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1 Introduction

In 1975 John Tukey proposed a multivariate median which is the ‘deepest’ point in a
given data cloud inRd (Tukey, 1975). In measuring the depth of an arbitrary pointz
with respect to the data, Donoho and Gasko (1992) consideredhyperplanes through
z and determined its ‘depth’ by the smallest portion of data that are separated by
such a hyperplane. Since then, this idea has proved extremely fruitful. A rich sta-
tistical methodology has developed that is based on data depth and, more general,
nonparametric depth statistics. General notions of data depth have been introduced
as well as many special ones. These notions vary regarding their computability and
robustness and their sensitivity to reflect asymmetric shapes of the data. According
to their different properties they fit to particular applications. The upper level sets
of a depth statistic provide a family of set-valued statistics, nameddepth-trimmed
or central regions. They describe the distribution regarding its location, scale and
shape. The most central region serves as amedian. The notion of depth has been
extended from data clouds, that is empirical distributions, to general probability dis-
tributions onRd, thus allowing for laws of large numbers and consistency results. It
has also been extended fromd-variate data to data in functional spaces. The present
chapter surveys the theory and methodology of depth statistics.

Recent reviews on data depth are given in Cascos (2009) and Serfling (2006).
Liu et al. (2006) collects theoretical as well as applied work. More on the theory
of depth functions and many details are found in Zuo and Serfling (2000) and the
monograph by Mosler (2002).

The depth of a data point is reversely related to itsoutlyingness, and the depth-
trimmed regions can be seen as multivariate set-valuedquantiles. To illustrate the
notions we consider bivariate data from the EU-27 countriesregarding unemploy-
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ment rate and general government debt in percent of the GDP (Table 1). In what
follows we are interested which countries belong to a central, rather homogeneous
group and which have to be regarded as, in some sense, outlying.

Country Debt %Unempl. % Country Debt %Unempl. %
Belgium 98.0 7.2 Luxembourg 18.2 4.9
Bulgaria 16.3 11.3 Hungary 80.6 10.9
Czech Republic 41.2 6.7 Malta 72.0 6.5
Denmark 46.5 7.6 Netherlands 65.2 4.4
Germany 81.2 5.9 Austria 72.2 4.2
Estonia 6.0 12.5 Poland 56.3 9.7
Ireland 108.2 14.4 Portugal 107.8 12.9
Greece 165.3 17.7 Romania 33.3 7.4
Spain 68.5 21.7 Slovenia 47.6 8.2
France 85.8 9.6 Slovakia 43.3 13.6
Italy 120.1 8.4 Finland 48.6 7.8
Cyprus 71.6 7.9 Sweden 38.4 7.5
Latvia 42.6 16.2 United Kingdom 85.7 8.0
Lithuania 38.5 15.4

Table 1 General government gross debt (% of GDP) and unemployment rate of the EU-27 coun-
tries in 2011 (Source: EUROSTAT)

.

Overview: Section 2 introduces general depth statistics and the notions related to
it. In Section 3 various depths ford-variate data are surveyed: multivariate depths
based on distances, weighted means, halfspaces or simplices. Section 4 provides an
approach to depth for functional data, while Section 5 treats computational issues.
Section 6 concludes with remarks on applications.

2 Basic concepts

In this section the basic concepts of depth statistics are introduced, together with
several related notions. First we provide a general notion of depth functions, which
relies on a set of desirable properties; then a few variants of the properties are dis-
cussed (Section 2.1). A depth function induces an outlyingness function and a fam-
ily of central regions (Section 2.2). Further, a stochasticordering and a probability
metric are generated (Section 2.3).

2.1 Postulates on a depth statistic

Let E be a Banach space,B its Borel sets inE, andP a set of probability distribu-
tions onB. To start with and in the spirit of Tukey’s approach to data analysis, we
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may regardP as the class of empirical distributions giving equal probabilities 1
n to

n, not necessarily different, data points inE = R
d.

A depth functionis a functionD : E×P → [0,1], (z,P) 7→ D(z|P), that satisfies
the restrictions (or ‘postulates’)D1 to D5 given below. For easier notation we write
D(z|X) in place ofD(z|P), whereX is an arbitrary random variable distributed asP.
Forz∈ E, P∈ P, and any random variableX having distributionP it holds:

• D1 Translation invariant: D(z+b|X+b) = D(z|X) for all b∈ E .
• D2 Linear invariant: D(Az|AX) = D(z|X) for every bijective linear transforma-

tion A : E → E .
• D3 Null at infinity: lim‖z‖→∞ D(z|X) = 0 .
• D4 Monotone on rays: If a point z∗ has maximal depth, that isD(z∗|X) =

maxz∈E D(z|X) , then for anyr in the unit sphere ofE the functionα 7→ D(z∗+
αr|X) decreases, in the weak sense, withα > 0 .

• D5 Upper semicontinuous:The upper level setsDα(X) = {z∈E : D(z|X)≥α}
are closed for allα .

D1 and D2 state that a depth function isaffine invariant. D3 and D4 mean that
the level setsDα , α > 0, are bounded and starshaped aboutz∗. If there is a point
of maximum depth, this depth will w.l.o.g. be set to 1.D5 is a useful technical
restriction. An immediate consequence of restrictionD4 is the following:

Proposition 1. If X is centrally symmetric distributed about some z∗ ∈ E, then any
depth function D(·|X) is maximal at z∗.

Recall thatX is centrally symmetricdistributed aboutz∗ if the distributions ofX−z∗

andz∗−X coincide.
Our definition of a depth function differs slightly from thatgiven in Liu (1990)

and Zuo and Serfling (2000). The main difference between these postulates and
ours is that they additionally postulate Proposition 1 to betrue and that they do not
require upper semicontinuityD5.

D4 states that the upper level setDα(x1, . . . ,xn) are starshaped with respect toz∗.
If a depth function, in place ofD4, meets the restriction

• D4con:D(·|X) is aquasiconcavefunction, that is, its upper level setsDα(X) are
convex for allα > 0 ,

the depth is mentioned as aconvex depth. Obviously, as a convex set is starshaped
with respect to each of its points,D4con impliesD4. In certain settings the restric-
tion D2 is weakened to

• D2iso: D(Az|AX) = D(z|X) for everyisometric linear transformationA : E →
E .

Then, in caseE = R
d, D is called anorthogonal invariant depthin contrast to an

affine invariantdepth whenD2 holds. Alternatively, sometimesD2 is attenuated to
scale invariance,

• D2sca:D(λz|λX) = D(z|X) for all λ > 0 .
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2.2 Central regions and outliers

For givenP and 0≤ α ≤ 1 the level setsDα(P) form a nested family ofdepth-
trimmedor central regions. The innermost region arises at someαmax≤ 1, which in
general depends onP. Dαmax(P) is the set ofdeepest points. D1 andD2 say that the
family of central regions is affine equivariant. Central regions describe a distribution
X with respect to location, dispersion, and shape. This has many applications in
multivariate data analysis. On the other hand, given a nested family {Cα(P)}α∈[0,1]
of set-valued statistics, defined onP, that are convex, bounded and closed, the
functionD,

D(z|P) = sup{α : z∈Cα(P)} , z∈ E, P∈ P, (1)

satisfiesD1 to D5 andD4con, hence is a convex depth function.
A depth functionD orders data by their degree of centrality. Given a sample, it

provides a center-outwardorder statistic. The depth induces anoutlyingness func-
tionR

d → [0,∞[ by

Out(z|X) =
1

D(z|X)
−1,

which is zero at the center and infinite at infinity. In turn,D(z|X)= (1+Out(z|X))−1.
Points outside a central regionDα have outlyingness greater than 1/α −1; they can
be regarded asoutliersof a specified levelα.

2.3 Depth lifts, stochastic orderings, and metrics

Assumeαmax = 1 for P ∈ P. By adding a real dimension to the central regions
Dα(P),α ∈ [0,1], we construct a set, which will be mentioned as thedepth lift,

D̂(P) = {(α,y) ∈ [0,1]×E : y= αx, x∈ Dα(P), α ∈ [0,1]} . (2)

The depth lift gives rise to anorderingof probability distributions inP: P≺D Q
if

D̂(P)⊂ D̂(Q) . (3)

The restrictionD̂(P) ⊂ D̂(Q) is equivalent toDα(P) ⊂ Dα(Q) for all α. Thus,
P≺D Q means that each central set ofQ is larger than the respective central set of
P. In this sense,Q is more dispersedthanP. The depth ordering is antisymmetric,
hence anorder, if and only if the family of central regions completely character-
izes the underlying probability. Otherwise it is a preorderonly. Finally, the depthD
introduces aprobability semi-metriconP by the Hausdorff distance of depth lifts,

δD(P,Q) = δH(D̂(P), D̂(Q)) . (4)
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Recall that theHausdorff distanceδH(C1,C2) of two compact setsC1 andC2 is
the smallestε such thatC1 plus theε-ball includesC2 and vice versa. Again, the
semi-metric is a metric iff the central regions characterize the probability.

3 Multivariate depth functions

Originally and in most existing applications depth statistics are used with data in
Euclidean space. Multivariate depth statistics are particularly suited to analyze non-
gaussian or, more general, non-elliptical distributions in R

d. Without loss of gen-
erality, we consider distributions of full dimensiond, that is, whose convex hull of
support,co(P), has affine dimensiond.

A random vectorX in R
d has aspherical distributionif AX is distributed asX for

every orthogonal matrixA. It has anelliptical distribution if X = a+BY for some
a∈ R

d, B∈ R
d×d, and spherically distributedY; then we writeX ∼ Ell(a,BB′,ϕ),

whereϕ is the radial distribution ofY. Actually, on an elliptical distributionP =
Ell(a,BB′,ϕ), any depth functionD(·,P) satisfyingD1 andD2 has parallel elliptical
level setsDα(P), that is, level sets of a quadratic form withscatter matrix BB′.
Consequently, all affine invariant depth functions are essentially equivalent if the
distribution is elliptical. Moreover, ifP is elliptical and has a unimodal Lebesgue-
density fP, the density level sets have the same elliptical shape, and the density is a
transformation of the depth, i.e., a functionϕ exists such thatfP(z) = ϕ(D(z|P) for
all z∈ R

d. Similarly, on a spherical distribution, any depth satisfying postulatesD1
andD2isohas analogous properties.

In the following, we consider three principal approaches todefine a multivariate
depth statistic. The first approach is based on distances from properly defined central
points or on volumes (Section 3.1), the second on certain L-statistics (viz.decreas-
ingly weighted means of order statistics; Section 3.2), thethird on simplices and
halfspaces inRd (Section 3.3). The three approaches have different consequences
on the depths’ ability to reflect asymmetries of the distribution, on their robustness
to possible outliers, and on their computability with higher-dimensional data.

Figures 1 to 4 below exhibit bivariate central regions for several depths and
equidistantα. The data consist of the unemployment rate (in %) and the GDP share
of public debt for the countries of the European Union in 2011.

Most of the multivariate depths considered are convex and affine invariant, some
exhibit spherical invariance only. Some are continuous in the pointz or in the dis-
tribution P (regarding weak convergence), others are not. They differ in the shape
of the depth lift and whether it uniquely determines the underlying distribution.
A basic dispersion ordering of multivariate probability distributions serving as a
benchmark is thedilation order, which says thatY spreads out more thanX if
E[ϕ(X)] ≤ E[ϕ(Y)] holds for every convexϕ : Rd → R; see, e.g. Mosler (2002).
It is interesting whether or not a particular depth orderingis concordant with the
dilation order.
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3.1 Depths based on distances

The outlyingness of a point, and hence its depth, can be measured by a distance
from a properly chosen center of the distribution. In the following notions this is
done with different distances and centers.

L2-depth. TheL2-depth,DL2, is based on the mean outlyingness of a point, as
measured by theL2 distance,

DL2(z|X) = (1+E||z−X||)−1 . (5)

It holds αmax= 1. The depth lift isD̂L2(X) = {(α,z) : E||z−αX|| ≤ 1−α} and
convex. For an empirical distribution on pointsxi , i = 1, . . . ,n, we obtain

DL2(z|x1, . . . ,xn) =

(
1+

1
n

n

∑
i=1

||z− xi||
)−1

. (6)

Obviously, theL2-depth vanishes at infinity (D3), and is maximum at thespatial
medianof X, i.e., at the pointz∈ R

d that minimizes E||z−X||. If the distribution
is centrally symmetric, the center is the spatial median, hence the maximum is at-
tained at the center. Monotonicity with respect to the deepest point (D4) as well as
convexity and compactness of the central regions (D4con, D5) derive immediately
from the triangle inequality. Further, theL2-depth depends continuously onz. The
L2-depth converges also in the probability distribution: Fora uniformly integrable
and weakly convergent sequencePn → P it holds limnD(z|Pn) = D(z|P).

However, the ordering induced by theL2-depth is no sensible ordering of disper-
sion, since theL2-depth contradicts the dilation order. As||z−x|| is convex inx, the
expectation E||z−X|| increases with a dilation ofP. Hence (5) decreases (!) with a
dilation.

The L2-depth is invariant against rigid Euclidean motions (D1, D2iso), but not
affine invariant. An affine invariant version is constructedas follows: Given a posi-
tive definited×d matrixM, consider theM-norm,

||z||M =
√

z′M−1z, z∈R
d . (7)

LetSX be a positive definited×d matrix that depends continuously (in weak conver-
gence) on the distribution and measures the dispersion ofX in an affine equivariant
way. The latter means that

SXA+b = ASXA′ holds for any matrixA of full rank and anyb. (8)

Then anaffine invariant L2-depthis given by

(1+E||z−X||SX)
−1 . (9)

Besides invariance, it has the same properties as theL2-depth. A simple choice for
SX is the covariance matrixΣX of X (Zuo and Serfling, 2000). Note that the covari-
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ance matrix is positive definite, as the convex hull of the support,co(P), is assumed
to have full dimension. More robust choices forSX are theminimum volume ellipsoid
(MVE) or theminimum covariance determinant(MCD) estimators; see Rousseeuw
and Leroy (1987), Lopuhaä and Rousseeuw (1991).
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Fig. 1 Governmental debt (x-axis) and unemployment rate (y-axis); Mahalanobis regions (mo-
ment, left; MCD, right) withα = 0.1(0.1), . . . ,0.9.

Mahalanobis depths.Let cX be a vector that measures the location ofX in a
continuous and affine equivariant way and, as before,SX be a matrix that satisfies
(8) and depends continuously on the distribution. Based on the estimatescX andSX

a simple depth statistic is constructed, thegeneralized Mahalanobis depth, given by

DMah(z|X) =
(
1+ ||z− cX||2SX

)−1
. (10)

Obviously, (10) satisfiesD1 to D5 andD4con, taking its unique maximum atcX.
The depth lift is the convex set̂DMah(X) = {(α,z) : ||z−αcX ||2SX

≤ α2(α − 1)},
and the central regions are ellipsoids aroundcX . The generalized Mahalanobis depth
is continuous onz andP. In particular, withcX = E[X] andSX = ΣX the (moment)
Mahalanobis depthis obtained,

DmMah(z|X) =
(

1+(z−E[X])′Σ−1
X (z−E[X])

)−1
. (11)

Its sample version is

DmMah(z|x1, . . . ,xn) =
(

1+(z− x)′Σ̂−1
x (z− x)

)−1
, (12)

wherex is the mean vector and̂ΣX is the empirical covariance matrix. It is eas-
ily seen that theα-central set of a sample fromP converges almost surely to the
α-central set ofP, for any α. Figure 1 shows Mahalanobis regions for the debt-
unemployment data, employing two choices of the matrixSX, namely the usual mo-
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ment estimateΣX and the robust MCD estimate. As it is seen from the Figure, these
region depend heavily on the choice ofSX. Hungary, e.g., is rather central (having
depth greater than 0.8) with the moment Mahalanobis depth, while it is much more
outlying (having depth below 0.5) with the MCD version.

Concerning uniqueness, the Mahalanobis depth fails in identifying the underly-
ing distribution. As only the first two moments are used, any two distributions which
have the same first two moments cannot be distinguished by their Mahalanobis depth
functions. Similarly, the generalized Mahalanobis depth does not determine the dis-
tribution. However, within the family of nondegenerated-variate normal distribu-
tions or, more general, within any affine family of nondegenerated-variate distribu-
tions having finite second moments, a single contour set of the Mahalanobis depth
suffices to identify the distribution.
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Fig. 2 Governmental debt and unemployment rate; projection depthregions (left), Oja regions
(right); both withα = 0.1(0.1), . . . ,0.9.

Projection depth. Theprojection depthhas been proposed in Zuo and Serfling
(2000):

Dpro j(z|X) =

(
1+ sup

p∈Sd−1

|〈p,z〉−med(〈p,X〉)|
Dmed(〈p,X〉)

)−1

, (13)

whereSd−1 denotes the unit sphere inRd, 〈p,z〉 is the inner product (that is the
projection ofzon the line{λ p : λ ∈R}), med(U) is the usual median of a univariate
random variableU , and Dmed(U) = med(|U − med(U)| is the median absolute
deviation from the median. The projection depth satisfiesD1 to D5 and D4con.
It has good properties, which are discussed in detail by Zuo and Serfling (2000).
For breakdown properties of the employed location and scatter statistics, see Zuo
(2000).

Oja depth. The Oja depth is not based on distances, but on average volumes of
simplices that have vertices from the data (Zuo and Serfling,2000):
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DO ja(z|X) =

(
1+

E(vold(co{z,X1, . . . ,Xd}))√
detΣX

)−1

,

whereX1, . . . ,Xd are random vectors independently distributed asP, co denotes the
convex hull,Vd thed-dimensional volume, andSX is defined as above. In particular,
we can chooseDX = ΣX . The Oja depth satisfiesD1 to D5. It is continuous onz
and maximum at the Oja median (Oja, 1983), which is not unique. The Oja depth
determines the distribution uniquely among those measureswhich have compact
support of full dimension.

Figure 2 contrasts the projection depth regions with the Ojaregions for our debt-
unemployment data. The regions have different shapes, but agree in making Spain
and Greece the most outlying countries.

3.2 Weighted mean depths

A large and flexible class of depth statistics corresponds toso called weighted-mean
central regions, shortly WM regions (Dyckerhoff and Mosler, 2011, 2012). These
are convex compacts inRd, whose support function is a weighted mean of order
statistics, that is, an L-statistic. Recall that a convex compactK ⊂ R

d is uniquely
determined by its support functionhK ,

hK(p) = max
{

p′x : x∈ K
}
, p∈ Sd−1 .

To define the WMα-region of an empirical distribution onx1,x2, . . . , xn, we con-
struct its support function as follows: Forp ∈ Sd−1, consider the line{λ p ∈ R

d :
λ ∈ R}. By projecting the data on this line a linear ordering is obtained,

p′xπp(1) ≤ p′xπp(2) ≤ ·· · ≤ p′xπp(n) , (14)

and, by this, a permutationπp of the indices 1,2, . . . ,n. Consider weightswj ,α for
j ∈ {1,2, . . . ,n} andα ∈ [0,1] that satisfy the following restrictions (i) to (iii):

(i) ∑n
j=1wj ,α = 1, wj ,α ≥ 0 for all j andα .

(ii) wj ,α increases inj for all α .
(iii) α < β implies ∑k

j=1wj ,α ≤ ∑k
j=1wj ,β , k= 1, . . . ,n.

Then, as it has been shown in Dyckerhoff and Mosler (2011), the functionhDα (x1,...,xn),

hDα (x1,...,xn)(p) =
n

∑
j=1

wj ,α p′xπp( j) , p∈ Sd−1 , (15)

is the support function of a convex bodyDα = Dα(x1, . . . ,xn), andDα ⊂ Dβ holds
wheneverα > β . Now we are ready to see the general definition of a family of WM
regions.
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Definition 1. Given a weight vectorwα = w1,α , . . .wn,α that satisfies the restrictions
(i) to (iii ), the convex compactDα = Dα(x1, . . . ,xn) having support function (15) is
named theWM regionof x1, . . . ,xn at levelα , α ∈ [0,1]. The corresponding depth
(1) is theWM depthwith weightswα , α ∈ [0,1].

It follows that the WM depth satisfies the restrictionsD1 to D5 andD4con. More-
over, it holds

Dα(x
1, . . . ,xn) = conv

{
n

∑
j=1

wj ,αxπ( j) : π permutation of{1, . . . ,n}
}

. (16)

This explains the name by stating that a WM region is the convex hull of weighted
means of the data. Consequently, outside the convex hull of the data the WM depth
vanishes. WM depths are useful statistical tools as their central regions have attrac-
tive analytical and computational properties. Sample WM regions are consistent es-
timators for the WM region of the underlying probability. Besides beingcontinuous
in the distribution and inα, WM regions aresubadditive, that is,

Dα(x
1+ y1, . . . ,xn+ yn)⊂ Dα(x

1, . . . ,xn)⊕Dα(y
1, . . . ,yn) ,

andmonotone: If xi ≤ yi holds for alli (in the componentwise ordering ofRd), then

Dα(y
1, . . . ,yn)⊂ Dα(x

1, . . . ,xn)⊕R
d
+ and

Dα(x
1, . . . ,xn)⊂ Dα(y

1, . . . ,yn)⊕R
d
− ,

where⊕ signifies the Minkowski sum of sets.
Depending on the choice of the weightswj ,α different notions of data depths are

obtained. For a detailed discussion of these and other special WM depths and central
regions, the reader is referred to Dyckerhoff and Mosler (2011, 2012).
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Fig. 3 Governmental debt and unemployment rate; zonoid regions (left), ECH∗ regions (right);
both withα = 0.1(0.1), . . . ,0.9.
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Zonoid depth.For an empirical distributionP onx1, . . . ,xn and 0< α ≤ 1 define
the zonoid region (Koshevoy and Mosler, 1997)

Dzon
α (P) =

{
n

∑
i=1

λix
i : 0≤ λi ≤

1
nα

,
n

∑
i=1

λi = 1

}
.

See Figure 3. The corresponding support function (15) employs the weights

wj ,α =





0 if j < n−⌊nα⌋ ,
nα−⌊nα⌋

nα if j = n−⌊nα⌋ ,
1

nα if j > n−⌊nα⌋ .
(17)

Many properties of zonoid regions and the zonoid depthDzon(z|X) are discussed in
Mosler (2002). The zonoid depth lift equals the so called lift zonoid, which fully
characterizes the distribution. Therefore the zonoid depth generates an antisymmet-
ric depth order (3) and a probability metric (4). Zonoid regions are not only invariant
to affine, but to general linear transformations; specifically any marginal projection
of a zonoid region is the zonoid region of the marginal distribution. The zonoid
depth is continuous onzas well asP.

Expected convex hull depth.Another important notion of WMT depth is that
of expected convex hull (ECH*)depth (Cascos, 2007). Its central regionDα (see
Figure 3) has a support function with weights

wj ,α =
j1/α − ( j −1)1/α

n1/α . (18)

Figure 3 depicts zonoid and ECH∗ regions for our data. We see that the zonoid
regions are somewhat angular while the ECH∗ regions appear to be smoother; this
corresponds, when calculating such regions in higher dimensions, to a considerably
higher computation load of ECH∗.

Geometrical depth.The weights

wj ,α =

{ 1−α
1−αn αn− j if 0 < α < 1 ,

0 if α = 1 ,

yield another class of WM regions. The respective depth is the geometrically
weighted mean depth(Dyckerhoff and Mosler, 2011).

3.3 Depths based on halfspaces and simplices

The third approach concerns no distances or volumes, but thecombinatorics of half-
spaces and simplices only. In this it is independent of the metric structure ofRd.
While depths that are based on distances or weighted means may be addressed as
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metric depths, the following ones will be mentioned ascombinatorial depths. They
remain constant, as long as the compartment structure of thedata does not change.
By this, they are very robust againstlocation outliers. Outside the convex support
co(X) of the distribution every combinatorial depth attains its minimal value, which
is zero.
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Fig. 4 Governmental debt and unemployment rate; Tukey regions (left) with α = 2
27(

1
27), . . . ,

1
127,

simplicial regions (right) withα = 0.25,0.3(0.1), . . . ,0.9.

Location depth. Consider the population version of thelocation depth,

Dloc(z|X) = inf{P(H) : H is a closed halfspace,z∈ H} . (19)

The depth is also known ashalfspaceor Tukey depth, its central regions asTukey re-
gions. The location depth is affine invariant (D1, D2). Its central regions are convex
(D4con) and closed (D5); see Figure 4. The maximum value of the location depth
is smaller or equal to 1 depending on the distribution. The set of all such points is
mentioned as thehalfspace median setand each of its elements as aTukey median
(Tukey, 1975).

If X has anangular symmetricdistribution, the location depth attains its max-
imum at the center and the center is a Tukey median; this strengthens Propo-
sition 1. (A distribution is calledangular (= halfspace) symmetricabout z∗ if
P(X ∈ H) ≥ 1/2 for every closed halfspace H havingz∗ on the boundary; equiv-
alently, if (X− z∗)/||X− z∗|| is centrally symmetric with the convention 0/0= 0.)

If X has a Lebesgue-density, the location depth depends continuously onz; oth-
erwise the dependence onz is noncontinuous and there can be more than one point
where the maximum is attained. As a function ofP the location depth is obviously
noncontinuous. It determines the distribution in a unique way if the distribution is
either discrete (Struyf and Rousseeuw, 1999; Koshevoy, 2002) or continuous with
compact support. The location depth of a sample fromP converges almost surely to
the location depth ofP (Donoho and Gasko, 1992). The next depth notion involves
simplices inRd.
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Simplicial depth. Liu (1990) defines thesimplicial depthas follows:

Dsim(z|X) = P(z∈ co({X1, . . . ,Xd+1})) , (20)

whereX1, . . . ,Xd+1 are i.i.d. byP. The sample version reads as

Dsim(z|x1, . . . ,xn) =
1( n

d+1

) #
{
{i1, . . . , id+1} : z∈ co({xi1, . . . ,xid+1})

}
. (21)

The simplicial depth is affine invariant (D1, D2). Its maximum is less or equal to
1, depending on the distribution. In general, the point of maximum simplicial depth
is not unique; thesimplicial medianis defined as the gravity center of these points.
The sample simplicial depth converges almost surely uniformly in z to its population
version (Liu, 1990; Dümbgen, 1992). The simplicial depth has positive breakdown
(Chen, 1995).

If the distribution is Lebesgue-continuous, the simplicial depth behaves well: It
varies continuously onz (Liu, 1990, Th. 2), is maximum at a center of angular
symmetry, and decreases monotonously from a deepest point (D4). Thesimplicial
central regionsof a Lebesgue-continuous distribution are connected and compact
(Liu, 1990).

However, if the distribution is discrete, each of these properties can fail; for coun-
terexamples see, e.g., Zuo and Serfling (2000). The simplicial depth characterizes
an empirical measure if the supporting points are ingeneral position, that is, if no
more thand of the points lie on the same hyperplane.

As Figure 4 demonstrates, Tukey regions are convex while simplicial regions are
only starshaped. The Figure illustrates also that these notions are rather insensitive
to outlying data: both do not reflecthow far Greece and Spain are from the center.
Whether, in an application, this kind of robustness is an advantage or not, depends
on the problem and data at hand.

Other well known combinatorial data depths are themajority depth(Liu and
Singh, 1993) and theconvex-hull peeling depth(Barnett, 1976; Donoho and Gasko,
1992). However the latter possesses no population version.

4 Functional data depth

The analysis of functional data has become a practically important branch of statis-
tics; see Ramsay and Silverman (2005). Consider a spaceE of functions[0,1]→ R

with the supremum norm. Like a multivariate data depth, a functional data depth is
a real-valued functional that indicates how ‘deep’ a function z∈ E is located in a
given finite cloud of functions∈ E. Let E′ denote the set of continuous linear func-
tionalsE → R, andE′d thed-fold Cartesian product ofE′. Here, following Mosler
and Polyakova (2012), functional depths of a general form (22) are presented. Some
alternative approaches will be addressed below.
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Φ-depth. For z∈ E and an empirical distributionX on x1, . . . ,xn ∈ E, define a
functional data depthby

D(z|X) = inf
ϕ∈Φ

Dd(ϕ(z)|ϕ(X)) , (22)

whereDd is a d-variate data depth satisfyingD1 to D5, Φ ⊂ E′d, and ϕ(X) is
the empirical distribution onϕ(x1), . . . ,ϕ(xn). D is called aΦ-depth. A population
version is similarly defined.

Eachϕ in this definition may be regarded as a particular ‘aspect’ weare inter-
ested in and which is represented ind-dimensional space. The depth ofz is given as
the smallest multivariate depth ofzunder all these aspects. It implies that all aspects
are equally relevant so that the depth ofz cannot be larger than its depth under any
aspect.

As thed-variate depthDd has maximum not greater than 1, the functional data
depthD is bounded above by 1. At every pointz∗ of maximal D-depthit holds
D(z∗|X)≤ 1. The bound is attained with equality,D(z∗|X)= 1, iff Dd(ϕ(z∗)|ϕ(X))=
1 holds for allϕ ∈ Φ, that is, iff

z∗ ∈
⋂

ϕ∈Φ
ϕ−1(Dd

1(ϕ(X))) . (23)

A Φ-depth (22) always satisfiesD1, D2sca, D4, andD5.
It satisfiesD3 if for every sequence(zi) with ||zi || → ∞ exists aϕ in Φ such that

ϕ(zi)→ ∞ . (For some special notions of functional data depth this postulate has to
be properly adapted.)

D4conis met ifD4conholds for the underlyingd-variate depth.
We now proceed with specifying the setΦ of functionals and the multivariate

depthDk in (22). While many features of the functional data depth (22) resemble
those of a multivariate depth, an important difference mustbe pointed out: In a
general Banach space the unit ballB is not compact, and propertiesD3 andD5 do
not imply that the level sets of a functional data depth are compact. So, to obtain a
meaningful notion of functional data depth of type (22) one has to carefully choose
a set of functionsΦ which is not too large. On the other hand,Φ should not be too
small, in order to extract sufficient information from the data.

Graph depths.Forx∈ E denotex(t) = (x1(t) . . . ,xd(t)) and consider

Φ = {ϕt : E →R
d : ϕt(x) = (x1(t) . . . ,xd(t)), t ∈ T} (24)

for someT ⊂ [0,1], which may be a subinterval or a finite set. ForDd use any
multivariate depth that satisfiesD1 to D5. This results in thegraph depth

GD(z|x1, . . . ,xn) = inf
t∈T

Dd(z(t)|x1(t), . . . ,xn(t)) . (25)

In particular, with the univariate halfspace depth,d = 1 andT = J we obtain
the halfgraph depth(López-Pintado and Romo, 2005). Also, with the univariate
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simplicial depth theband depth(López-Pintado and Romo, 2009) is obtained, but
this, in general, violates monotonicityD4.

Grid depths. We choose a finite number of points inJ, t1, . . . , tk, and evaluate a
functionz∈ E at these points. Notatet = (t1, . . . , tk) andz(t) = (z1(t), . . . ,zd(t))T.
That is, in place of the functionz thek×d matrix z(k) is considered. Agrid depth
RD is defined by (22) with the followingΦ,

Φ = {ϕ r : ϕ r(z) = (〈r,z1(t)〉, . . . ,〈r,zd(t)〉), r ∈ Sk−1} , (26)

which yields

RD(z|x1, . . . ,xn) = inf
r∈Sk−1

Dd(〈r,z(t)〉|〈r,x1(t)〉, . . . ,〈r,xn(t)〉) . (27)

A slight extension of theΦ-depth is theprincipal components depth(Mosler and
Polyakova, 2012). However, certain approaches from the literature are noΦ-depths.
These are mainly of two types. The first type employsrandom projectionsof the
data: Cuesta-Albertos and Nieto-Reyes (2008b) define the depth of a function as
the univariate depth of the function values taken at a randomly chosen argumentt.
Cuevas et al. (2007) also employ a random projection method.The other type uses
average univariate depths. Fraiman and Muniz (2001) calculate the univariate depths
of the values of a function and integrate them over the whole interval; this results
in kind of ‘average’ depth. Claeskens et al. (2012) introduce a multivariate (d ≥ 1)
functional data depth, where they similarly compute a weighted average depth. The
weight at a point reflects the variability of the function values at this point (more
precisely: is proportional to the volume of a central regionat the point).

5 Computation of depths and central regions

The moment Mahalanobis depth and its elliptical central regions are obtained in any
dimension by calculating the mean and the sample covariancematrix, while robust
Mahalanobis depths and regions are determined with the R-procedures “cov.mcd”
and “cov.mve”. In dimensiond = 2, the central regions of many depth notions can
be exactly calculated by following acircular sequence(Edelsbrunner, 1987). The
R-package “depth” computes the exact location (d = 2,3) and simplicial (d = 2)
depths, as well as the Oja depth and an approximative location depth for any di-
mension. An exact algorithm for the location depth in any dimension is developed
in Liu and Zuo (2012). Cuesta-Albertos and Nieto-Reyes (2008a) propose to cal-
culate instead therandom Tukey depth, which is the minimum univariate location
depth of univariate projections in a number of randomly chosen directions. With
the algorithm of Paindaveine andŠiman (2012), Tukey regions are obtained,d ≥ 2.
The bivariate projection depth is computed by the R-package”ExPD2D”; for the
respective regions, see Liu et al. (2011). The zonoid depth can be efficiently deter-
mined in any dimension (Dyckerhoff et al., 1996). An R-package (“WMTregions”)
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exists for the exact calculation of zonoid and general WM regions; see Mosler et al.
(2009); Bazovkin and Mosler (2012). The R-package “rainbow” calculates several
functional data depths.

6 Conclusions

Depth statistics have been used in numerous and diverse tasks of which we can
mention a few only. Liu et al. (1999) provide an introductionto some of them.
In descriptive multivariate analysis, depth functions andcentral regions visualize
the data regarding location, scale and shape. By bagplots and sunburst plots out-
liers can be identified and treated in an interactive way. Ink-class supervised clas-
sification, each - possibly high-dimensional - data point isrepresented in[0,1]k

by its values of depth in thek given classes, and classification is done in[0,1]k,
Functions of depth statistics include depth-weighted statistical functionals, such as∫
Rd xw(D(x|P))dP/

∫
Rd w(D(x|P))dP for location. In inference, tests for goodness

of fit and homogeneity regarding location, scale and symmetry are based on depth
statistics; see, e.g. Dyckerhoff (2002); Ley and Paindaveine (2011). Applications in-
clude such diverse fields as statistical control (Liu and Singh, 1993), measurement
of risk (Cascos and Molchanov, 2007), and robust linear programming (Bazovkin
and Mosler, 2011). Functional data depth is applied to similar tasks in description,
classification and testing; see e.g. López-Pintado and Romo (2009); Cuevas et al.
(2007).

This survey has covered the fundamentals of depth statistics for d-variate and
functional data. Several special depth functions inR

d have been presented, metric
and combinatorial ones, with a focus on the recent class of WMdepths. For func-
tional data, depths of infimum type have been discussed. Of course, such a survey
is necessarily incomplete and biased by the preferences of the author. Of the many
applications of depth in the literature only a few have been touched, and important
theoretical extensions like regression depth (Rousseeuw and Hubert, 1999), depth
calculus (Mizera, 2002), location-scale depth (Mizera andMüller, 2004), and like-
lihood depth (Müller, 2005) have been completely omitted.

Most important for the selection of a depth statistic in applications are the ques-
tions of computability and - depending on the data situation- robustness. Maha-
lanobis depth is solely based on estimates of the mean vectorand the covariance
matrix. In its classical form with moment estimates Mahalanobis depth is efficiently
calculated but highly non-robust, while with estimates like the minimum volume el-
lipsoid it becomes more robust. However, since it is constant on ellipsoids around the
center, Mahalanobis depth cannot reflect possible asymmetries of the data. Zonoid
depth can be efficiently calculated, also in larger dimensions, but has the drawback
that the deepest point is always the mean, which makes the depth non-robust. So, if
robustness is an issue, the zonoid depth has to be combined with a proper prepro-
cessing of the data to identify possible outliers. The location depth is, by construc-
tion, very robust but expensive when exactly computed in dimensions more than
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two. As an efficient approach the random Tukey depth yields anupper bound on the
location depth, where the number of directions has to be somehow chosen.

A depth statistics measures the centrality of a point in the data. Besides ordering
the data it provides numerical values that, with some depth notions, have an obvi-
ous meaning; so with the location depth and all WM depths. With other depths, in
particular those based on distances, the outlyingness function has a direct interpre-
tation.
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