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Abstract. A new notion of data depth in d-space is presented, called the
zonoid data depth. It is affine equivariant and has useful continuity and
monotonicity properties. An efficient algorithm is developed that calculates
the depth of a given point with respect to a d-variate empirical distribution.

1 Data Depth

Data depth is a measure of centrality by which multivariate data can be
ordered. Given a cloud of data x1,x2, . . . ,xn in d-space, data depth measures
how central an additional point y is situated with respect to the xi. This
measure serves as the base of rank tests and robust procedures.
Every notion of data depth should be affine equivariant, which means that,

if y and the xi are subject to the same affine transformation, the two result-
ing depths are the same. Various such notions have been proposed by Ma-
halanobis (1936), Tukey (1975), Liu (1990), and others. See Liu and Singh
(1993) and Rousseeuw and Leroy (1987, ch. 7).
Here we introduce a new definition, zonoid data depth, which has partic-

ularly nice properties. We present an efficient algorithm that calculates the
data depth of a given point in IRd with respect to a given empirical distribu-
tion of d-variate data. It is monotone and continuous on y, zero at infinity,
and unity at the sample mean x. Moreover it is continuous on (x1, . . . ,xn)
and monotone on dilations of (x1, . . . ,xn).

Definition 1. Let y,x1,x2, . . . ,xn ∈ IRd. The zonoid data depth of y with
respect to x1,x2, . . . ,xn is

depth(y|x1, . . . ,xn) = sup{α : y ∈ Dα(x1, . . . ,xn)} (1)

where

Dα(x1, . . . ,xn) =

{

n
∑

i=1

λixi :

n
∑

i=1

λi = 1, 0 ≤ λi, αλi ≤
1

n
for all i

}

. (2)



Dα(x1, . . . ,xn) is the α-trimmed region of the empirical distribution gen-
erated by the xi (Koshevoy and Mosler 1995), and we use the convention
sup ∅ = 0. It is clear, that Dα is convex for every α. For 0 ≤ α ≤ 1

n
, Dα is the

convex hull of the data. D1 is a singleton containing their mean x. Moreover,
Dα is monotone in the sense that Dα ⊂ Dβ if α > β.
Figure 1 exhibits several zonoid trimmed regions for a sample of 10 data

points in two-space.
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Figure 1. Zonoid trimming regions when n = 10 and d = 2. The trimming regions

are drawn for α = 0.1, 0.2, . . . 0.9.

Zonoid data depth differs from the existing notions: Tukey’s depth (Tukey
1975), simplicial depth (Liu 1990), majority depth (see Liu and Singh 1993).
Our notion has many properties in general which these notions have under
some restrictions only; see e.g. Liu and Singh (1993) for properties of Tukey’s,
simplicial and majority depths. Koshevoy and Mosler (1995) demonstrate
that the zonoid data depth equals twice Tukey’s data depth of a properly
transformed distribution.
In Section 2 a theorem is given that collects the main continuity and mono-

tonicity properties of zonoid data depth. Section 3 presents the algorithm.

2 Properties of Zonoid Data Depth

The depth of y equals zero if y lies outside the convex hull conv{x1, . . . ,xn};
it equals one if y is the arithmetic mean. From infinity to the mean the data
depth increases monotonically and is continuous on y ∈ conv{x1, . . . ,xn}. If



y and the xi are transformed by the same affine transform then the depth
remains the same. Further, inside the convex hull, the data depth is continu-
ous on the xi; it increases if the distribution of the xi becomes more variable
in terms of a dilation. More precisely, the main properties of the zonoid data
depth are summarized in the following theorem.

Theorem2.

(i) (Zero at infinity) sup‖y‖≥M depth(y|x1, . . . ,xn) → 0 as M → ∞.

(ii) (Continuous on y) At every y0 ∈ conv{x1, . . . ,xn}, the function
y 7→ depth(y|x1, . . . ,xn) is continuous.

(iii) (Continuous on the xi) At every (x0
1, . . . ,x

0
n) ∈ int conv{x1, . . . ,xn},

the function (x1, . . . ,xn) 7→ depth(y|x1, . . . ,xn) is continuous.
(iv) (Unity only at expectation) If y 6= x then

depth(y|x1, . . . ,xn) < 1 = depth(x|x1, . . . ,xn).
(v) (Monotone on x) For every y ∈ IRd, depth(cy+x|x1, . . . ,xn) is mono-

tone decreasing on c ≥ 0.
(vi) (Affine equivariant) For any given matrix A and vector b,

depth(Ay + b|Ax1 + b, . . . , Axn + b) = depth(y|x1, . . . ,xn).
(vii) (Monotone on dilation) depth(y|x1, . . . ,xn) ≤ depth(y|z1, . . . , zn) if

(z1, . . . , zn) is a dilation of (x1, . . . ,xn).

Koshevoy and Mosler (1995) have defined the zonoid data depth in the fol-
lowing, more general context: Let y ∈ IRd and µ be a d-variate probability
distribution that has a finite expectation vector E(µ). The zonoid data depth
of y with respect to µ is defined by

depthµ(y) = sup{α : y ∈ Dα(µ)}. (3)

Here Dα(µ) denotes the zonoid α-trimmed region of µ (Koshevoy and Mosler
1995),

Dα(µ) =
{

∫

IRd

xg(x) dµ(x) : g : IRd → [0,
1

α
] measurable

and

∫

IRd

g(x) dµ(x) = 1
}

.

If µ is an empirical distribution generated by x1, . . . ,xn, it can be easily seen
that the Definition (3) becomes (1). The theorem thus follows from Koshevoy
and Mosler (1995, Th. 8.1).

3 Computation

We consider the data matrix

X = (x1,x2, · · · ,xn),



whose columns are the vectors xi, i = 1, . . . , n, and denote λ = (λ1, . . . , λn)
′,

1 = (1, . . . , 1)′, 0 = (0, . . . , 0)′. The prime indicates the transpose.

The data depth (1) of a point y in IRd can be computed as follows.

Minimize γ

subject to Xλ = y

λ
′1 = 1

γ1− λ ≥ 0, λ ≥ 0



















(LP)

(LP) is a linear program in the real variables λ1, . . . , λn and γ. If γ∗ is the
optimal value of the objective then

depth(y|x1, . . . ,xn) =
1

nγ∗
.

If (LP) has no feasible solution, then it is clear that y /∈ conv{x1, . . . ,xn}.

Although the above LP can be easily solved by the standard simplex
method when n is small, a more subtle approach is needed for large-scale
problems. Our algorithm exploits the special structure of the set of con-
straints by a Dantzig-Wolfe decomposition. (LP) can be written

Minimize γ
subject to Xλ = y

(λ1, . . . , λn, γ)
′ ∈ S







(LP′)

where

S = {(λ1, . . . , λn, γ)
′ ∈ IRn+1 :

n
∑

i=1

λi = 1, 0 ≤ λi ≤ γ ≤ 1, for all i} .

Because S is a bounded polyhedral set, any point in S is a convex combination
of the extreme points. Fortunately, the extreme points of S are explicitly
known.

Proposition 3. The set V of extreme points of S is given by

V =

{

1

|I|
(δI , 1)

′ : ∅ 6= I ⊂ {1, . . . , n}

}

.

Here

δI = (δI(1), δI(2), . . . , δI(n)), δI(k) =

{

1, if k ∈ I,
0, if k /∈ I.



By Proposition 3, whose proof is left to the reader, (LP′) can be decomposed
as follows. The master problem, with variables βI , ∅ 6= I ⊂ {1, . . . , n}, is

Minimize
∑

I

1

|I|
βI

subject to
∑

I

1

|I|
(Xδ

′
I)βI = y

∑

I

βI = 1

βI ≥ 0 for all I







































(MP)

In every simplex step of (MP) a new pivot column is selected by solving the
subproblem

max
I

1

|I|
(wXδ

′
I − 1) + α

}

(SP)

where (w, α) is the vector of simplex multipliers of the master problem.
If the maximum objective of the subproblem is greater than zero and max-

imized at I = I∗, then the new pivot column for the master problem is
calculated as

B−1

(

1

|I∗|
δI∗X′, 1

)′

,

where B−1 is the basis inverse of the master problem. The pivot row for the
simplex step is then determined by the usual minimal ratio test, and the
tableau is updated. This process is continued until the maximum objective of
the subproblem equals zero. Then the current solution of the master problem
is optimal and the algorithm is stopped.

Summary of the algorithm

1. Initialization. Find a basic feasible solution of the system Xλ = y,
λ
′1 = 1, λ ≥ 0, using the two-phase method. Then β{i} = λi, i =

1, . . . , n, βI = 0, |I| ≥ 2, is a basic feasible solution of the master problem.
Initialize the revised simplex tableau for the master problem.

2. Solution of the subproblem.

(a) Compute wX and arrange the components in decreasing order. Let
(i) be the index of the i-th largest component of wX.

(b) Find k∗ which maximizes

1

k

(

k
∑

i=1

(wX)(i) − 1

)

, k ∈ {1, . . . , n}.

(c) The maximum objective of the subproblem is given by

z∗ =
1

k∗

(

k∗

∑

i=1

(wX)(i) − 1

)

+ α

and the maximum is achieved at I∗ = {(1), (2), . . . , (k∗)}.



(d) If z∗ = 0 stop; the basic feasible solution of the last master step is
optimal. Otherwise continue with the next step.

3. Update of the master tableau. Let

c = B−1

(

1

|I∗|
δI∗X′, 1

)′

where B−1 is the basis inverse of the master problem. Join the new pivot
column

(

z∗

c

)

with the master tableau. Determine the pivot row for the sim-
plex step by the usual minimal ratio test and update the master tableau.
Continue with Step 2.

Further, the algorithm generates an increasing sequence of lower bounds on
the data depth and a (not necessarily decreasing) sequence of upper bounds.
Table 1 summarizes some computation times. A sample of size n was drawn

from a standard normal distribution. y was calculated as the arithmetic mean
of the first ten points in the sample. The table shows the computation times
in seconds on a 100 MHz PentiumTM.

Table 1. Computation times [in seconds] of the algorithm

d 2 3 4 5 10
n

1000 0.21 0.43 0.76 0.87 4.11
2000 0.54 1.09 1.75 2.36 8.73
4000 1.48 2.03 4.22 5.32 24.88
8000 3.35 6.81 10.76 16.20 71.07

16000 9.72 14.72 23.39 36.52 150.38
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