. This construction of the density function fR2
r

leads

to a straightforward random-number generator for the random variate Rr based on the

well-known Inversion Transformation Method (see for example Niederreiter (1993)).
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Pseudo algorithm for generating multivariate random numbers from the

semi-parametric ECr(µ,Σ; g) law:

(i) Set Σ = A′A, via Cholesky decomposition.

(ii) Sample a random number from Rr (as described above).

(iii) Sample r independent random numbers Z1, . . . , Zr from a univariate standard-

normal distribution N1(0, 1).

(iv) Set Z = (Z1, . . . , Zr).

(v) Set U (r) = ||Z||−1 · Z.
(vi) Return X = µ +Rr · A′U (r).

6. Application to financial data

Our financial time series consists of 6 series of major stock indices covering the (sub−)

periods between January 1987 to December 2002 (data obtained from Bloomberg

Financial Services). We investigated the density generators of various portfolios of

indices. In particular we use

• Mature markets (from 1987 to 2002): DOW JONES, DAX, CAC40, NIKKEI;

• New economy markets (from 1998 to 2002): NASDAQ, NEMAX.

In addition, we used 6 major US stocks, namely Ford, Boeing, General Motors, Dell

Computers, Cisco Systems, Microsoft during the period 1990 to 2002 to investigate

portfolios of stocks.

0 1 2 3 4 5 6 7

0.00

0.05

0.10

0.15

0.20

0.25 DAX-DOWJONES
NEMAX-NASDAQ
DAX-CAC40
NIKKEI-CAC40

u

Figure 2. Density generators of bivariate log-returns for four asset series



A semi-parametric approach to risk management 16

6.1. Fitting the data

We start with several visual tests for elliptical symmetry of the underlying distribution.

Plots of the four time-series (Figure 3), contour plots of the estimate of the density

(Figure 4) (obtained by using the function kde2d from Venables and Ripley (1999) in

S-Plus), and the estimate of the density generator g (Figure 2, 6, 7 and 8) are provided.

For our two-dimensional examples we used the DAX-DOW JONES, DAX-CAC40,

NIKKEI-CAC40, and NEMAX-NASDAQ series; however, the results are representative

for all combinations we tried.
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Figure 3. Scatter plots of bivariate log-returns of four asset series.

A more formal investigation is the use of QQ-plots as discussed in the next section.

Figure 5 displays such plots for the above index combinations. All plots indicate a

satisfactory fit of our underlying model.

Finally we proceeded to estimate density generators using our favorite two-step

selection principle. Plots for two- and high-dimensional portfolios are displayed in

Figures 6, 7 and 8
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Figure 4. Contour-plots of bivariate log-returns of four asset series.

6.2. Tests for elliptical symmetry

To test for spherically symmetric and elliptically symmetric distributions we use a simple

graphical method suggested by Li, Fang, and Zhu (1997). Alternatively, one could also

use one of the tests suggested in e.g. Baringhaus (1991), Beran (1979) or Manzotti,

Pérez, and Quiroz (2002).

This method is based on use of a statistic t(x) which is invariant under orthogonal

transformations. From Fang, Kotz, and Ng (1990), Theorem 2.22, we know that the

distribution of such a statistic remains invariant for X ∼ S+
r (φ), i.e. r-dimensional

spherical distributions with no probability mass at the origin.

For our purpose we use the standard t-statistic: For a one-dimensional random

sample (X1, X2, . . . , Xr) define X̄ := 1
r

∑r
i=1Xi and s2 := 1

r−1

∑r
i=1(Xi − X̄)2; then

t(X1, X2, ..Xr) =

√
rX̄

s
∼ tr−1

if (X1, X2, ..Xr) ∼ N(0, Ir). By the above invariance principle one can replace

the multivariate normal by any appropriate spherical distribution, and indeed, after
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Figure 5. QQ-plots of bivariate log-returns of four asset series

normalisation, elliptical distribution. Therefore a QQ-plot (Figure 5) of a sample

against the appropriate t-distribution should indicate possible deviations from the class

of spherical (ellipical) distributions.

Further possible graphical estimators are outlined in Li, Fang, and Zhu (1997), with

underlying theory given in Fang, Kotz, and Ng (1990), §2.7.

6.3. Multidimensional portfolios

In Figure 8 several multidimensional portfolios are considered in order to stress

the applicability of the semi-parametric model for higher dimensional asset-return

modelling. First we construct two four-dimensional asset-return vectors consisting of

the indices DAX - DOWJONES - NIKKEI - CAC40 and DAX - NEMAX - DOWJONES

- NASDAQ, the first being a pure ’old’ economy portfolio and the second a mixture of

’new’ and ’old’ economy indices. We provide the QQ-plots to justify applying the semi-

parametric model and the corresponding density generator. Again we observe that the

density-generator of the t-distribution fits the non-parametric density generator much
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Figure 6. Density generators of bivariate log-returns for DAX-DOWJONES from

1998 until 2002

better than the normal distribution. However, the density generator of the t-distribution

decreases as a power-law in the entire range of the data, which is actually not observed

in the data. Finally we construct a six-dimensional portfolio consisting of the stocks:

FORD - BOEING - GM - DELL - CISCO - MICROSOFT. Here we emphasize that

the semi-parametric model we propose has much to recommend it for high-dimensional

portfolio modelling. For the data we investigated, the curse of dimensionality is avoided

in a satisfactory way through the non-parametric density generator.

6.4. Portfolio analysis

The Value at Risk (VaR) of an asset portfolio with r assets and portfolio-value functions

pt : IRr → IR, t ∈ N at some discrete time point t is defined by

V aRα
t = argsupy∈IRIP (∆pt ≤ y) ≤ α, (5)

for confidence level α > 0. Here the random vectors X t, t ∈ N contain the nominal

asset values at time t and the absolute portfolio return is defined by ∆pt := pt−pt−1. We

assume that ∆pt(X t,X t−1) depends only on the componentwise relative asset-returns
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Figure 7. Density generators of bivariate log-returns for NEMAX-NASDAQ from

1998 until 2002

at time t and the nominal asset values X t−1. In particular we define the random variable

V p
t describing the portfolio’s absolute return at time t by

V p
t := ∆pt(X t,X t−1) = ft(∆relX t,X t−1)

for some functions ft : IRr × IRr → IR and ∆relX t := (log(X i
t) − log(X i

t−1))i=1,...,r.

For modelling reasons we suppose the log-returns ∆relX t, t = 1, . . . , n, to be iid

observations. The main intention of this section is now formulated by the assumption

that ∆relX t follows an EC law:

∆relX t ∼ ECr(µ,Σ; g). (6)

For reasons of simplicity we do not utilize the innovations of an autoregressive-type

process or an ARCH-type process, as in our context the results turned out to be quite

similar.

In general, Value at Risk determination within modern portfolio theory utilizes one

of four approaches: i) explicit VaR calculation, ii) structured Monte-Carlo simulation,

iii) variance-covariance approximation, or iv) historical simulation. One of the main
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Figure 8. Density generators for multidimensional log-returns of DAX-DOWJONES-

NIKKEI-CAC40 from 1987 until 2002 (first level), of DAX-NEMAX-DOWJONES-

NASDAQ from 1998 until 2002 (second level) and of FORD-BOEING-GM-DELL-

CISCO-MICROSOFT from 1990 until 2002 (third level).
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advantages of assumption (6) is that the portfolio’s VaR can be explicitly calculated for

every linear asset portfolio. Precisely, for a linear asset portfolio we obtain

V p
t = X ′

t−1∆relX t.

The portfolio’s VaR for confidence level α, under a given realisation xt−1 of the

asset-value vector and elliptically-contoured asset-returns ∆relX t ∈ ECr(µ,Σ; g) with

positive-definite Σ, is given by

V aRα
t = x′

t−1µ − h(α)
√

x′
t−1Σxt−1, (7)

with h(α) being defined below. Formula (7) can be readily shown via the stochastic

representation (4) of elliptically-contoured asset-return vectors, i.e.,

∆relX t
d
= µ +RrA

′U (r).

Then

V p
t = x′

t−1∆relX t
d
= x′

t−1µ +Rr(Axt−1)
′U (r)

is distributed according to an EC1(x
′
t−1µ,x

′
t−1Σxt−1; g) law. Define now V aRα

t :=

x′
t−1µ−h(α)

√

x′
t−1Σxt−1 with h(α) the 1−2α quantile of the positive random variable

RrB, where B2 is Beta(1/2, (r− 1)/2) distributed and independent of Rr. Observe that

IP (x′
t−1∆relX t ≤ V aRα

t ) = IP (x′
t−1µ +Rr(Axt−1)

′U (r) ≤ V aRα
t )

= IP (RrBU
(1) ≤ −h(α)) =

1

2
IP (RrB ≥ h(α)) = α,

where the second-to-last equation follows by Theorem 2.15 in Fang, Kotz, and Ng (1990).

Now formula (7) follows.

Tables 1 and 2 show various VaR figures for some asset portfolio we considered

previously. First we present the empirical VaRs for linear portfolios with equally

weighted assets for confidence levels α = 0.01, 0.025, 0.05. Further we calculate

the VaRs analytically via different density generators, namely via the non-parametric

density generator, and the density generators of the fitted t-distribution, the normal

distribution and generalized hyperbolic distribution (GH). Finally a simulation study

shows the finite-sample properties of the corresponding VaR estimations. We conclude

that even in the case of VaR considerations, where we are particularly interested in the

tail behavior of the density generator, the parametric approach does not outperform

the non-parametric estimation. The maximum-likelihood estimates utilized for the

parametric density generators yield an overall fit including all available data and usually

underestimates the tail, whereas VaR primarily examines the tail behavior and tail

dependence of a multivariate portfolio distribution.

Data analysis. The analytical VaR figures in Table 1 reveal that the normal

distribution underestimates the 0.01 and 0.025 VaR’s considerably whereas the 0.05

VaR is estimated reasonably. By contrast, the semi-parametric EC-law and the t-

distribution perform better for the higher 0.01 and 0.025 quantiles than for the 0.05

VaR. The GH-law underestimates the VaR for nearly every asset combination. For the
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simulated VaR figures in Table 2 we obtain a similar picture. As a result we suggest the

semi-parametric model as a suitable substitute for the above parametric EC-laws in the

context of portfolio VaR calculations.

Comparison of ’old’ and ’new’ economy. We would expect (as we know from

the collapse of the dotcom bubble) that ’high-tech’, ’new’ economy stocks (indices

NEMAX-NASDAQ) are riskier that traditional ’old’ economy stocks (indices DAX-

DOW JONES). We would thus expect fatter tails - slower decay of the density generator

g - in the ’new’ case then in the ’old’. Indeed, in Figure 7 we clearly see this, when

the tails of the density generator are graphed: ’new’ lies above ’old’ in the tails. Note

however that the comparison is reversed in the bulk of data, where in particular the

degrees of freedom (df) of the approximating t-distributions are determined. Thus ’new’

has df 5.85 while ’old’ has 5.35. Within the t-family, higher df means thinner tails; the

crossing of the graphs of the density generator explains this reversal.

Note also the much bigger 1% VaR, 61.4 to 36.8, of ’new’ against ’old’. Referring

to (7), note that ’new’ and ’old’ have similar h(α); the difference is accounted for by the

different covariance matrices Σ.
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Table 1. Empirical and analytical VaR’s to the confidence levels α = 0.01, 0.025, 0.05 for various linear portfolios with equally weighted

assets.

Assets empirical VAR semi-parametric VAR normal VAR

α = 0.01 0.025 0.05 α = 0.01 0.025 0.05 α = 0.01 0.025 0.05

DAX-DOWJONES -36.76 -28.37 -22.19 -35.63 -26.75 -20.82 -31.41 -26.48 -22.24

NEMAX-NASDAQ -61.41 -46.81 -38.28 -61.05 -47.27 -36.71 -53.85 -45.43 -38.20

DAX-CAC40 -38.47 -27.61 -19.37 -32.91 -24.96 -19.57 -29.66 -24.96 -20.92

NIKKEI-CAC40 -29.95 -22.86 -18.50 -29.14 -22.30 -17.23 -25.68 -21.64 -18.17

DAX-DOWJONES-NIKKEI-CAC40 -28.13 -19.83 -15.13 -23.53 -17.19 -12.19 -22.25 -18.73 -15.70

DAX-NEMAX-DOWJONES-NASDAQ -44.05 -35.78 -28.31 -44.25 -32.32 -23.45 -39.93 -33.68 -28.31

FORD-BOEING-GM- -42.65 -34.15 -27.69 -44.97 -32.34 -20.39 -38.93 -32.68 -27.30

DELL-CISCO-MICROSOFT

Assets empirical VAR t VAR GH VAR

α = 0.01 0.025 0.05 α = 0.01 0.025 0.05 α = 0.01 0.025 0.05

DAX-DOWJONES -36.76 -28.37 -22.19 -34.95 -26.93 -21.24 -32.87 -25.74 -20.14

NEMAX-NASDAQ -61.41 -46.81 -38.28 -59.45 -46.28 -36.66 -58.33 -45.52 -35.79

DAX-CAC40 -38.47 -27.61 -19.37 -33.65 -25.18 -19.47 -31.47 -24.30 -18.79

NIKKEI-CAC40 -29.95 -22.86 -18.50 -29.19 -21.71 -16.68 -28.51 -21.92 -16.91

DAX-DOWJONES-NIKKEI-CAC40 -28.13 -19.83 -15.13 -25.23 -18.89 -14.62 -22.58 -17.52 -13.64

DAX-NEMAX-DOWJONES-NASDAQ -44.05 -35.78 -28.31 -44.25 -34.31 -27.17 -42.10 -32.80 -25.37

FORD-BOEING-GM- -42.65 -34.15 -27.69 -43.43 -33.26 -26.04 -47.64 -36.50 -28.23

DELL-CISCO-MICROSOFT
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Table 2. Mean (standard deviation) of 100 simulated VaR-figures based on 2000 equally weighted asset-return data.

Assets semi-parametric VAR normal VAR

α = 0.01 0.025 0.05 α = 0.01 0.025 0.05

DAX-DOWJONES -35.93 (2.21) -26.76 (1.17) -21.05 (0.73) -31.49 (1.16) -26.44 (0.84) -22.21 (0.63)

NEMAX-NASDAQ -60.64 (3.41) -47.32 (2.46) -36.90 (1.47) -54.09 (1.93) -45.66 (1.40) -38.27 (1.21)

DAX-CAC40 -33.85 (1.86) -26.03 (1.33) -20.28 (0.71) -29.76 (1.14) -24.96 (0.71) -21.00 (0.57)

NIKKEI-CAC40 -29.24 (1.90) -22.26 (1.08) -17.18 (0.77) -25.83 (0.90) -21.64 (0.58) -18.18 (0.55)

DAX-DOWJONES-NIKKEI-CAC40 -21.10 (0.97) -16.95 (0.61) -13.48 (0.46) -22.19 (0.71) -18.78 (0.50) -15.74 (0.41)

DAX-NEMAX-DOWJONES-NASDAQ -41.34 (1.74) -33.25 (1.34) -26.65 (1.02) -40.04 (1.27) -33.80 (0.92) -28.41 (0.73)

FORD-BOEING-GM- -40.28 (1.20) -32.27 (1.22) -25.89 (0.89) -38.93 (1.43) -32.57 (1.10) -27.21 (0.92)

DELL-CISCO-MICROSOFT

Assets t VAR GH VAR

α = 0.01 0.025 0.05 α = 0.01 0.025 0.05

DAX-DOWJONES -35.31 (2.14) -27.12 (1.33) -21.37 (0.84) -34.56 (1.64) -27.12 (1.14) -21.30 (0.73)

NEMAX-NASDAQ -59.83 (2.90) -46.39 (2.02) -36.91 (1.37) -57.27 (2.86) -44.91 (1.99) -35.56 (1.34)

DAX-CAC40 -33.74 (2.42) -25.13 (1.26) -19.43 (0.73) -31.97 (1.56) -24.76 (0.96) -19.24 (0.67)

NIKKEI-CAC40 -29.73 (2.30) -21.81 (1.13) -16.72 (0.69) -29.56 (1.73) -22.71 (1.03) -17.65 (0.72)

DAX-DOWJONES-NIKKEI-CAC40 -25.41 (1.84) -18.89 (1.02) -14.56 (0.62) -22.88 (1.15) -17.55 (0.69) -13.74 (0.51)

DAX-NEMAX-DOWJONES-NASDAQ -44.65 (2.44) -34.35 (1.62) -27.29 (1.06) -43.30 (2.22) -33.83 (1.42) -26.49 (1.08)

FORD-BOEING-GM- -43.97 (2.45) -33.51 (1.54) -26.22 (1.03) -46.69 (2.77) -35.73 (1.69) -27.36 (1.25)

DELL-CISCO-MICROSOFT
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7. Conclusion

The problem addressed here is the modelling of stock-price and asset-return distributions

in higher dimensions, motivated by questions of portfolio selection and risk management

in finance. The model proposed here is semi-parametric, and uses elliptically-contoured

distributions, specifically normal variance mixtures with self-decomposable mixing

distributions, with particular emphasis on the density generator g. In our view, this

approach has much to recommend it: it has very nice theoretical properties, is easy and

convenient to implement in simulation studies, and provides a good fit to a range of real

financial data sets.

Many interesting theoretical and practical questions remain. We single out two:

extension from normal variance mixtures to normal mean-variance mixtures (which

leads beyond the elliptically-contoured framework), and integration of our approach

with the most closely related recent and contemporary work, that of Barndorff-Nielsen,

Jensen, and Sørensen (1998), Korsholm (2000), Hodgson, Linton, and Vorkink (2002),

Barndorff-Nielsen and Shephard (2001), Barndorff-Nielsen and Shephard (2002).

We close by reminding ourselves, and the reader, that the real world of finance

poses many questions even more basic than those of the selection and management of

portfolios of stocks that motivate us here. The crux is questions of asset allocation,

between stocks (of whatever kind) and bonds (of whatever kind). Here fund managers

daily make highly committal choices when investing the contributions from our pension

funds and yours, for instance. Dwarfing the ‘tactical’ choices involved such routine

operations is the underlying ‘strategic’ question of the irrational exuberance of such

markets, to quote the immortal words of the President of the Federal Reserve Bank,

Mr. Alan Greenspan. The real questions here involve market psychology, which are

inherently harder, because less amenable to quantitative treatment, than the questions

treated here (for an entertaining account see Shiller (2000)).
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Embrechts, P., C. Klüppelberg, and T. Mikosch, 1997, Modelling extremal events. (Springer, New York

Berlin Heidelberg).

Embrechts, P., A. McNeil, and D. Straumann, 2001, Correlation and dependency in risk management:

Properties and pitfalls, in M. Dempster, and H.K. Moffat, eds.: Risk Management: Value at Risk

Beyond (Cambridge University Press, ).

Fang, K.-T., S. Kotz, and K.-W. Ng, 1990, Symmetric multivariate and related distributions. (Chapman

& Hall, London).

Fang, K.-T., and Y.-T. Zhang, 1990, Generalized multivariate analysis. (Science Press, Beijing;

Springer-Verlag, Heidelberg).

Frahm, G., and M. Junker, 2003, Generalized elliptical distributions – models and estimation, Research

Center Caesar, Bonn Germany, preprint.

Frahm, G., M. Junker, and R. Schmidt, 2002, Estimating the tail-dependence coefficient,



A semi-parametric approach to risk management 28

www.mathematik.uni-ulm.de/finmath/.

Hahn, M.G., D.M. Mason, and D.C. Weiner (eds.), 1991, Sums, trimmed sums and extremes.
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