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Abstract: A probability distribution on Euclidean d-space can be described
by its zonoid regions. These regions form a nested family of convex sets
around the expectation, each being closed and bounded. The zonoid regions
of an empirical distribution introduce an ordering of the data that has many
applications in multivariate statistical analysis, e.g. cluster analysis, tests
for multivariate location and scale, and risk analysis. An exact algorithm is
developed to constructing the zonoid regions of a d-variate empirical distri-
bution by their facets when d ≥ 3. The vertices of the region and their ad-
jacency are characterized, and a procedure is suggested by which all vertices
and facets can be determined. The algorithm is available as an R-package.
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1 Introduction

A probability distribution on Euclidean d-space can be described by its
zonoid trimmed regions or, in brief, zonoid regions. These regions form a
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nested family of convex sets – so-called central regions – around the expec-
tation, each being closed and bounded. The family is indexed by numbers
that vary in the unit interval. Each zonoid region can be seen as a set-valued
parameter that reflects the location, scale, and shape of the distribution.

Multivariate data are often asymmetrically distributed so that they cannot
be modelled by normal or elliptical distributions. Zonoid regions offer a
nonparametric and particularly visual approach to analyzing such data. A
distribution - empirical as well as theoretical - is uniquely represented by a
geometrical object; its family of zonoid regions. This object is visual and
has attractive analytical properties. Moreover, the zonoid regions of an i.i.d.
sample satisfy a law of large numbers, converging to the zonoid regions of
the underlying probability distribution.

Zonoid regions were introduced by Koshevoy and Mosler (1997) and, since
then, have found many applications in multivariate statistical analysis. They
have been employed, e.g., in cluster analysis (Mosler and Hoberg, 2006), in
the measurement of inequality (Koshevoy and Mosler, 2007) and polarization
(Gigliarano and Mosler, 200x), and in tests for multivariate location and scale
(Dyckerhoff, 2002); see also the monograph by Mosler (2002). Molchanov
and Cascos (2007) propose a general geometric framework for measuring
multivariate risks; in their approach zonoid regions serve as set-valued risk
measures that generalize the usual univariate expected shortfall.

The boundary of a zonoid region forms a depth contour with respect to zonoid
depth and can be regarded as a multivariate quantile. Therefore, given a
d-variate empirical distribution, zonoid regions are used as trimmed regions
that exclude “outlying” data and include “inlying”, that is to say, central and
relevant ones. Similar methodology has been based on alternative notions
of data depth and trimmed regions, such as halfspace (= location) depth,
simplicial depth, expected convex hull depth, among others. Zuo and Serfling
(2000) provide some general theory of depth trimmed contour regions, while
Liu, Parelius and Singh (1999) and Serfling (2006) broadly survey the theory
and applications of various notions of depths in multivariate data. Lopez-
Pintado and Romo (2007) investigate depth notions in functional data.

When applying such methods to given multivariate data, the crucial point is
the availability of efficient numerical procedures to compute the data depths
employed and the trimmed regions of an empirical distribution. To calculate
the depth of a single point of an arbitrary dimension, algorithms have been
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provided by Rousseeuw and Ruts (1996) and Rousseeuw and Struyf (1997)
for the halfspace depth, and by Dyckerhoff et al. (1996) for the zonoid depth.
Aloupis (2006) gives a survey of algorithms for calculating different notions
of medians and depths. But, calculating a depth trimmed region appears to
be a much more demanding task. So far, algorithms have been constructed
for the halfspace trimmed regions by Ruts and Rousseeuw (1996) and Miller
et al.(2003) in dimension 2, and by Fukuda and Rosta (2004) in arbitrary
dimension. For bivariate zonoid trimmed regions, Dyckerhoff (2000) provides
an algorithm that employs a circular sequence; Cascos (2006) uses the same
approach for bivariate regions that are trimmed by the expected convex hull
depth.

In this paper we present an exact algorithm that efficiently calculates zonoid
regions of any dimension. In contrast to most classical statistical tools, zonoid
regions are genuine geometric notions. Consequently, our algorithm makes
ample use of tools from computational geometry.

Consider an empirical distribution that gives probability 1
n

to each of the
observations x1, . . . ,xn ∈ R

d and let n ≥ d. The zonoid regions of the
empirical distribution are defined by

Dα(x1, . . . ,xn) =

{

1

nα

n
∑

i=1

λixi :
n

∑

i=1

λi = nα, 0 ≤ λ ≤ 1 ∀i

}

, (1)

0 < α < 1. Immediately it can be seen from the definition that D 1

n

(x1, . . . ,xn)

is the convex hull of the data x1, . . . ,xn, while D1(x1, . . . ,xn) is the set that
contains the mean 1

n

∑n

i=1 xi as a single point. At 0 < α < 1, Dα(x1, . . . ,xn)
is a convex polytope that lies between the convex hull and the expectation
point and decreases strictly with α. The border of such polytope consists of
a finite number of facets. Each facet is part of a hyperplane in R

d and can
be described by the direction of its normal vector and its distance from the
origin, that is to say, by some element p of the unit sphere Sd−1 and some
λ ∈ R+. The main task is to identify, from all directions p ∈ Sd−1, those
directions that determine the facets and calculate them in an efficient way.

The algorithm constructs the zonoid regions of an empirical distribution by
their facets. Thus, for any data x1, . . . ,xn and any α ∈ [0, 1[, the facets
and vertices of Dα(x1, . . . ,xn) are calculated and their coordinates are given.
Our algorithm is efficient in that it computes the facets one after the other,
proceeding from one facet to its neighbors.
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In the dimension d = 2, Dyckerhoff (2000) has developed an algorithm for
constructing zonoid regions. His procedure is based on the idea of a circular
sequence (cf. Edelsbrunner, 1987): A ray starting at the center is turned like
a clock’s hand and the data points are projected onto this ray. However,
the method of circular sequence works only with bivariate data. There is no
obvious generalization of such a sequence to higher dimensions.

Our first task is to characterize the vertices and facets of a given zonoid
region, given data points x1, . . . ,xn and α. For this, we introduce a global
structure that partitions R

d into direction cones that correspond one-to-one
to the vertices of the zonoid region. In this cone structure, the adjacency of
vertices is investigated and characterized. A linear program is constructed
to decide whether two vertices are neighbors. The resulting adjacency graph
consists of elementary cycles that have either three or six nodes. Then we
show that each facet of the zonoid region corresponds to exactly d data points
and characterize the facet by a linear restriction on d data points.

Our second task is to put the facets of the zonoid region into an order ac-
cording to which they can be efficiently calculated. For a given facet, a
“jump-to-neighbor” procedure is introduced to transfer the calculation to
the neighboring facets. Finally, a facet transversal graph is constructed, and
a spanning tree order is realized to transverse this graph in an efficient way.
This completes the algorithm.

Overview of the paper: Section 2 presents zonoid regions of general probabil-
ity distributions and surveys their principal statistical properties. In Section
3 the set of supporting vectors that belong to a given vertex of the zonoid
is investigated. In Section 4 a global structure of direction cones is set up,
and the adjacency of vertices is described through conditions on these di-
rection cones. Section 5 provides a linear program by which the adjacency
of vertices can be checked. Section 6 presents the adjacency graph and a
characterization of facets of the zonoid region. In Section 7 the “jump-to-
neighbor” procedure and the spanning tree order are introduced, according
to which all facets are transversed. Section 8 concludes with a discussion of
the complexity of our algorithm and its use in calculating zonoid regions for
different α. The last section also provides numerical experience and remarks
on possible modifications of the algorithm.
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2 Zonoid regions

Given a d-variate probability distribution function F , a family {Dα(F )} of
sets in d-space, called zonoid regions, is defined as follows: D0(F ) = R

d and
for α ∈]0, 1]

Dα(F ) =

{

∫

Rd

x g(x) dF (x) : 0 ≤ g ≤
1

α
,

∫

Rd

g(x) dF (x) = 1

}

. (2)

For α ∈]0, 1], these regions exist if and only if F has a finite expectation
vector µF =

∫

Rd xdF (x). It is obvious from the definition (2) that the zonoid
regions are nested; the smallest region being the singleton set D1(F ) = {µF}.
Furthermore, each Dα(F ) is bounded, closed, and convex. For an empir-
ical distribution F , with equal mass on (not necessarily different) points
x1, . . . ,xn, the definition specializes to the above definition (1).

In this section we list a few principal properties of zonoid regions, which
make them useful for statistical description and inference. For details and
many other theoretical results, the reader is referred to Mosler (2002), as
well as for applications to the multivariate analysis of location, dispersion
and dependency.

Firstly, for every α ∈ [0, 1], Dα is affine equivariant, i.e.,

Dα(FXA+c) = Dα(FX)A+c for any d × d matrix A having full rank, (3)

c ∈ R
d, and F having finite first moment. Hence, any statistical procedure

based on zonoid regions is an affine equivariant procedure.

Secondly, the zonoid regions contain full information about the underlying
distribution: For any two d-variate distribution functions F and G that have
finite first moments, it holds

F = G if and only if Dα(F ) = Dα(G) for all α ∈]0, 1] . (4)

The uniqueness property (4) implies that any claim about a distribution F

can be equivalently formulated as a claim about the zonoid regions of F and,
thus, can be analyzed by geometric means.

Thirdly, zonoid regions lend themselves easily to projection methods: By
projecting the zonoid regions of a distribution F onto some lower-dimensional
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subspace of R
d, the zonoid regions of the projected distribution are obtained.

In particular, any marginal of F has zonoid regions that are obtained by
projection onto the respective coordinate space. See also Dyckerhoff (2004).

The fourth property is continuity: The zonoid region Dα(F ) is continuous
on α as well as on F . More precisely (see Mosler (2002, Th. 3.10)), given a
distribution F and a sequence (αn) in ]0, 1] that converges to α > 0, it holds

Dαn
(F )

H
−→ Dα(F ) , (5)

Also, given α ∈]0, 1] and a sequence F (n) of distributions that is uniformly
integrable and weakly convergent to F , it holds

Dα(F (n))
H
−→ Dα(F ) . (6)

In (5) and (6),
H
−→ means convergence with respect to Hausdorff distance.

(The Hausdorff distance of two compacts C and D is the smallest ǫ for which
C plus an ǫ-ball includes D and D plus an ǫ-ball includes C as well.)

Fifthly, zonoid regions satisfy a Law of Large Numbers, which serves as
the basis of statistical inference: Let X1, . . . ,Xn denote an i.i.d. sample, with
Xi ∼ F . For every α, it holds

Dα(X1, . . .Xn)
H
−→ Dα(F ) almost surely . (7)

Thus, given an i.i.d. sample X1, . . . ,Xn, the zonoid region Dα(X1, . . .Xn)
serves as a set-valued statistic that estimates Dα(F ). So far, the practical
application of the zonoid region statistic was confined to the dimension d = 2,
since no algorithm existed to calculate it for higher dimensions. In the rest
of this paper we develop an exact algorithm that works for any dimension
d ≥ 3.

3 Vertices and direction domains of a zonoid

region

Let us first recall some standard notions and facts about convex sets and
polytopes in R

d. A convex polytope is the convex hull of a finite number of
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points or, equivalently, the nonempty intersection of a finite number of closed
halfspaces. A nonempty intersection of its boundary with a hyperplane is
called a facet if it has an affine dimension d−1, and a ridge if it has an affine
dimension d − 2. It is called an edge if it is a line segment, and a vertex if
it is a single point. The boundary of a convex polytope is the union of its
facets. A convex polytope has a finite number of facets, ridges, edges, and
vertices. An edge is the intersection of (at least) two facets, and a vertex is
the intersection of (at least) two edges, d−1 ridges and d facets. A hyperline
is an affine subspace of R

d that has a dimension 1.

A compact convex set is mentioned as a convex body. In particular, as a
zonoid region is a bounded convex polytope, it forms a convex body in R

d.
The support function hC : Sd−1 → R of a convex body C ⊂ R

d is defined by

hC (p) = max {p′x : x ∈ C} .

The support function of a convex body is closely related to its extreme points:
A point x0 is extreme in C if and only if some p ∈ Sd−1 exists so that

p′x = hC(p) implies x = x0 .

Now, for the given data x1, . . . ,xn, denote

H = H(x1, . . . ,xn) = {p ∈ Sd−1 : p′xi = p′xj for some i 6= j} .

Given a direction p ∈ Sd−1 \ H , the inner product p′x projects the data
points x1, . . . ,xn ∈ R

d onto numbers p′x1, . . . ,p
′xn ∈ R. While the data as

points in R
d have no natural total order, their projection does have. Thus,

each p ∈ Sd−1 \ H induces a total ordering of the data, i.e., a permutation
πp of the index set 1, . . . , n given by

p′xπp(1) < p′xπp(2) < · · · < p′xπp(n) . (8)

In the sequel we notate the p-ordered data by

Xp = (xp
1 , . . . ,xp

n) with xp
i = xπp(i) , i = 1, . . . , n .

Proposition 1. (Dyckerhoff, 2000) Let x1, . . . ,xn ∈ R
d be pairwise dis-

tinct, d ∈ N. For any p ∈ Sd−1 \ H define

xp,α =
1

nα

n
∑

i=1

λ
p
i xi , (9)
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where

λ
p
i =







1 if πp(i) > n − [nα] ,

nα − [nα] if πp(i) = n − [nα] ,

0 if πp(i) < n − [nα] .

Then the set of vertices of the zonoid region Dα is given by

V(Dα) = {xp,α ∈ R
d : p ∈ Sd−1 \ H} .

The set of all directions that yield vertices (= extreme points) of Dα is
Sd−1 \ H . Let S(v) ⊂ Sd−1 \ H denote the subset of those directions that
belong to a given vertex v ∈ Sd−1 \ H . S(v) is named a direction domain.
According to Proposition 1, all directions that provide the same permutation
of the data belong to the same direction domain, i.e. to some common vertex
v. The family of direction domains S(v),v ∈ V(Dα), forms a finite partition
of Sd−1 \ H .

Thus, the proposition yields a discretization of the continuum of possible
directions of the vector p, where the cardinality of the set of direction do-
mains equals the number of vertices of the zonoid region. Thus, a one-to-one
relation between domains of directions and vertices has been established.

In the sequel we assume that the data are in general position, i.e., every
subset of k + 1 data points generates an affine space of the dimension k,
k = 1, . . . , d − 1. (If the data are not in general position, the subsequent
discussion and the algorithm need to be modified, e.g., by slightly perturbing
the data.) Also, without loss of generality, we shall assume that the mean of
the data is at the origin, 1

n

∑n

i=1 xi = 0.

4 Adjacent vertices

In this section we investigate the transition of one vertex to another, that
is to say, of one direction domain to another. In our procedure we let a
support vector p – that represents direction – continuously rotate on the
unit sphere Sd−1. We start with an arbitrary p ∈ Sd−1, which provides an
initial permutation of the data points. As was mentioned, all p that produce
the same permutation of points form a direction domain that belongs to
a common vertex. When searching for all vertices, it obviously suffices to
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traverse each direction domain once. To do this, we shall characterize and
identify the possible transitions of one domain to a neighboring one. Our
identification procedure is based on the following observations:

The vector p hits the boundary of a direction domain only if, for some i 6= j,
p′xi = p′xj holds, i.e., p is orthogonal to xi − xj.

Note that the pair (p′xi,p
′xj) is not unique. However, at most d − 1 such

pairs can arise, as the space of all vectors that are orthogonal to p has an
affine dimension d − 1, and the data are in general position.

The vector p crosses the boundary of a direction domain only if, for some
i 6= j, p′xi and p′xj change their order. That is to say, any transition from
one permutation to another is done by swapping one of the pairs of data
points.

With Proposition 1 follows:

Theorem 1. (Identification of vertices) The vector p passes from one
direction domain (and one vertex) to a neighboring one if and only if i and
j exist, i 6= j, so that p is orthogonal to xi − xj, πp(i) = n − [n · α], and
|πp(i) − πp(j)| = 1.

Theorem 1 provides the basis for an algorithm that calculates all vertices of
the zonoid region.

So far, we have considered parts of the unit sphere; the direction domains.
They correspond to the vertices of the zonoid region. In the following dis-
cussion we will use the corresponding closed cones: For v ∈ V(Dα) define
the direction cone C(v),

C(v) = cl{λy : λ ∈ R+,y ∈ S(v)} ,

where cl(U) means closure of a set U ∈ R
d. Then each C(v) is a closed

convex cone in R
d with an apex at the origin. It is finitely generated (i.e. it

consists of all non-negative linear combinations of a finite number of vectors),
and has a maximum of n − 1 facets. The normals of its facets are described
in Theorem 1.

The family of direction cones provides a global structure that divides the
space R

d into sets corresponding to the vertices of Dα.
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Now, consider three data points xi,xj ,xk and the hyperplanes through the
origin that are orthogonal to xi−xj ,xi−xk, and xj −xk, respectively. These
hyperplanes intersect at a common hyperline that possibly contains a ridge
of a direction cone. On the other hand, every ridge of a direction cone is
contained in such a hyperline for some i, j, and k.

We can conclude: In the global structure a ridge of a direction cone belongs
to another direction cone only if it is a ridge of the latter, too.

In the sequel we shall say that two direction cones are adjacent cones if they
have a full facet in common. Turning the vector p through a boundary facet
implies a transition from a direction cone to an adjacent one. It means that,
to leave a current cone and enter an adjacent one, we have to move the vector
p in an arbitrary way beyond one of the hyperplanes that carry the facets of
the current cone.

5 A linear program for constructing adjacent

vertices

Our next task is to find an explicit way of constructing all vertices that are
neighbors of a given vertex v. In other words, we will explicitly determine
all direction cones that are adjacent to a given direction cone C(v). These
neighbors correspond to the facets of C(v). Every facet of the cone is defined
by a hyperplane. The set of hyperplanes that determine the cone’s boundary
is a subset of the hyperplanes described in Section 3. Each of these n − 1
hyperplanes is represented by its “inner” normal zj, i.e., the normal pointing
inside the cone:

zj =

{

xp

n−[nα] − xp
j if j = 1, . . . , n − [nα] − 1 ,

xp
j − xp

n−[nα] if j = n − [nα] + 1, . . . , n .

The n− 1 normals are codirected with all directions p in the cone, i.e., they
have non-negative inner products. In fact, C(v) is the intersection of all
corresponding halfspaces. In other words, C(v) is the set of all vectors p
that are codirected with the normals (5),

C(v) = {p ∈ R
d : z′jp ≥ 0 for all j = 1, . . . , n − 1} .
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Our task is to identify those hyperplanes (or, equivalently, their normals)
that belong to the boundary of the cone C(v). To determine whether zj is a
boundary normal, we shall solve the following minimization problem:

z′jp → min (10)

s.t. p ∈ C(v) ,
d

∑

i=1

|pi| = 1 .

If (10) has a positive minimal value, no support vector, p ∈ C(v), exists that
is orthogonal to zj . Hence, zj is not a boundary normal of C(v). If (10) is
minimized with value z′jp

∗ = 0, we can conclude that p∗ is a support vector
that belongs to the boundary of C(v) and is an element of the hyperplane
that has normal zj . Consequently, p∗ also belongs to the boundary of the
direction cone C(ṽ) of some vertex ṽ that borders on the current vertex v.

(10) can be rewritten as a linear program (LPj),

z′j(p
+ − p−) → min (11)

s.t. z′j(p
+ − p−) ≥ 0 j = 1, . . . , n − 1 ,

d
∑

i=1

(p+
i + p−i ) = 1 ,

p+
i ≥ 0 , p−i ≥ 0 , i = 1, . . . , d .

Here we have inserted p = p+ − p−, where p+ = (p+
1 , . . . , p+

d )′ and p− =
(p−1 , . . . , p−d )′ are the positive and negative parts of p, respectively. The linear
program (11) is solved by the simplex method.

To find all vertices bordering on v, we may solve the linear programs (11)
for j = 1, . . . , n− 1. As all programs have the same set of feasible solutions,
the calculations can be shortened by solving them simultaneously. In fact,
the number of neighbors is small compared to n − 1. Therefore, the number
of basic feasible solutions in the simplex method will be relatively small, too,
which leads to a high average efficiency of the simplex method. If n is large,
the dual simplex method may outperform the primal approach.

Each ridge of a direction cone is an intersection of three hyperplanes. On the
ridge either three or six direction cones touch each other. Let us consider
these two cases in more detail:
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Figure 1: Neighboring cones near the common ridge.

Remember that, given a vertex v, for all p ∈ C(v) the point xp

n−[nα] does

not depend on p. We call this point the main point of C(v).

Consider three direction cones C(v), C(w), and C(u) that have a common
ridge and denote their main points by a,b, c, respectively. For all p ∈ C(v)
these three main points are p-ordered in the same way, either with a in the
middle or not. If a is in the middle, b and c cannot switch their positions.
Hence, C(w) and C(u) have no boundary hyperplane in common, and w
and u are not adjacent vertices. In this case, a total of six direction cones
meet at the common ridge. If, on the other hand, b and c are on the same
p-side of a, their positions can switch and w and u are neighboring vertices.
In this case, only three direction cones unite at the common ridge. The two
cases are illustrated in Figure 1.
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6 Edges and facets

Having obtained an efficient procedure for finding extreme points we now
must create an efficient one for constructing all facets of the zonoid region.
Next we characterize the edges of the zonoid region.

Lemma 1 (Vertices and edges). Let C(v) and C(w) be direction cones.
The line connecting v and w is an edge if and only if C(v) and C(w) are
adjacent cones.

Proof. Recall that the zonoid region Dα is a convex polytope, and its
extreme points form the vertices of this polytope. As C(v) and C(w) are
direction cones of vertices v and w, for all x ∈ Dα it holds that:

p′x ≤ p′v if p ∈ C(v) , and p′x ≤ p′w if p ∈ C(w) . (12)

Now assume that C(v) and C(w) are adjacent cones. Then for each p in
their common boundary C(v) ∩ C(w) it holds that p′v = p′w. Hence, for
all x ∈ Dα

p′x ≤ p′(λv + (1 − λ)w) if λ ∈ [0, 1] . (13)

It follows that the line connecting v and w is an edge of the polytope. On
the other hand, assume that this line vw is an edge. Then some p exists
that, for all x ∈ Dα, satisfies (13). For this p, it must hold that p′v = p′w.
In view of (12), we can conclude that (13) is true for all x ∈ Dα if and only
if

p′(v − w) = 0 , p′v ≥ 0 , and p′w ≥ 0,

that means, p is in a d − 1-dimensional cone which is a subset of C(v) and
of C(w). Consequently, C(v) and C(w) have a full facet in common, and
are, thus, adjacent cones. 2

Lemma 1 provides a unique correspondence between the adjacency of di-
rection cones in the global cone structure and the existence of edges of the
zonoid region.

Recall that adjacent direction cones are cones that have a common facet.
The adjacency information of the zonoid region, which is a polytope, is rep-
resented by its adjacency graph, which consists of the polytope’s vertices and
edges. Above, we have demonstrated that either three or six direction cones
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Figure 2: The structure of the adjacency graph.

touch each other on a ridge. Hence the adjacency graph is a concatenation
of elementary cycles, each connecting either three or six vertices. This is
illustrated in Figure 2:

Now, consider a facet of the zonoid region. Let the vector p be directed
orthogonally to the facet. Then, if points from the data cloud are in general
position, exactly d points xπp(k),xπp(k+1), . . . ,xπp(k+d−1) exist so that:

p′xπp(k) = p′xπp(k+1) = · · · = p′xπp(k+d−1)

with some k , k ≤ n − [nα] ≤ k + d − 1 .

}

(14)

Obviously, the indices k, . . . , k + d− 1 in (14) are not unique. However, any
permutation of these d points yields the same facet. We may conclude the
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following theorem.

Theorem 2. (Identification of facets) Each facet can be identified by a
set of exactly d points from the data cloud and one of its vertices. Moreover,
if there is a support vector that defines a permutation satisfying (14), then
this permutation and these d data points define a facet of the zonoid region.

It can easily be seen from Theorem 2 that, if k < n−[nα] < k+d−1, the facet
can have more than d vertices . A facet will be mentioned as redundant if it
has more than d vertices, and as non-redundant if it has exactly d vertices.
In any case, there are only d different main points that belong to a facet. Let
ℓ = n − [nα] − k. We obtain:

Corollary 1. The number of vertices of the facet equals d ·
(

d−1
ℓ

)

.

Proof. As stated above, the total number of possible relative positions of d

points is d !. But, according to (9), the relative position of points in

[k, (n − [nα])[ and ](n − [nα]), k + d − 1]

is not significant, i.e.
(

d−1
ℓ

)

different cases remain. This number is multiplied
by d, which is the number of possible main points. 2

Corollary 2. Each set of d points from the data cloud defines, at most, one
facet of a zonoid region unless:

k ≤ n − [nα] ≤ k + d − 1 and k ≤ n − [n − nα] ≤ k + d − 1. (15)

Otherwise it defines exactly two parallel facets.

Proof. The first statement is clear from Theorem 2. The second is based on
the fact that, if the condition (15) is met, then the inverted support vector
also defines a permutation satisfying (14). 2

Corollary 3. For each set of d data points some α exists, so that the set
defines a facet of the zonoid α-region.

Proof. In fact, for a set of exactly d data points it is always possible to
find α so that the condition (14) is met. Then the statement follows from
Theorem 2. 2
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In the case of a non-redundant facet we have ℓ = 0. Then, according to
Corollary 1 the facet is a (d − 1)-dimensional simplex having d vertices.
The vertices identify the facet; they are pairwise adjacent and correspond to
the pairwise adjacent direction cones. In turn, every set of d vertices that
correspond to pairwise neighboring cones defines either a facet or a cut of the
zonoid region. Thus, also in this case, the identification of the facet is based
on the adjacency graph. Based on Corollary 2 we can generate an arbitrary
facet as follows:

1. Choose an arbitrary set of d points.

2. Check whether this set defines a facet. If not, go back.

3. Create the corresponding facet.

We will also use this procedure to initialize our algorithm by creating a first
facet. Thus, Theorem 2 and its corollaries provide a procedure for identifying
each facet of the zonoid region.

7 Sequencing the facets

To complete the algorithm, we have to create a procedure that generates all
facets in a sequential way. For this, we specify a total ordering of the set of
facets. In the case d = 2 such an order is easily created by a circular sequence;
see Dyckerhoff (2000). In the dimension d ≥ 3 we can solve this problem by
introducing a spanning tree order (STO). Consider a given facet. Each ridge
of it corresponds to exactly one neighboring facet and all neighboring facets
can be found by passing through the ridges. The following theorem and its
proof tell us the number of adjacent faces, that is the number of ridges, and
how the ridges are obtained.

Theorem 3. (Neighboring facets)

(i) A facet has either 2d or d neighboring facets.

(ii) It has d neighbors if and only if it is non-redundant.
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Proof. Let the support vector p be orthogonal to the facet and condition
(14) be met. A minimal violation of orthogonality is achieved by an in-
finitesimal move of p in a direction that is perpendicular to a ridge of the
facet and non-perpendicular to its other ridges. This corresponds to the fol-
lowing change in the first equation of (14): Either p′xπp(k) < p′xπp(k+1) =
· · · = p′xπp(k+d−1) or p′xπp(k) = · · · = p′xπp(k+d−2) < p′xπp(k+d−1) . That
is, a ridge is obtained by removing one of the points that define the facet
according to Theorem 2.

By removing one point to the higher and one to the lower part of the per-
mutation, we obtain two ridges. Note that in the non-redundant case we can
generate only one ridge in order not to violate the second equation of (14).
The number of ridges is 2d (d in a non-redundant case), as there are d points
which have to be removed. Obviously, the number of facets that neighbor
the current one equals the number of its ridges. 2

Thus, by removing one of the points that characterize the current facet ac-
cording to the Theorem 2, we are directed to either one or two neighboring
facets. If the current facet is redundant, removing a point yields two par-
allel ridges. Thus, we get two neighbors for a redundant, and one for a
non-redundant facet.

Next, we search for a new adjacent facet that shares a given ridge. For this,
rotate the support vector p in the plane orthogonal to the ridge defined by the
d−1 points. Obviously, if xi has been removed from the higher (resp. lower)
part of the permutation, p has to be rotated in the direction of increasing
(resp. decreasing) p′xi. The rotation stops when the (14) first equation is
met, that means, p has reached a normal of a new facet.

As this procedure produces a “jump” from the current facet to one of its
neighbors, we shall mention it as the “jump-to-neighbor” procedure. Accord-
ing to this procedure, sequentially generated facets are identified in a similar
way, which allows for an efficient implementation. Moreover, as the traversal
through all neighbors guarantees the absence of “gaps”, no facet will be lost.

Based on Theorem 3 we shall construct a special graph; the facet traversal
graph (FTG). The vertices of the FTG correspond to the set of all facets of
the zonoid region, and the edges of the FTG indicate the neighborhood of
facets. Each vertex of this graph joins either d or 2d edges.

A sequential procedure for determining the zonoid region consists in transvers-
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Figure 3: Examples of the facet traversal graph.
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ing all vertices of the corresponding FTG. Note, that in the dimension d = 2,
the FTG is an elementary cycle and its traversal is trivial and unique. In fact
d = 2 is a degenerated case. For d ≥ 3 we construct a spanning tree order
(STO) of the FTG, which orders the set of facets. By “jumps-to-neighbor”
the STO is created in a dynamic way:

1. Organize a queue.

2. In each step, pop from the queue a current facet, which corresponds
to a vertex of the FTG. Add to the queue all adjacent vertices of the
current vertex that have not been processed so far. Mark the current
vertex as processed.

3. Marking of the vertices is done through a hash table, where hash codes
of all the processed vertices (i.e. facets of the zonoid region) are stored.

According to Corollary 2 the record for each facet in the hash table is fully de-
scribed by d integer numbers. These numbers are the labels of main elements
of d points that define the facet. If these points define two parallel facets,
these facets can easily be generated in one step, thus making it possible to
have one record for them in the hash table.

The linear order of the vertices (facets) is provided by its final positioning in
the queue. The realization of the STO is illustrated by Figure 4.

So far, we have constructed an algorithm to compute Dα(x1, . . . ,xn) for
a single given α ∈]0, 1[. Finally, this procedure is modified to efficiently
calculate D∗

α(x1, . . . ,xn) for all α∗ in an interval around α.

Given p0, consider the intervall Ak of those α whose main element has the
same index k, that is n − [nα] = πp0

(k) or, equivalently,

n − πp0
(k)

n
≤ α <

n − πp0
(k) + 1

n
. (16)

For all α ∈ Ak, the global cone structure is the same. When we calculate
the zonoid region for some α ∈ Ak, we can simultaneously determine the
zonoid regions for all α ∈ Ak by using the same global cone structure and
only recalculating the distances of facets from the origin.
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Note that that there are only n possible different global cone structures.
Hence the global cone structure is fully determined by the initial position p0

of the support vector and the corresponding main point, which can be any of
the n data points. Consequently, for determining the whole family of zonoid
regions, Dα(x1, . . . ,xn) for all α, it suffices to run the modified algorithm n

times only.

8 Discussion

An exact algorithm has been constructed to compute the zonoid regions of
an empirical distribution in d-space. It calculates all of the vertices, edges,
and facets of a zonoid region at any given depth α ∈]0, 1[. (Recall that α = 0
and α = 1 are trivial cases.) This approach requires that the dimension d−2
of ridges is not lower than 1, which is the dimension of edges. It works for
any dimension d ≥ 3 and any number n of data points.

A hash table plays a significant role, as it stores the vertices, once generated,
in a special structure and facilitates a fast check of whether the vertex has
already been processed. Each facet is generated only once. Thus the algo-
rithm has as many loops as the zonoid region has facets. Obviously, this is
the minimum number of facet generating loops in this sort of algorithm.

In a single facet generating loop, the most costly operations are as follows:
Calculate the hyperplane equation of the current facet, calculate its distance
from the origin and obtain the neighboring facets. This is done by solving
linear equations and finding inner products only. The complexity of the first
operation is O(d3). Up to d such operations are performed in each loop. The
complexity of getting n − 1 inner products is assessed O(nd). Hence, the
complexity of one facet generating loop is described by O(d2(d2 + n)).

The number of computational loops of the algorithm is equal to the number
of facets of the zonoid region. If the average number of facets is denoted
N(n, d), the average computational complexity of the algorithm amounts to
O(d2(d2 + n) · N(n, d)).

Note that the complexity increases only moderately with d. For example,
consider two data clouds of dimensions d1 and d2 (d1 < d2) that contain the
same number of points n. Then the second data cloud will form a polytope
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that has a more trivial structure in R
d2 than the first has in R

d1 . It is also easy
to see that there is no operation in the algorithm whose complexity grows
exponentially with the growth of the dimension. Altogether the complexity
is polynomial in n and d. This confirms the efficiency of our algorithm.

General memory resources are used, in the first place, for storing a hash
table and created facets. Each facet occupies O(d) storage size, while a hash
table in almost any case has a constant size C, not depending on n and d.
Therefore, the use of general memory is of the order O(N(n, d) · d + C).
Facets, once they have been created, are put into a secondary store, thus
considerably reducing the storage cost.

Figure 5 illustrates its application by exhibiting zonoid regions for a small
data set of five points of the dimension three and for several values of α. Each
zonoid region is depicted in three directions (by revolving it on a vertical
axis). The data points are shown as little pyramids. (Note that these 3d-
pictures employ a perspective view.)

The algorithm can be downloaded as an R-package from the first author’s
webpage (www.wisostat.uni-koeln.de/Forschung/ZonoidRegions). It has
been implemented on a standard PC. Table 1 exhibits, for different choices
of d and n, average values of total time (in seconds), number of facets, and
time per facet. Note that for all calculations the same α = 0.317 was taken.
As the number of facets depends on the data, the efficiency of the algorithm
may be judged by its computation time per facet. Table 1 gives an idea of
how the time for computing one facet grows with d and n. It appears that
the “time per facet” increases polynomially with d; moreover, the increase is
close to being linear. Concerning n, a tendency towards saturation at some
constant value is indicated. The given results also suggest that the growth
in the “number of facets” is polynomial as well. Hence we can suspect that
the aggregate complexity is polynomial.

Much computational load can be spared when we simultaneously calculate
zonoid regions for several α that are sufficiently close to each other. If [n ·
α1] = . . . = [n · αk] holds, complete facets have to be computed for α1 only,
while for α2, . . . , αk all facets are parallel to them; so, only their distances
from the origin have to be calculated.

The algorithm as it stands generates the facets one after the other in a deter-
ministic way. It may be modified in order to gradually cover certain specified
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d n time per facet number of facets total time [sec]
3 10 0.002437 106 0.259
3 15 0.003022 241 0.722
3 20 0.003474 476 1.653
4 10 0.003142 257 0.809
4 15 0.004444 948 4.216
4 20 0.005163 2840 14.667
5 10 0.003714 377 1.403
5 15 0.006250 2556 15.980
5 20 0.007257 13082 95.133
6 10 0.004083 377 1.542
6 15 0.008112 5005 40.600
6 20 0.009385 38177 356.648

Table 1: First computational results.

parts of the zonoid region that are of special interest. For instance, all facets
belonging to the lower boundary may be constructed without generating the
remaining facets of the zonoid region.

Moreover, the structure of the algorithm lends itself well to being parallelized
on a high-performance cluster system.

To speed up the procedure, our exact algorithm can also be modified by
imposing heuristic rules on the choice of adjacent facets. For instance, as a
heuristic rule we may prefer redundant facets to non-redundant ones, since
a redundant facet borders on more other facets and, thus, can be regarded
as a facet that determines the zonoid region “more strictly” than others do.
In any case, the exact algorithm serves as a benchmark procedure to be
compared with any heuristic procedure, regarding precision as well as speed.
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Figure 4: Realization of the STO.
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Figure 5: Zonoid regions of five points of the dimension three.
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