
Noname manuscript No.
(will be inserted by the editor)

Fast nonparametric classification based on data

depth

Tatjana Lange · Karl Mosler ·

Pavlo Mozharovskyi

Received: date / Accepted: date

Abstract A new procedure, called DDα-procedure, is developed to solve the
problem of classifying d-dimensional objects into q ≥ 2 classes. The procedure
is nonparametric; it uses q-dimensional depth plots and a very efficient algo-
rithm for discrimination analysis in the depth space [0, 1]q. Specifically, the
depth is the zonoid depth, and the algorithm is the α-procedure. In case of
more than two classes several binary classifications are performed and a ma-
jority rule is applied. Special treatments are discussed for ‘outsiders’, that is,
data having zero depth vector. The DDα-classifier is applied to simulated as
well as real data, and the results are compared with those of similar procedures
that have been recently proposed. In most cases the new procedure has com-
parable error rates, but is much faster than other classification approaches,
including the SVM.

Keywords Alpha-procedure · zonoid depth · DD-plot · pattern recognition ·
supervised learning · misclassification rate

1 Introduction

A steady interest in statistical learning theory has intensified recently since
nonparametric tools have become available. A new impetus has been given to
supervised classification by employing depth functions such as Tukey’s ([25])
halfspace depth or Liu’s ([19]) simplicial depth. In supervised learning a func-
tion is constructed from labeled training data that classifies an arbitrary data
point by assigning it one of the labels [12]. Given two or more labeled clouds
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of training data in d-space, a data depth measures the centrality of a point
with respect to these clouds. For any point in d-space it indicates the degree
of closeness to each label. This can be employed in different ways for solving
the classification task. Many authors have made use of data depth ideas in
supervised classification. Liu et al. [20] were the first who stressed the use-
fulness and versatility of depth transformations in multivariate analysis. They
introduced the notion of a DD-plot, that is the two-dimensional representation
of multivariate objects by their data depths regarding two given distributions.
In a straightforward way, an object can be classified to the class where it is
deepest, that is, according to its maximum depth. Jornsten [15] and Ghosh
and Chaudhuri [11] have followed this and similar approaches; see also Hoberg
and Mosler [13]. Dutta and Ghosh [7,6] employ a separator that is linear in
a density based on kernel estimates of the projection depth, respectively Lp-
depth. Recently, Li et al. [18] have used polynomial separators of the DD-plot
to classify objects by their depth representation. These methods differ in the
notion of depth used and allow for adaptive and other extensions.

The quoted literature has in common that a (possibly high-dimensional)
space of objects is transformed into a lower-dimensional space of depth values
of these objects and the classification task is performed in the depth space. In
this context several questions arise:

1. Which particular notion of depth should be employed?
2. Which classification procedure should be applied to the depth-represented

data?
3. How extends the procedure to q > 2 classes?

The above literature answers these questions in different ways. Ad (1),
halfspace and simplicial depths, among others, have been employed in [10,
18,20]. They depend only on the combinatorial structure of the data, being
constant in the compartments spanned by them. Consequently, these depths
are rather robust to outlying data, but calculating them in higher dimensions
can be cumbersome if not impossible. On the other hand Mahalanobis depth
[21], which has also been used by these authors, is easily calculated but highly
non-robust. Moreover, it depends on the first two moments only and does not
reflect any asymmetries of the data. More robust forms of the Mahalanobis
depth remain still insensitive to data asymmetries. L1-depth as used in [15]
has similar drawbacks. [6] employ Lp-depths, which are easily calculated if p is
known, and choose p in an adaptive procedure; however the latter needs heavy
computations. In [13] the maximum zonoid depth and a combination of it with
the Mahalanobis depth are used; both can be efficiently calculated also in high
dimensions but lack robustness. Ad (2), Li et al. [18] solve the classification
problem of the DD-plot by designing a polynomial line that separates the
unit square and provides a minimal average misclassification rate (AMR); the
order (up to three) of the polynomial is selected by cross validation. Similarly,
separators are determined in [7] and [6] by cross-validation.

Ad (3) with q > 2 classes a given point is usually classified in two steps
according to majority rule: firstly

(

q
2

)

classifications are performed that are
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restricted to pairs of classes in the object space, and secondly the point is
assigned to that class where it was most often assigned in step 1.

In this paper, ad (1), we employ the zonoid depth [16,22], as it can be
efficiently calculated also in higher dimensions (up to d = 20 and more) and
has excellent theoretical properties regarding continuity and statistical infer-
ence. However the zonoid depth has a low breakdown point. If, in a concrete
application, robustness is an issue the data have to be preprocessed by some
outlier detection procedure. Ad (2), for final classification in the depth space
a variant of the α-procedure is employed. It operates simply and very effi-
ciently on low-dimensional spaces like the depth spaces considered here. The
α-procedure has been originally developed by Vasil’ev [27,28] and Lange [29].
Ad (3) we employ DD-plots if there are two classes and q-dimensional depth
plots if there are q > 2 classes. Assignment of a given point to a class is based
on

(

q
2

)

binary classifications in the q-dimensional depth space plus a major-
ity rule. Note that in each binary classification the whole depth information
regarding all q classes is used.

We call our approach the DDα-approach and apply it to simulated as well
as real data. The results are contrasted with those obtained in [18], [7], and
[6].

The contribution of this paper is threefold. A classification procedure is
proposed that

1. is efficiently computable for objects of higher dimensions,
2. employs a very fast classification procedure of the D-transformed data,
3. uses the full multivariate information when classifying into q > 2 classes,

The rest of the paper is organized as follows. Section 2 introduces the
depth transform, which maps the data from d-dimensional object space to
q-dimensional depth space, and provides a first discussion of the problem of
‘outsiders’, that are points having a vanishing depth vector. In Section 3 our
modification of the α-procedure is presented in some detail. Section 4 provides
a number of theoretical results regarding the behavior of the DDα-procedure
on elliptical and mirror symmetric distributions. Section 5 contains extensive
simulation results and comparisons. Calculations of real data benchmark ex-
amples are reported in Section 6 as well as a comparison of the DDα-procedure
with the SVM approach. Section 7 concludes.

2 Depth transform

A data depth is a function that measures, in a certain sense, how close a given
point x is located to the “center” of a finite set X in R

d, that is, how “deep”
it is in the set. More precisely, a data depth is a function

(x, X) 7→ DX(x) ∈ [0, 1] , x ∈ R
d , X ⊂ R

d ,

that satisfies the following restrictions: affine invariant; upper semicontinuous
in x; quasiconcave in x (that is, having convex upper level sets), vanishing if
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||x|| → ∞. Sometimes two weaker restrictions are imposed: orthogonal invari-
ant; decreasing on rays from a point of maximal depth (that is, starshapedness
of the upper level sets). For surveys of these restrictions and many special no-
tions of data depth, see e.g. [30,22,8,24,2].

Now, assume that data in R
d are to be classified into q ≥ 2 classes and

that X1, . . . , Xq ⊂ R
d are training sets for these classes each having finite size

nj = |Xj|. Let D be a data depth. The function R
d → [0, 1]q mapping

x 7→ d := (DX1
(x), . . . , DXq

(x)) (1)

will be mentioned as a depth representation. Each object is represented by
a vector whose q components indicate its depth or closeness regarding the
q classes. In particular, the training sets Xj ⊂ R

d are transformed to sets
in [0, 1]q that represent the classes in the depth space. It should be noted
that ‘closeness’ of points in the original space translates to ‘closeness’ of their
representations. The classification problem then becomes one of partitioning
the depth space [0, 1]q into q parts.

A simple rule, e.g., is to classify a point to that class where it has the
largest depth value; see [11,15]. This means that the depth space decomposes
into q compartments which are separated by (parts of) q bisecting hyperplanes.
Maximum depth classification is a linear rule. A nonlinear classification rule
is used in Li et al. [18], who treat the case q = 2 by constructing a polynomial
line up to degree 3 that separates the depth space [0, 1]2; see also [7,6].

With several important notions of data depth, DX(x) vanishes outside the
convex hull of X . This is, e.g., the case with the halfspace, simplicial, and
zonoid depths, but not with the Mahalanobis and Lp-depths. A point that
is not within the convex hull of at least one training set then is mapped to
the origin in the depth space. Such a point will be mentioned as an outsider.
Of course, it can be neither regarded as correctly classified nor ignored. To
classify this point we may consider three principal approaches, each allowing
for several variants.

– Classify randomly, with probabilities equal to the expected proportions of
origin of points to be classified.

– Use the k-nearest neighbors method with a properly chosen distance: Eu-
clidean distance, Lp-distance, Mahalanobis distance with moment esti-
mates, Mahalanobis distance with robust estimates (MCD, cf. e.g. [14]).

– Classify with maximum Mahalanobis depth (using moment estimates or
MCD) or with the maximum of another depth that is properly extended
beyond the convex hull as e.g. in [13].

In the sequel we will use either random classification, k-nearest neighbors
(with different distances), or maximum Mahalanobis depth (with moment and
robust estimates).
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3 The α-procedure

To separate the q classes in the multi-depth space we use the α-procedure,
which has been developed by Vasil’ev [27,28] and Lange [29], see also [17].
Among others the regression depth method (see [23], [3] or [4]) or the support
vector machine (see [26] and [4]) seem to be good alternatives. In contrast
with those the α-procedure, in application to the current task, is substantially
faster and produces a unique decision rule. Besides that it focuses on features
of the extended [0, 1]q, i.e. depths and their products, which, by their nature,
are rather relevant. Moreover, by selecting a few important features only, the
α-procedure yields a rather stable solution.

Let us first present the procedure in the case of q = 2 classes. As above
consider two clouds of training data in R

d, X = {x1, . . . ,xn1
} and Y =

{y1, . . . ,yn2
} and notate xn1+m = ym, m = 1, ..., n2. By calculating the depth

of all xi with respect to each of the two clouds, their depth representation,
(DX(xi), DY (xi)), is obtained, i = 1, 2, . . . , n1 + n2. The set

D = {di ∈ [0, 1]2|di = (DX(xi), DY (xi)), i = 1, . . . , n1 + n2}

is the DD-plot of the data ([20]).
We use a modified version of the α-procedure to construct a nonlinear sep-

arator in [0, 1]2 that classifies the D-represented data points. The construction
is based on depth values and the products of depth values up to some degree p
that can be either chosen a priori or determined by cross-validation. For this,
a linearized representation of the two classes in a depth feature space is

Z = {zi | zi =
(

DX(xi), DY (xi), DX(xi) ·DY (xi), D
2
X(xi), D

2
Y (xi)

)

,

i = 1, ..., n1 + n2} .

Each element of the extended D-representation is mentioned as a basic
D-feature and the space [0, 1]r as the feature space. When the maximum
exponent is p ≥ 1, zi is a vector in R

r having components

DX(xi)
kν ·DY (xi)

ℓν , where 1 ≤ kν + ℓν ≤ p , ν = 1, . . . , r . (2)

The number of basic D-features, that is the dimension of the feature space,
equals r =

(

p+2
2

)

− 1, which is easily seen by induction. We index the basic
D-features by ν and notate zi = (ziν)ν=1,...,r.

The α-procedure now, in a stepwise way, performs linear discrimination
in subspaces of the feature space. It is a bottom-up approach that succes-
sively builds new features from the basic D-features. In each step certain
two-dimensional subspaces of Z are considered, and the projection of Z to
each of these subspaces is separated by a straight discrimination line. Out of
these subspaces the α-procedure selects a subspace whose discrimination line
provides the least classification error. Clearly any discrimination line that sep-
arates the DD-plot must pass through the origin since DX(xi) = DY (xi) = 0
implies that the point xi cannot be classified to either of the two classes. The
same must hold for all discrimination lines in subspaces of the extended depth
space.
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Fig. 1 α-procedure; step 1.

In a first step a pair (ν1, ν2) of D-features (2) is chosen with (k1 + k2)(ℓ1 +
ℓ2) > 0. The latter restriction implies that the two D-features do not solely
relate to one of the classes. A straight discrimination line is calculated in
the two-dimensional coordinate subspace defined by the pair (ν1, ν2). As the
line passes through the origin it is characterized by an angle α ∈ [0, 2π[.
The best discriminating angle αν1,ν2 is determined by minimizing the average
misclassification rate (AMR),

∆(α; ν1, ν2) =
1

n1 + n2

[

n1
∑

i=1

I(zi,ν1 cosα− zi,ν2 sinα < 0) (3)

+

n1+n2
∑

i=n1+1

I(zi,ν1 cosα− zi,ν2 sinα > 0)
]

.

Here I(A) denotes the indicator function of A. If the minimum is attained in
an interval, its middle value is selected for αν1,ν2 ; see Figure 1. The same is
done for all pairs of D-features satisfying the above restriction, and the pair
(ν∗1 , ν

∗

2 ) is selected that minimizes (3). If the minimum is not unique the pair
with the smallest k and ℓ is chosen. Let α(1) = αν∗

1
,ν∗

2
and denote the respective

AMR by ∆(1). Next the D-features ν∗1 and ν∗2 are replaced by a new D-feature
which is indexed by µ1 and gives value

zi,µ1
= zi,ν1 cosα

(1) − zi,ν2 sinα
(1) , i = 1, . . . n1 + n2 , (4)

to each xi. Geometrically the values are obtained by projecting (zi,ν1 , zi,ν2) to
a straight line in the (ν1, ν2)-plane that is perpendicular to the discrimination
line; see Figure 1. The first step results in the new D-feature µ1 and the AMR
∆(1) produced by classifying according to this feature.

The second step couples the new D-feature µ1 with each of the basic D-
features ν that have not been replaced so far. For each of these pairs of D-
features a best discriminating angle αµ1,ν is determined, and among these the
pair of D-features is selected that provides the minimum AMR. The minimum
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error is denoted by ∆(2) and the angle at which it is attained by α(2). This
is visualized in Figure 2. The best pair of D-features is replaced by a new
D-feature µ2, where the values zi,µ2

are calculated as in (4).

The last step is repeated with µ2 in place of µ1, etc. The procedure stops
after step t if either the additional discriminating power ∆(t) −∆(t+1) = 0 or
t = r, that is, all basic D-features have been replaced. Then the angle α(t)

defines a linear rule for discriminating between two (up to) p-th order polyno-
mials in DX(z) and DY (z), which correspond to the two finally constructed
D-features, according to their sign. This yields a polynomial separation of the
classes in the depth space.

For example, let in step 1 the basic features DX and D2
Y be selected and,

consequently, DX ·DY and D2
X be included in steps 2 and 3. If the procedure

terminates after step 3, the result is a polynomial in the two depths DX(x)
and DY (x) that has form

aDX(x) + bD2
X(x) + cD2

Y (x) + dDX(x)DY (x)

A given point x of the object space then is classified according to the sign of
the polynomial.

If there are more than two classes, sayX1, . . . , Xq, each data point xi is rep-
resented by the vector of depth values d = (DX1

(xi), . . . , DXq
(xi)) in [0, 1]q.

Again a depth feature space is considered of some order p; it has dimension
r =

(

p+q
q

)

− 1. With q > 2 classes every two training classes Xj , Xk, j 6= k, are
separated by the α-procedure in the same way as above: In each step a pair of
D-features is replaced by a new D-feature as long as the AMR decreases and
basic D-features are left to be replaced. For each pair of classes the procedure
results in a hypersurface that separates the q-dimensional depth space into two
sets of attraction. A given point x is finally assigned to that class to which it
has been most often attracted.

4 Some theoretical aspects

In order to investigate some properties of the DDα-approach we transfer it to
a more general probabilistic setting and define a depth function as the popu-
lation version of a data depth. Let P be a properly chosen set of probability
distributions on R

d that includes the empirical distributions. A depth function
D is a function that assigns a value DP (x) ∈ [0,1] to every x ∈ R

d and P ∈ P
in an affine invariant way (i.e. DAP+b(Ax + b) = DP (x) for any nonsingular
matrix A ∈ R

d×d and any b ∈ R
d, AP denoting the push-forward measure),

and has convex compact upper level sets. Obviously, the restriction of a depth
function D to the class of empirical distributions is an affine invariant quasi-
convex data depth. For details on general depth functions, see e.g. the above
cited surveys [2,22,24,30].
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Fig. 2 α-procedure; step 2.

While data depth is an intrinsically nonparametric notion, the behavior
of depth functions and depth based procedures on parametric classes is of
special interest as it indicates how the nonparametric approach relates to the
more classical parametric one. As a generalization of multivariate Gaussian
distributions, spherical and elliptical distributions play an important role in
parametric multivariate analysis. A random vector X in R

d has a spherical
distribution if X = R ·U, where U is a random vector uniformly distributed
on the sphere Sd−1 and R is a random variable having support [0,∞[ and being
independent of U. A random vector Y has an elliptical distribution if it is an
affine transform of a spherically distributed X, Y = µ+BX. If R has a density
r we notate Y ∼ Ell(µ,BB′, r). As, by definition, a depth function is affine
invariant, it operates on elliptical distributions in a rather simple way. The
following propositions give some insight into the behavior of depth functions
and the DDα-procedure if the data generating processes are elliptical.

Proposition 1 If D is an affine invariant depth function and P an elliptical
distribution, then for every α ∈]0, 1] the upper level set

Dα(P ) = {x ∈ R
d|DP (x) ≥ α}

is an ellipsoid.

Proof. Let P = Ell(µ,BB′, r) and α ∈]0, 1]. Consider P0 = Ell(0, Id, r).
Then, for all β ≥ α, {x ∈ R

d|DP0
(x) = β} is a sphere since D is, in particular,

orthogonal invariant. Hence, Dα(P0) = {x ∈ R
d|DP0

(x) ≥ α} is a ball and,
by affine transformation with µ and B, Dα(P ) is an ellipsoid. �

Proposition 2 (i) Let D be the zonoid depth and P a unimodal elliptical
distribution, that is P = Ell(µ,BB′, r). Then, for every non-empty density
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level set {x ∈ R
d|f(x) ≥ β}, some α = φ(β) exists such that

{x ∈ R
d|f(x) ≥ β} = Dα(P ) .

(ii) If, in addition, r has an interval support then φ is a continuous, strictly
increasing function. It holds DP (x) = φ(f(x)) and therefore

f(x) ≥ f(y) ⇐⇒ DP (x) ≥ DP (y) . (5)

Proof. (i): Note that D0 = R
d. Thus, if β ≤ 0, the claim holds with

α = 0. Now let β > 0 and assume w.l.o.g. that P is spherical. Then {x ∈
R

d|f(x) ≥ β} is a ball with center at the origin. Let x∗ be a point on its
surface. Also the central regions Dα are balls around the origin. By Theorems
3.9 and 3.14 in [22], the Dα are continuous and strictly decreasing on the
convex hull of the support of P and it holds α∗ := DP (x

∗) > 0. We conclude
Dα∗ = {x ∈ R

d|f(x) ≥ β}.
(ii): Under the additional premise, the density level sets are continuously and
strictly decreasing in β > 0, which yields the result. �

Corollary 1 Consider a mixture of unimodal elliptical distributions Pj =
Ell(µj , BjB

′

j , rj), j = 1, . . . , q, with mixing probabilities πj and assume that
all rj have an interval support. Let D be the zonoid depth.

Then, for each j and k exists a strictly increasing function ψjk so that

πj · fj(x) < πk · fk(x) ⇐⇒ DPj
(x) < ψjk(DPk

(x)) .

Proof. From Proposition 2 continuous and strictly increasing functions
φj and φk are obtained with DPj

(x) = φj(fj(x)) and DPk
(x) = φk(fk(x)).

Consequently,

πj · fj(x) < πk · fk(x) ⇔ DXj
(x) < φj

(

πk
πj

φ−1
k (DXk

(x))

)

,

which proves the claim by use of the function ψjk(·) = φj

(

πk

πj
φ−1
k (·)

)

. �

A similar result holds for other data depths including the halfspace, sim-
plicial, projection and Mahalanobis depths; see Prop. 1 in [18]. In the rest of
section we consider the limit behavior of the DDα-procedure under indepen-
dent sampling. For this, we assume that the empirical depth is a consistent
estimator of its population version. This is particularly true for the zonoid,
halfspace, simplicial, projection and Mahalanobis depths.

Theorem 1 (Bayes rule) Let F and G probability distributions in R
d having

densities f and g, and let H be a hyperplane such that G is the mirror image
of F with respect to H and f ≥ g in one of the half-spaces generated by H.
Then based on a 50:50 independent sample from F and G the DDα-procedure
will asymptotically yield the linear separator that corresponds to the bisecting
line of the DD-plot.
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Note that the rule given in the theorem corresponds the Bayes rule, see [12].
Especially the requirements of the theorem are satisfied if F and G are mirror
symmetric and unimodal.

Proof. Due to the mirror symmetry of the distributions in R
d the DD-

plot is symmetric as well. Symmetry axis is the bisector, which is obviously
the result of the α-procedure when the sample is large enough. �

Theorem 2 Let F,G be unimodal elliptical, F = Ell(µF , BB
′, r), G = Ell(µG, BB

′, r).
Then based on a 50:50 independent sample from F and G the DDα-procedure
will asymptotically yield the linear separator that corresponds to the bisecting
line of the DD-plot.

Proof. If F and G are spherically symmetric, they satisfy the premise of
the previous theorem. A common affine transformation of F and G does not
change the DD-plot. �

5 Simulation study

The DDα-procedure has been implemented on a standard PC in an R-environ-
ment. To explore its specific potencies we apply it to simulated as well as to
real data. The same data have been analyzed with several classifiers in the
literature. In this section results on simulated data are presented regarding
the average misclassification rate of nine procedures besides the DDα-classifier
(Section 5.1). Then the speed of the DDα-procedure is quantified (Section 5.2).
The following Section 6 covers the relative performance of the the DDα- and
other classifiers on several benchmark data sets.

5.1 Comparison of performance

To simplify the comparison with known classifiers, we use the same simu-
lation settings as in [18]. These are supervised classification tasks with two
equally sized training classes. Data are generated by ten pairs of distributions
according to Table 1. Here N and Exp denote the Gaussian and exponential
distributions, respectively, and

MixN(µ, σ1, σ2) =

{

−σ1 ∗ |N(0, 1)|+ µ with probability 1/2,

σ2 ∗ |N(0, 1)|+ µ with probability 1/2.

The DDα-classifier is contrasted with the following nine classifiers: lin-
ear discriminant analysis (LDA), quadratic discriminant analysis (QDA), k-
nearest neighbors classification (k-NN), maximum depth classification based
on Mahalanobis (MM), simplicial (MS), and halfspace (MH) depth, and DD-
classification with the same depths (DM, DS and DH, correspondingly). For
more details about the data and the procedures as well as for some motivation
the reader is referred to [18].
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Table 1 Distributional settings used in the simulation study.

No. Alternative 1st class 2nd class

1 Normal
N(

[

0

0

]

,
[

1 1

1 4

]

) N(
[

1

1

]

,
[

1 1

1 4

]

)
location

2 Normal
N(

[

0

0

]

,
[

1 1

1 4

]

) N(
[

1

1

]

,
[

4 4

4 16

]

)
location-scale

3 Cauchy
Cauchy(

[

0

0

]

,
[

1 1

1 4

]

) Cauchy(
[

1

1

]

,
[

1 1

1 4

]

)
location

4 Cauchy
Cauchy(

[

0

0

]

,
[

1 1

1 4

]

) Cauchy(
[

1

1

]

,
[

4 4

4 16

]

)
location-scale

5 Normal Learning sample: 90% as No. 1, as No. 1
contaminated 10% from N(

[

10

10

]

,
[

1 1

1 4

]

).
location Testing sample: as N0. 1

6 Normal Learning sample: 90% as No. 2, as No. 2
contaminated 10% from N(

[

10

10

]

,
[

1 1

1 4

]

).
location-scale Testing sample: as No. 2

7 Exponential
(Exp(1),Exp(1)) (Exp(1) + 1,Exp(1) + 1)

location
8 Exponential

(Exp(1),Exp(1/2)) (Exp(1/2) + 1,Exp(1) + 1)
location-scale

9 Asymmetric
(MixN(0; 1, 2),MixN(0; 1, 4)) (MixN(1; 1, 2),MixN(1; 1, 4))

location
10 Normal-

N(
[

0

0

]

,
[

1 0

0 1

]

) (Exp(1),Exp(1))
exponential

All simulations of [18] are recalculated following their paper as close as pos-
sible. The LDA, QDA and k-NN classifiers are computed with the R-packages
“MASS” and “class”, where the parameter k of the k-NN-classifier is selected
by leave-one-out cross-validation over a relatively wide range. The simplicial,
and halfspace depths have been determined by exact calculations with the
R-package “depth”. The zonoid depth has been exactly computed by the al-
gorithm in [9]. Recall that, in dimension two, calculations of all these depths
can be efficiently done by a circular sequence and note that the problem of
prior probabilities is avoided by choosing test samples of equal size from both
classes.

For the DD-classifiers a polynomial line (up to degree three) is determined
to discriminate in the two-dimensional DD-Plot, a tenfold cross-validation is
employed to choose the optimal degree of the polynomial, a smoothing constant
t=100 is selected in the logistic function, and the DD-Plot is never rotated.
Each experiment includes a training phase and an evaluation phase: From the
given pair of distributions 400 observations (200 of each class) are generated to
train the classifier, and 1000 (500 of each) observations to evaluate its AMR.
For each distribution pair and each classifier 100 experiments are performed,
and the resulting sample of AMRs is visualized as a box-plot; see Figures 3 to
7.

As we have discussed at the end of Section 2, with depths like the simplicial,
halfspace and zonoid depth the problem of outsiders arises. An outsider is, in
the DD-plot, represented by the origin. A simple approach is to assign the
outsiders randomly to the two classes. Throughout our simulation study we
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0.28 0.30 0.32 0.34 0.36 0.38 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fig. 3 Normal location (left) and location-scale (right) alternatives.

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Fig. 4 Cauchy location (left) and location-scale (right) alternatives.

have chosen the random assignment rule, which results in kind of worst case
AMR. Observe that this choice of assignment rule discriminates against the
procedures that yield outsiders and advantages those that do not, in particular
LDA, QDA, MM, DM and k-NN for all distribution settings.

The principal results of the simulation study are collected in Figures 3 to 7.
Under the normal location-shift model (Figure 3, left) all classifiers behave sat-
isfactorily, and the DDα-classifier performs well among them. However LDA,
QDA, MM and DM show slightly better results since they do not have to cope
with outsiders like the other depth-based procedures.

Also under the normal location-scale alternative (Figure 3, right) the DDα-
classifier performs rather well, like all DD-classifiers. A slightly worse perfor-
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0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

Fig. 5 Normal contaminated location (left) and location-scale (right) alternatives.

0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25 0.30

Fig. 6 Exponential location (left) and location-scale (right) alternatives.

mance of the DDα-classifier is observed when discriminating the Cauchy lo-
cation alternative (Figure 4, left), but it is still close to the DD-classifiers.
This can be attributed to the lower robustness of the zonoid depth. However,
when scaling enters the game (Cauchy location-scale alternative, Figure 4,
right), the DDα-classifier again performs quite satisfactorily. The same pic-
ture arises when considering contaminated normal settings (Figure 5, left and
right). Under a location alternative, the DDα-classifier is a bit worse than the
DD-classifiers, while it slightly outperforms them in a location-scale setting.

The relative robustness of the DDα-classifier may be explained by two of
its features: First it maps the original data points to a compact set, the q-
dimensional unit hypercube. Second, for classification in the unit hypercube,
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0.25 0.30 0.35 0.40 0.15 0.20 0.25 0.30

Fig. 7 Asymmetric location (left) and normal-exponential (right) alternatives.

it employs the α-procedure, which, by choosing a median angle in each step,
is rather insensitive to outliers.

Under exponential alternatives (Figure 6, left and right) the DDα-classifier
shows excellent performance, which is even similar to that of the the k-NN for
both location and location-scale alternatives. Its results for the asymmetric
location alternative (Figure 7, left) are somewhat ambiguous, though still close
to those of the DD-classifiers. Concerning the normal-exponential alternative
(Figure 7, right) the DDα-classifier performs distinctly better than the others
considered here.

On the basis of the simulation study we conclude: The DDα-classifier (1)
performs quite well under various settings of elliptically distributed alterna-
tives, it (2) is rather robust to outlier prone data, and (3) shows a distinctly
good behavior under the asymmetrically distributed alternatives considered
and when the two classes originate from different families of distributions.

5.2 Speed of the DDα-procedure

To estimate the speed of the DDα-classification we have quantified the to-
tal time of training and classification times under two simulation settings, a
shift and a location-shift alternative concerning d-variate normals (see Table 2,
header), with various values of dimension d and of total size of training classes
n. An experiment consists of a training phase based on two samples (each of
size n/2) and an evaluation phase, where 2500 points (1250 from each dis-
tribution) are classified. Each experiment is performed 100 times, then the
average computation time is determined. All these computations have been
conducted on a single kernel of the processor Core i7-2600 (3.4 GHz) having
enough physical memory.
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Table 2 Computing times of DDα-classification, in seconds.

N(0d, Id)
N(0.25 · 1d, Id)

d = 5 d = 10 d = 15 d = 20
n = 200 0.14 1.55 1.89 2.24

(0.00014) (0.00014) (-) (-)
n = 500 1.04 10.37 12.58 14.14

(0.00046) (0.00052) (0.00062) (-)
n = 1000 5.33 42.54 53.66 59.18

(0.0012) (0.0014) (0.0017) (-)

N(0d, Id)
N((0.25 0′

d−1
)′, 5 · Id)

d = 5 d = 10 d = 15 d = 20
n = 200 0.15 1.62 1.94 2.2

(0.00014) (0.00016) (0.00021) (0.00027)
n = 500 1.09 11.33 14.44 15.18

(0.00044) (0.00059) (0.00079) (0.0010)
n = 1000 5.24 47.63 67.22 74.15

(0.0011) (0.0016) (0.0022) (0.0026)

Table 2 exhibits the average computation times (in seconds, with the stan-
dard deviations in parentheses) under the two distributional settings and for
different d and n. As it is seen from the table, the DDα-classifier is very fast,
in the learning phase as well as in classifying high amounts of data. However,
computation times increase considerably with the number of training points,
which is due to the many calculations of zonoid depth needed. With dimension
d computation time grows slower, which may be explained as follows. With
increasing dimension of the data space, more points come to lie on the convex
hull (thus having depth = 2/n) or outside it (thus having depth = 0). The
algorithm from [9] computes the depth of such points much faster than that
of points having larger depths.

6 Benchmark studies

Concerning real data, we take benchmark examples from [18,7,6] to compare
the performance of the DDα-classifier with respect to AMR (Section 6.1). In
addition we use four real data sets from the UCI machine learning repository
[1] to contrast the DDα-classifier with the support vector machine (SVM) of
[26] regarding both performance and time (Section 6.2).

6.1 Benchmark comparisons with nonparametric classifiers

As our benchmark examples are well known, we refer to the literature for their
detailed description and restrict ourselves to mentioning the dimension d, the
number of classes q, the number of points used for training (# train), the
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Table 3 Overview of benchmark examples; dimension (d), number of classes (q), number
of training points (# train), number of testing points (# test), total number of points (#
total).

No. Dataset Results q d # train # test # total

1 Biomedical Tables 5, 4 2 4 150 44 194
Table 6 2 4 100 94 194

2 Blood Table 6 2 3 374 374 748
Transfusion Table 4 2 3 500 248 748

3 Diabetes (1) Table 6 3 5 100 45 145
4 Diabetes (2) Table 7 2 8 767 1 768
5 Ecoli Table 7 3 7 271 1 272
6 Glass Tables 5, 6 2 5 100 46 146

Table 7 2 9 145 1 146
7 Hemophilia Table 6 2 2 50 25 75
8 Image Segmentation Table 4 2 10 500 160 660
9 Iris Table 7 3 4 149 1 150
10 Synthetic Tables 5, 6 2 2 250 1000 1250

Table 4 Benchmark performance with DD- and other classifiers.

Dataset LDA QDA k-NN MM MH DM DH DDα

Biomedical 17.05 13.05 14.32 27.14 18.00 12.25 17.48 24.59
(0.49) (0.38) (0.45) (0.6) (0.49) (0.4) (0.51) (0.63)

Blood 29.49 29.11 29.74 32.56 30.47 26.82 28.26 32.27
Transfusion (0.08) (0.13) (0.13) (0.29) (0.3) (0.19) (0.19) (0.25)

Image 8.17 9.44 5.59 9.12 11.87 9.54 13.98 43.58
Segmentation (0.2) (0.19) (0.19) (0.23) (0.25) (0.2) (0.29) (0.34)

number of testing points (# test) and the total number of points (# total);
see Table 3.

Tables 4, 5 and 6 exhibit the performance (in terms of AMR, with standard
errors in parentheses) of the DDα-classifier together with the performance
of the different classifiers investigated in [18], [7] and [6] and based on the
respective benchmark data. When applying the DDα-classifier an auxiliary
procedure has to be chosen by which outsiders are treated. In our benchmark
study we employ several such procedures.

In Table 4 the DDα-procedure is contrasted with the real data results in
[18]. Here we use the same settings as in Section 5.1 and classify the outsiders
on a random basis. All results in Table 4 have been recalculated.

As we see from the Table, the performance of our new classifier is mostly
worse than the classifiers considered in [18]. Only in the Blood Transfusion
case the AMR has comparable size. However, in this comparison the eventual
presence and treatment of outsiders plays a decisive role. Observe that [18] in
their procedures MH and DH use the random Tukey depth [5] to approximate
the halfspace depth of a data point in dimension three and more. But the
random Tukey depth generally overestimates the halfspace depth so that some
of the outsiders remain undetected. This implies that, in the procedures MH
and DH, considerably fewer points (we observed around 16%, 4% and 11%
correspondingly) are treated as outsiders and assigned on a random basis.
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Table 5 Benchmark comparison with projection depth classifiers.

Dataset MD MD MD 3

4

MD 3

4

PD PD

(SS) (MS) (SS) (MS) (SS) (MS)

Synthetic 13.00 11.60 10.30 10.40 10.00 10.50
Glass 26.59 26.14 24.92 24.43 25.70 25.24

(0.25) (0.25) (0.25) (0.25) (0.34) (0.33)
Biomedical 12.44 12.04 14.25 14.03 12.37 12.18

(0.13) (0.12) (0.13) (0.14) (0.14) (0.13)

Dataset DDα-classifier
1-NN Mahalanobis

Eucl. Mah. dist. depth
dist. Mom. MCD Mom. MCD

Synthetic 12.10 11.90 12.00 11.90 12.00
Glass 29.45 25.79 24.73 30.09 35.06

(0.20) (0.17) (0.18) (0.18) (0.22)
Biomedical 13.51 19.59 17.90 12.91 15.23

(0.14) (0.18) (0.17) (0.14) (0.16)

In fact, as exactly determined by calculating the zonoid depth, the rate
of outsiders in the Biomedical Data (with d = 4) totals some 35%, in the
Blood Transfusion Data (d = 3) about 11%, and in the Image Segmentation
Data with d = 10 about 86%. This is in line with our expectation: the higher
the dimension of the data the higher is the outsider rate. In contrast to the
MH and DH procedures, the DDα-procedure detects all outsiders and, in the
comparison of Table 4, assigns them randomly. Obviously the performance of
the latter can be improved with a proper non-random procedure of outsider
assignment. In the subsequent benchmark comparisons several such procedures
of non-random outsider assignment are included.

Dutta and Ghosh [7] introduce classification based on projection depth
and compare it with several variants of the maximum-Mahalanobis-depth
(MD)classifier. The same authors [6] propose an Lp-depth classifier (with opti-
mized p) and contrast it with two types of MD. To compare the DDα-classifier
on a par with [7,6] we implement the following rules for handling outsiders:
First, k-nearest-neighbor rules are used with various k and either Euclidean
or Mahalanobis distance, the latter with moment or, alternatively, MCD es-
timates. Second, maximum Mahalanobis depth is employed, again based on
moment or MCD estimation. As the k-NN results of the benchmark examples
do not vary much with k, we restrict to k = 1. (However, the performance
of the classifiers can be improved by an additional cross-validation over k.)
Consequently, five different rules for treating outsiders remain for comparison.
Tables 5 and 6 exhibit the performance of the DDα-classifier vs. the projection-
depth classifiers of [7] and the Lp-depth classifiers of [6], respectively, regarding
the benchmark examples investigated in these papers. The last five columns of
Table 5 and the bottom part of Table 6 report the AMR (standard deviations
in parentheses) of the DDα-classifier when one of the five outsiders treatments
is chosen. The remaining columns are adopted as they stand in [7] and [6].
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Table 6 Benchmark comparison with Lp-depth classifiers.

Data- DDα-classifier
set 1-NN Mahalanobis

MD LpD Eucl. Mah. dist. depth
Mom. MCD Mom. MCD dist. Mom. MCD Mom. MCD

Syn. 10.20 10.60 9.60 10.70 12.10 11.90 12.00 11.90 12.00

Hem. 15.84 17.13 15.39 16.43 16.63 17.98 18.36 18.65 19.39
(0.30) (0.32) (0.32) (0.32) (0.20) (0.20) (0.19) (0.22) (0.22)

Gla. 26.80 24.80 27.64 24.75 30.13 28.37 26.63 32.88 36.82
(0.26) (0.29) (0.29) (0.26) (0.19) (0.22) (0.20) (0.22) (0.23)

Biom. 12.35 14.48 12.68 15.11 13.74 22.09 20.89 14.34 17.28
(0.14) (0.15) (0.15) (0.15) (0.09) (0.16) (0.14) (0.12) (0.14)

Diab. 8.22 11.49 9.39 11.92 10.77 18.36 18.33 12.70 15.90
(0.18) (0.22) (0.21) (0.27) (0.12) (0.18) (0.20) (0.18) (0.19)

B.Tr. 22.75 22.17 22.30 22.06 23.11 22.73 22.92 22.59 22.17
(0.07) (0.08) (0.07) (0.07) (0.06) (0.06) (0.06) (0.06) (0.06)

Regarding the Biomedical Data, [7] do not specify the sample sizes they
use in training and testing. For the DDα-classifier, we select 100 observations
of the larger class and 50 of the smaller class to form the training sample; the
remaining observations constitute the testing sample. As it is seen from Ta-
ble 5 the DDα-classifier shows results similar to the projection-depth classifier
(except with the Synthetic Data), while the performance of outsider-handling
methods varies depending on the type of the data. Specifically, with the Glass
Data 1-NN based on the Mahalanobis distance (both with the moment and the
robust estimate) performs best in handling outsiders. On the other hand, with
the Biomedical Data the same approach performs quite poorly, while treat-
ing outsiders with moment-estimated Mahalanobis depth or Euclidean 1-NN
yields best results.

Table 6 presents a similar comparison of the DDα-classifier with the Lp-
classifier of [6]. The same approaches are included to treat outsiders. In all
six benchmark examples the DDα-classifier generally performs worse than the
best Lp-depth classifier. However, its performance substantially depends on
the chosen treatment of outsiders. In all examples the AMR of the DDα-
classifier comes close to that of the Lp-depth classifier, provided the outsider
treatment is properly selected. On the Hemophilia Data, e.g., Euclidean 1-NN
should be chosen. On the Glass Data a 1-NN outsider treatment with robust
Mahalanobis distance performs relatively best, etc. On the Blood Transfusion
Data all outsider-handling approaches show equally good performance, which
appears to be typical when n is relatively large compared to d.

6.2 Benchmark comparisons with SVM

The support vector machine (SVM) is a powerful solver of the classification
problem and has been widely used in applications. However, different from the
DDα-classifier, the SVM is a parametric approach, as in applying it certain
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parameters have to be adjusted: the box-constraint and the kernel parameters.
The AMR performance of the SVM depends heavily on the choice of these
parameters. In applications, optimal parameters are selected by some cross-
validation, which affords extensive calculations. Once these parameter have
been optimized, SVM-classification is usually very fast and precise.

In comparing the SVM with the DDα-procedure, this step of parameter
optimization has to be somehow accounted for. Here we introduce a two-fold
view on the comparison problem: Two values of the AMR are calculated, first
the best AMR when the parameters have been optimally selected, second the
expected AMR when the parameters are systematically varied over specified
ranges. Corresponding training times are also clocked. As ranges we choose
the intervals between the smallest and the largest number that arise as an
optimal value in one of our benchmark data examples. This seems us a fair
and, regarding the parameter ranges, rather conservative approach.

As benchmark four well-known data sets are employed in the sequel, Dia-
betes, Ecoli, Glass, and Iris Data being taken [1]. Following [7] the two biggest
classes of the Glass Data have been selected, and similarly to [6] we have
chosen three of the bigger classes from the Ecoli Data. The DDα-classifier is
calculated with the same outsider treatments as above. For the SVM-classifier
we use radial basis function kernels as implemented in LIBSVM with the R-
Package “e1071” as an R-interface. Leave-one-out cross validation is employed
for performance estimation of the all classifiers. The computation has been
done on the same PC as in Section 5.2.

The results on the best AMR together with time quantities and portions of
outsiders are collected in the Table 7. The Iris Data appears twice in the Table.
First the original are used, and second the same data after a preprocessing
step. The preprocessing consists in the exclusion of an obvious outlier in the
DD-plot that was identified by visual inspection of the plot.

The overall analysis of the Table 7 shows that, even if using an arbitrary
technique for handling outsiders, the DDα-classifier mostly performs not much
worse than an SVM where the parameters have been optimally chosen. In con-
trast, if the SVM is employed with some non-optimized parameters, its AMR
can be considerably larger than that of the DDα-classifier. For the regarded
data sets average errors of the SVM over the relevant intervals varied from
44.99% to 66.67% (not reported in the Table).

The times needed to classify a new object (also given in Table 7) are quite
comparable. But as the parameters of the SVM have to be adjusted first by
running it many times for cross-validation, the computational burden of its
training phase is much higher than that of the DDα-classifier, which has to
be run only once. Recall that the latter is nonparametric regarding tuning
parameters. For example, in our implementation it took 875 seconds to deter-
mine approximate optimal values of SVM parameters for the Diabetes Data
and similarly substantial times for the others (see Table 7, in parentheses).
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Table 7 Benchmark comparison with the support vector machine; γ - kernel parameter, C
- box constraint.

Data- DDα-classifier SVM

set 1-NN Mahalanobis
Eucl. Mah. dist. depth

Legend dist. Mom. MCD Mom. MCD Opt. (CV)

Diab. Error 28.26 30.6 34.51 24.35 31.77 23.18
Time:train 16.63 16.62 16.59 16.58 17.39 0.05 (875)
Time:test 0.033 0.009 0.0092 0.0035 0.0037 0.0023
γ/C 0.056/1
% outsiders 62.24 62.24 62.24 62.24 63.54

Ecoli Error 10.29 11.4 12.13 12.13 16.18 3.68
Time:train 0.26 0.26 0.26 0.26 0.26 0.0077 (105)
Time:test 0.014 0.0026 0.0032 0.001 0.00044 0.0019
γ/C 5.62/1.78
% outsiders 75 75 75 75 75

Glass Error 18.49 26.03 31.51 34.93 34.93 21.23
Time:train 0.31 0.32 0.31 0.32 0.32 0.0082 (36)
Time:test 0.0083 0.0019 0.0016 0.00014 0.00055 0.0024
γ/C 0.56/1
% outsiders 95.89 95.89 95.89 95.89 95.89

Iris Error 37.33 37.33 37.33 36 46.67 4.67
Time:train 0.07 0.07 0.07 0.07 0.07 0.0051 (30)
Time:test 0.0046 0.0018 0.0013 0.00033 0.00047 0.0017
γ/C 0.056/10
% outsiders 50 50 50 50 50

Iris Error 3.36 3.36 4.03 2.68 13.42 2.68
(Pre.) Time:train 0.07 0.07 0.07 0.07 0.07 0.0052 (30)

Time:test 0.0046 0.0011 0.0013 0.0006 0.00027 0.0017
γ/C 0.1/3.16
% outsiders 51.68 51.68 51.68 51.68 51.68

7 Discussion and conclusions

A new classification procedure has been proposed that is completely nonpara-
metric. The DDα-classifier transforms the d-variate data to a q-variate depth
plot and performs linear classification in an extended depth space. The depth
transformation is done by the zonoid depth, and the final classification by the
α-procedure. The procedure has attractive properties: First, it proves to be
very fast and efficient in the training as well as in the testing phase; in this
it highly outperforms existing alternative nonparametric classifiers, and also -
regarding the training phase - the support vector machine. Second, in many
settings of elliptically distributed alternatives, its AMR is of similar size than
that of the competing classifiers. Moreover, it is rather robust to outlier prone
data. As a nonparametric approach, the new procedure shows a particularly
good behavior under asymmetrically distributed alternatives and, in certain
cases, when the two classes originate from different families of distributions.
Other than many competitors, it considers all classes in the multi-class clas-
sification problem even when performing binary classification. Different for
KNN, SVM and other kernel based procedures our method does not need
to be parametrically tuned. Also several theoretical properties of the DDα-
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procedure have been derived: It operates in a rather simple way if the data
generating processes are elliptical, and a Bayes rule holds if q = 2 and the two
classes are mirror symmetric.

The zonoid depth has many theoretical and computational advantages:
Most important here, it is efficiently computed also in higher dimensions. How-
ever, as it takes its maximum at the mean of the data, the zonoid depth lacks
robustness. Nevertheless, the DDα-classifier shows a rather robust behavior.
Its relative robustness can be explained as follows: The original data points
are mapped to a compact set, the q-dimensional unit hypercube, and then
classified by the α-procedure. The latter, by choosing a median angle in each
step, is rather insensitive to outliers.

Points that are not within the convex hull of at least one training set must
be specially treated as their depth representation is zero. To classify those so
called outsiders several approaches have been used and compared. Instead of
assigning them randomly, which disadvantages the DDα-procedure like other
procedures based on halfspace or simplicial depth, one should classify outsiders
by 1-NN and some distance or by a properly chosen maximum depth rule.

To contrast the DDα-procedure with an SVM approach, a novel way of
comparison has been taken: An optimal performance of an SVM has been
evaluated, that arises under an optimal choice of the parameters, as well as an
average performance, where the parameters vary over specified conservative
intervals. It came out that, even with an arbitrary handling of outsiders, the
DDα-classifier mostly performs not much worse than an SVM whose parame-
ters have been optimally chosen. However, if the SVM is employed with some
non-optimized parameters, the AMR can be considerably larger than that of
the DDα-classifier.

More investigations are needed on the consistency of the DDα-classifier,
its behavior on skewed or fat-tailed data, the - possibly adaptive - choice of
outsider treatments, and the use of alternative notions of data depth. These
are intended for future research.

Acknowledgements Thanks are to Rainer Dyckerhoff for his constructive remarks on the
paper as well as to the other participants of the Witten Workshop on “Robust methods
for dependent data” for discussions. The helpful suggestions of two referees are gratefully
acknowledged.

References

1. A. Asuncion and D. Newman. UCI machine learning repository. URL
http://archive.ics.uci.edu/ml/ (2007).

2. I. Cascos. Data depth: Multivariate statistics and geometry. New Perspectives in

Stochastic Geometry, (W. Kendall and I. Molchanov, eds.) (2009).
3. A. Christmann and P.J. Rousseeuw. Measuring overlap in binary regression. Computa-

tional Statistics and Data Analysis, 37, 65-75 (2001).
4. A. Christmann, P. Fischer and T. Joachims. Comparison between various regression
depth methods and the support vector machine to approximate the minimum number of
misclassifications. Computational Statistics, 17, 273-287 (2002).



22 Tatjana Lange et al.

5. J.A. Cuesta-Albertos and A. Nieto-Reyes. The random Tukey depth. Computational

Statistics and Data Analysis, 52, 4979-4988 (2008).
6. S. Dutta and A.K. Ghosh. On classification based on Lp depth with an adaptive choice
of p. Preprint 2011.

7. S. Dutta and A.K. Ghosh. On robust classification using projection depth. Annals of

the Institute of Statistical Mathematics, 64, 657–676 (2012).
8. R. Dyckerhoff. Data depths satisfying the projection property. AStA - Advances in

Statistical Analysis, 88, 163-190 (2004).
9. R. Dyckerhoff, G. Koshevoy and K. Mosler. Zonoid data depth: Theory and computation.
In A. Prat, ed., COMPSTAT 1996. Proceedings in Computational Statistics, 235-240,
Heidelberg. Physica-Verlag. (1996).

10. A.K. Ghosh. and P. Chaudhuri. On data depth and distribution free discriminant
analysis using separating surfaces. Bernoulli, 11, 1-27 (2005).

11. A.K. Ghosh. and P. Chaudhuri. On maximum depth and related classifiers. Scandina-
vian Journal of Statistics, 32, 327-350 (2005).

12. T. Hastie, R. Tibshirani and J. H. Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. 2nd Edition. Springer Verlag. New York (2009).
13. K. Mosler and R. Hoberg. Data analysis and classification with the zonoid depth. Data

Depth: Robust Multivariate Analysis, Computational Geometry and Applications, (R. Liu,
R. Serfling and D. Souvaine, eds.), 49-59 (2006).

14. Mia Hubert and Katrien van Driessen. Fast and robust discriminant analysis. Compu-

tational Statistics and Data Analysis, 45, 301-320 (2004).
15. R. Jornsten. Clustering and classification based on the L1 data depth. Journal of

Multivariate Analysis 90, 67-89 (2004).
16. G. Koshevoy and K. Mosler. Zonoid trimming for multivariate distributions. Annals

of Statistics 25, 1998-2017 (1997).
17. T. Lange, P. Mozharovskyi and G. Barath. Two approaches for solving tasks of pattern
recognition and reconstruction of functional dependencies. XIV International Conference

on Applied Stochastic Models and Data Analysis, Rome (2011).
18. J. Li, J.A. Cuesta-Albertos, and R.Y. Liu. DD-classifier: Nonparametric classification
procedure based on DD-plot. Journal of the American Statistical Association 107, 737-753
(2012).

19. R.Y. Liu. On a notion of data depth based on random simplices. Annals of Statistics,
18, 405-414 (1990).

20. R.Y. Liu, J. Parelius, and K. Singh. Multivariate analysis of the data-depth : Descriptive
statistics and inference. Annals of Statistics 27, 783-858 (1999).

21. P. Mahalanobis. On the generalized distance in statistics. Proceedings of the National

Academy India 12, 49-55 (1936).
22. K. Mosler. Multivariate Dispersion, Central Regions and Depth: The Lift Zonoid

Approach. Springer Verlag. New York (2002).
23. P.J. Rousseeuw and M. Hubert. Regression depth. Journal of the American Statistical

Association 94, 388-433 (1999).
24. R. Serfling. Depth functions in nonparametric multivariate inference. Data Depth:

Robust Multivariate Analysis, Computational Geometry and Applications, (R. Liu, R.
Serfling and D. Souvaine, eds.), 1-16 (2006).

25. J.W. Tukey. Mathematics and the picturing of data. Proceeding of the International

Congress of Mathematicians, Vancouver, 523-531 (1974).
26. V.N. Vapnik. Statistical learning theory. Wiley. New York (1998).
27. V.I. Vasil’ev. The reduction principle in pattern recognition learning (PRL) problem.
Pattern Recognition and Image Analysis 1, 1 (1991).

28. V.I. Vasil’ev. The reduction principle in problems of revealing regularities I. Cybernetics

and Systems Analysis 39, 686-694 (2003).
29. V.I. Vasil’ev and T. Lange. The duality principle in learning for pattern recognition (in
Russian). Kibernetika i Vytschislit’elnaya Technika 121, 7-16 (1998).

30. Y.J. Zuo and R. Serfling. General notions of statistical depth function. Annals of

Statistics 28, 461-482 (2000).


	Introduction
	Depth transform
	The -procedure
	Some theoretical aspects
	Simulation study
	Benchmark studies
	Discussion and conclusions

