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Abstract

The concept of tail dependence describes the amount of dependence in the lower-
left-quadrant tail or upper-right-quadrant tail of a bivariate distribution. A common
measure of tail dependence is given by the so-called tail-dependence coefficient. This
paper surveys various estimators for the tail-dependence coefficient within a paramet-
ric, semiparametric, and nonparametric framework. Further, a detailed simulation
study is provided which compares and illustrates the advantages and disadvantages of
the estimators.

Frahm et al., 2005, Estimating the tail dependence coefficient. Insurance: Mathemat-
ics and Economics 37, 80-100.

1 Motivation

During the last decade, dependencies between financial asset returns have increased due
to globalization effects and relaxed market regulation. However, common dependence
measures such as Pearson’s correlation coefficient are not always suited for a proper un-
derstanding of dependencies in financial markets; see, e.g., Embrechts et al. (2002). In
particular, dependencies between extreme events such as extreme negative stock returns
or large portfolio losses cause the need for alternative dependence measures to support
beneficial asset-allocation strategies.

Several empirical surveys such as Ané and Kharoubi (2003) and Malevergne and Sornette
(2004) exhibited that the concept of tail dependence is a useful tool to describe the de-
pendence between extremal data in finance. Moreover, they showed that especially during
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volatile and bear markets, tail dependence plays a significant role. In this context, tail
dependence is described via the so-called tail-dependence coefficient (TDC) introduced by
Sibuya (1960). This concept is reviewed in Section 2.

However, actuaries and statisticians who are not familiar with extreme value theory (EVT)
often have difficulties in choosing appropriate methods for measuring or estimating tail
dependence. One reason for that is the limited amount of (extremal) data which makes the
estimation quite sensitive to the choice of method. Another reason is the lack of literature
which compares the various estimators developed in (mostly theoretical) articles related
to EVT. This paper tries to partially fill this gap by surveying and comparing various
methods of tail-dependence estimation. In other words, we will present the most common
estimators for the TDC and compare them via a simulation study.

TDC estimators are either based on the entire set of observations or on extremal data.
Regarding the latter, EVT is the natural choice for inferences on extreme values. In the
one-dimensional setting, the extreme value distributions can be expressed in parametric
form, as shown by Fisher and Tippett (1928). Thus it suffices to apply parametric esti-
mation methods only. By contrast, multidimensional extreme value distributions cannot
be characterized by a fully parametric model in general. This leads to more complicated
estimation techniques.

Parametric estimation methods are efficient if the distribution model under consideration
is true, but they suffer from biased estimates in case the underlying model is different.
Nonparametric estimation procedures avoid this type of model error but come along with a
larger estimation variance. Accordingly, we distinguish in Section 3 between the following
types of TDC estimations, namely, TDC estimations which are based on:

a) a specific distribution or a family of distributions;
b) a specific copula or a family of copulas; or

c¢) a nonparametric model.

We discuss properties of the estimators along with possible applications and give references
for further reading. Section 4 presents a detailed simulation study which analyzes and
compares selected estimators regarding their finite sample behavior. Statistical methods
testing for tail dependence or tail independence are not included in this work. An account
on that topic can be found for instance in Draisma et al. (2004) or Falk and Michel (2004).

2 Preliminaries

The following approach, discussed by Sibuya (1960) and Joe (1997, p. 33) among others,
represents the most common definition of tail dependence. Let (X,Y’) be a random pair
with joint cumulative distribution function F' and marginals G' (for X) and H (for Y).
The quantity

AU:tgrﬁP{G(X)>t]H(Y)>t} (1)



is called the upper tail-dependence coefficient (upper TDC), provided the limit exists. We
say that (X,Y") is upper tail dependent if A\;y > 0 and upper tail independent if Ay = 0.
Similarly, we define the lower tail-dependence coefficient by

A= lim PG (X) <t|H(Y) <t} (2)

Thus, the TDC roughly corresponds to the probability that one margin exceeds a high/low
threshold under the condition that the other margin exceeds a high/low threshold.

The TDC can also be defined via the notion of copula, introduced by Sklar (1959). A
copula C' is a cumulative distribution function whose margins are uniformly distributed
on [0,1]. As shown by Sklar (1959), the joint distribution function F' of any random pair
(X,Y) with marginals G and H can be represented as

F(z,y) = C{G(x), H(y)}. (3)

in terms of a copula C' which is unique when G and H are continuous, as will be assumed
in the sequel. Refer to Nelsen (1999) or Joe (1997) for more information on copulas.

If C is the copula of (X,Y), then

t.t 1-—2t t.t
Az = lim Ct.t) and Ay = lim ;C(’).
t—0+ t t—1— 1—t

Another representation of the upper TDC is given by Ay = lim, g+ C(s,s)/s, where
C (1—-t,1—1t)=1-2t+ C(t,t) denotes the survival copula of C. Thus, the upper TDC
of C equals the lower TDC of its survival copula and, vice versa, the lower TDC of C
is given by the upper TDC of C. Since the TDC is determined by the copula of X and
Y, many copula features transfer directly to the TDC. For instance, the TDC is invariant

under strictly increasing transformations of the margins.

Consider a random sample (X1,Y7),...,(X,,Y,) of observations of (X,Y). Let
X! =max (Xy,...,X,) and Y =max(Yy,...,Y},)

be the corresponding componentwise maxima. In order to have a meaningful discussion
about tail dependence in the EVT framework, we assume that F' belongs to the domain
of attraction of an extreme value (EV) distribution. This means that as n — oo, the joint
distribution of the standardized componentwise maxima X, and Y,  has the following
limiting EV distribution (with non-degenerated margins):

Fn(anx + by, cnlY + dn) - FEv(LU, y)

for some standardizing sequences (ay), (¢,) > 0 and (b,), (d,) € IR. Suppose that Fgy
has unit Fréchet margins Ggy and Hgy, i.e.,

Gpy () =exp(—1/z), x >0 and Hpgy (y) =exp(—1/y), y > 0.



This assumption, which is standard in the EVT framework, is similar to the assumption
that the margins can be transformed into uniform distributions in the theory of copulas.
Then the EV distribution possesses the following representation, Pickands (1981):

FEv(a:,y):exp{— <%+$>A<xiy>} z,y > 0. (4)

Here A:[0,1] — [1/2,1] is a convex function such that max(t,1 —t) < A(t) <1 for every
0 <t < 1. The function A is known as Pickands’ dependence function. In the sequel,
the term dependence function always refers to the above representation and should not be
confused with the copula of a bivariate random vector.

The copula C}, £ € IN, of the componentwise maxima X;* and Y}* is related to the copula

C as follows:
Cy (u,v) = C* (ul/e,v1/£>, 0<u,v<1.

If the diagonal section C'(t,t) is differentiable for ¢ € (1 — ¢, 1) for some £ > 0, then it can
be shown that

. 1=C(t,1) 1-Cj(tt) . dC (t,t) . dCy(t,t)
2 Ap= lim — D oy 12CD gy dOLD g O
e T e = L
for all £ € IN. In particular, for £ — oo we obtain
Cgv (t t) =Fgpy 4 — ! — L = t2A(1/2) O<t<1 (6)
’ log (t)” log(t) ’ ’

where C'gy denotes the copula of Fgy. This implies the following important relationship:

1

Another representation of the EV distribution is frequently encountered in the EVT lit-
erature. If Fpy has unit Fréchet margins, there exists a finite spectral measure S on
B={(z,y): z,y >0,](z,y)|l, =1}, where || - ||2 denotes the Euclidean norm, such that

Favla) =esp{= [max (22) aswo}. wy>o
B 'y
with [z u dS(u,v) =1 and [zv dS(u,v) = 1. This yields
AU :2—/max (u,v) dS(u,v)
B

and A(1/2) = [y max (u,v) dS(u,v)/2. The estimation of the spectral measure is discussed
by Joe et al. (1992), de Haan and Resnick (1993), Einmahl et al. (1993), Einmahl et al.
(1997), and Capéraa and Fougeres (2000), among others.



Thus any estimator of the upper TDC S\U (the index n is dropped for notational conve-
nience) is equivalent to some estimator A, (1/2) via the relationship Ay = 2 — 24, (1/2).
By considering the dependence function related to the survival copula, this holds also for
the lower TDC. An abundant literature exists concerning the estimation of the dependence
function A. See for instance Tiago de Oliveira (1984), Tawn (1988), Smith et al. (1990),
Hutchinson and Lai (1990) or Coles and Tawn (1991) for fitting parametric (structural)
models to A. By contrast, Pickands (1981), Deheuvels (1991), Joe et al. (1992), Abdous et
al. (1998), Capéraa and Fougeres (2000) or Falk and Reiss (2003) consider nonparametric
estimation procedures.

Due to the invariance of the TDC of (X, Y;") with respect to ¢, the following estimator
arises quite naturally:

XU:2—2ﬁﬁ(l>:2—§9@@j)

1< <n.
2 dt y S =M=R

t~1

Here dmt denotes the estimated derivative of the diagonal section of the copula Cy
from m block maxima, where each block contains ¢ = n/m elements of the original data
set (we choose m such that n/m € IN). The special case m = n (i.e., £ = 1) corresponds
to n block maxima which form the original data set. Every TDC estimator has to deal
with a bias-variance trade-off arising from the following two sources. The first one is the
choice of the threshold ¢. That is, the larger ¢ the smaller the bias (and the larger the
variance) and vice versa. The second source is the number of block maxima. Thus, the
larger m the smaller the variance but the larger the bias. An optimal choice of m and t,
e.g., with respect to the mean squared error (MSE) of the estimator, is usually difficult
to derive. A similar problem exists for univariate tail-index estimations of regular varying
distributions.

In Figure 1, we illustrate the latter bias-variance problem via the following estimator which
is motivated by (5) and forms the nonparametric counterpart of the parametric estimator
X introduced in Coles et al. (1999):

AROG — 9 0<k<m, (7)

where

1 m
Cm (u,v) = o ;]l (R1j/m < u, Raj/m < v)
is called the empirical copula. Here 1 denotes the indicator function, while R1; and Ry;,
respectively, are the ranks of the block maxima XE} and YZ}? j=1,...,m, £ =n/m. The
threshold is denoted by k. As expected, Figure 1 reveals that the estimation via block
maxima has a lower bias but a larger variance. The bias-variance tradeoff for various
thresholds can be clearly seen, too.

In order to ease the presentation we do not explicitly differentiate between block maxima
and the original data set in the forthcoming sections.



3 TDC estimation

The following estimation approaches are classified by the degree of prior information which
is available about the distribution of the data. We will either assume a specific distribution
or a class of distributions, a specific copula or a class of copulas, or we perform a completely
nonparametric estimation. For notational convenience, A will be written without the
subscript L or U whenever we know that A;, = A\yy. Moreover, the subscript is dropped
whenever we neither specifically refer to the upper nor to the lower TDC.

3.1 Estimation using a specific distribution

Suppose that the distribution F'(-;60) is known. Further assume that A can be represented
via a known function of 6, i.e., A = A(f). Also assume that F allows for tail dependence.
Then the parameter 6 can be estimated via maximum-likelihood (ML), which suggests
the estimator \ = )\(é) Under the usual regularity conditions of ML-theory, as in Casella
and Berger (2002, p. 516), the functional estimator A = A(0) represents an ML-estimator
which possesses the well-known consistency and asymptotic normality properties.

Example 1. Suppose that (X,Y) is bivariate ¢t-distributed, i.e.,
Z

VX2’

where Z ~ N(0,%), p € R?, ¥ € R?*2 positive definite, and Z is stochastically indepen-
dent of x2. Then Embrechts et al. (2002) show that

A=217,41 <\/ﬁ @) , (8)

where t,.1 is the survival function of a Student’s univariate t-distribution with o + 1
degrees of freedom. The parameter p = sin(7w7/2), expressed in terms of Kendall’s tau,
denotes the correlation parameter of (X,Y"). It corresponds to Pearson’s correlation coef-
ficient, when it exists. O

(X,Y)g,u—k a>0,

Obviously this estimation approach requires prior information about the joint distribution
function of the data. Consequently, the TDC estimator generates good estimates (in the
sense of MSE) if the proposed distribution is the right one, but it will be biased if the
distribution is wrong. In other words, this type of estimation is not expected to reveal
surprising results and will be, therefore, excluded from the subsequent discussion.

3.2 Estimation within a class of distributions

Instead of a specific distribution, we now suppose that F' belongs to a class of distribu-
tions. Because of its popularity in theory and practice, as illustrated, e.g., by Bingham



et al. (2003) and Embrechts et al. (2003), we consider the class of elliptically contoured
distribution, viz.

(X,Y) L i+ RAU®,

where U®?) is a random pair uniformly distributed on the unit circle, R is a nonnegative
random variable that is stochastically independent of U @), u € IR? is a location parameter,
and A € IR?*? is nonsingular. Well-known members of the latter distribution family are the
multivariate normal, multivariate ¢ and symmetric generalized hyperbolic distributions.
Note that p = 0 does not correspond to independence; see, e.g., Abdous et al. (2005) for
additional discussion concerning the dependence properties of this class of copulas.

In case the tail distribution of the Euclidean norm ||(X,Y)]|, is regularly varying with tail
index o > 0 [see Bingham et al. (1987) for the definition of regular variation|, Schmidt
(2002) and Frahm et al. (2003) show that tail dependence is present and that relationship
(8) still holds. In particular, we have

() (D)

Various methods for the estimation of the tail index o are discussed, e.g., in Matthys and
Beirlant (2002) or Embrechts et al. (1997).

3.3 Estimation using a specific copula

Suppose that the copula C(-;6) is known. Note that this is a much weaker assumption
than assuming a specific distribution. The estimation of the parameter 6 can be performed
in two steps. First, we transform the observations of X and Y (or the corresponding block
maxima) via estimates of the marginal distribution functions G and H and fit the copula
from the transformed data in a second step; the transformation is justified by (3). Unless
stated otherwise, the marginal distribution functions will be estimated by the empirical
distribution functions @n and I;Tn

The estimation of G and H via the empirical distribution functions avoids an incorrect
specification of the margins. Genest et al. (1995), as well as Shih and Louis (1995), discuss
consistency and asymptotic normality of the copula parameter 6 if it is estimated in this
fashion. Roughly speaking, if the map between 6 and A is smooth enough, then the
estimator \ = )\(é) is consistent and asymptotically normal provided 0 is consistent and
asymptotically normal.

If G(-;0¢g) and H(-;60p) are assumed to be specific distributions, then 65 and 6y can be
estimated, e.g., via ML methods. In particular, the IFM method (method of inference
functions for margins) consists of estimating 0 and 0y via ML and, in a second step,
estimating the parameter 6 of the copula C(-;6) via ML also. However, for this approach
it is necessary that the parameters 65 and 0y do not analytically depend on the copula
parameter #. Results about the asymptotic distribution and the asymptotic covariance
matrix of this type of estimation are derived in Joe (1997, Chapter 10); see also the



references therein. A simulation study (which is not included in this paper but can be
obtained from the authors upon request) shows that there is not much difference between
the two step and the one step estimation in terms of the MSE. Also the MSE related to
the pseudo-ML and the ML-estimation via empirical margins are roughly the same in this
simulation study.

Example 2. Suppose that the data stem from a bivariate t-copula

C (u,v;0,p) = ta {t5" (u), 15" () p}

where t,(-;p) represents the bivariate ¢-distribution function with a degrees of freedom
and correlation parameter p. O

Note that elliptical copulas (i.e., copulas of elliptical random vectors) are restricted to
transpositional symmetry, i.e., C = C and thus Az, = \y. Hence, if the TDC is estimated
from the entire sample via a single copula, the elliptical copulas are not appropriate if
AL # Ay. For example it is well known that investors react differently to negative and
positive news. In particular for asset return modeling, the symmetry assumption has to be
considered with care; see, e.g., Junker (2004) for an empirical study of commodity returns
and U.S. dollar yield-returns using likelihood ratio tests. In such a case, Ar and Ay are
better estimated by utilizing two different elliptical copulas and taking only the lower left
or the upper right observations of the copula into consideration (see the example below).

Example 3. Suppose that C is a specific Archimedean copula such as the Gumbel copula
176
+ (_ log U) 4 } :| 9

where 0 < 6 < 1. It is easy to show that A\y(f) = 2 — 2% and therefore A(1/2) = 29/2.
Thus, A\ may be estimated via Ai7(€) where 6 is obtained from a fitted Gumbel copula.
O

D=

Cau (u,v) = exp [— {(~1ogu)

In general, Archimedean copulas are described by a continuous, strictly decreasing and
convex generator function ¢ : [0, 1] — [0, oo] with ¢(1) = 0. The copula C is then given
by

Clu,v) = ¢ o (w) + ¢ (v)} (9)
Here ¢[=1 : [0, 0o] — [0, 1] denotes the pseudo-inverse of ¢. The generator ¢ is called
strict if ¢(0) = oo and in this case ¢p!~1) = ¢~1; see Genest and MacKay (1986) or Nelsen
(1999, Chapter 4).

Suppose (U, V) is distributed with Archimedean copula C with generator ¢(-;6) involving
an unknown parameter 6. Recall that the TDC is defined along the copula’s diagonal. In
this context, we mention the following useful relationship

P{max (U, V) <t} =C(t,t) = ¢ {24 (t;0);0}.

Example 4. Consider the following conditional distribution function:
C(u,v)
C(t,t)’

8

PU<u,V<ov|UV<t)= 0<t<l, 0<u,v<t.



Observe that we may only consider data which fall below the threshold ¢ in order to
estimate the lower TDC. The conditional distribution function of the upper right quadrant
of C' is similarly defined. The point is that it is useful to allow completely different
conditional distributions for lower left and upper right observations of the copula. Note
that the typical bias-variance trade-off appears again for the choice of the threshold ¢ (as
discussed in Section 1). O

3.4 Estimation within a class of copulas

Let us consider the important class of Archimedean copulas. Juri and Wiithrich (2002)
have derived the following limiting result for the bivariate excess distribution of Archime-
dean copulas C. Define

C' {min (z,t),t}

F —
IO
where 0 < ¢t < 1 is a low threshold. Note that F; can be also defined via the second

argument of C' since C(u,v) = C(v,u). Now consider the “copula of small values” defined
by

0<z <1,

C{F " (w), F (1)}

C(t,t) ’
where F, ! is the generalized inverse of F;. Tt can be shown that if C' has a differentiable
and regularly varying generator ¢ with tail index o > 0 then

Cy (u,v) =

(10)

lim Cy (u,v) = Cqy (u,v; ),
t—0T

for every 0 < u,v < 1, where
Cer (u,v;a) = (u_a +v7% — 1)71/a

is the Clayton copula with parameter a. One may verify that A\j, = Ay () = 2-1/e Thus,
the lower TDC can be estimated by fitting the Clayton copula to small values of the
approximate copula realizations and set \j, = 271/4,

Remarks.

i) Archimedean copulas that belong to a domain of attraction are necessarily in the
domain of attraction of the Gumbel copula, which is an EV copula; see, e.g., Genest
and Rivest (1989) and Capéraa et al. (2000). Hence, the Gumbel copula seems to
be a natural choice regarding the TDC estimation if we work in an Archimedean
framework.

ii) The marginal distributions of financial asset returns are commonly easier to model
than the corresponding dependence structure; this is often due to the limited avail-
ability of data. Consider for instance the pricing of so-called basket credit deriva-
tives. Here the marginal survival functions of the underlying credits are usually es-
timated via parametric hazard-rate models by utilizing observable default spreads.



The choice of an appropriate dependence structure, however, is still a debate and sev-
eral approaches are currently discussed; see, e.g., Li (1999) or Laurent and Gregory

(2003).

3.5 Nonparametric estimation

In the present section, no parametric assumptions are made for the copula and the marginal
distribution functions. TDC estimates are obtained from the empirical copula C,. Note
that the empirical copula implies the following relationship

F\n(x, y) = an{én(x)v ﬁn(y)}v

where ﬁn, @n, and ﬁn denote the empirical distributions.

In (7), we presented the nonparametric upper TDC estimator ;\I(jOG which is based on
the empirical copula. This estimator was motivated by equation (5). Note that if the
bivariate data are stochastically independent (or comonotonic), )\LOG is well behaved for
all thresholds k in terms of the bias, as in that case C(t,t) = t2 (or C(t,t) =t) and thus
;\I(jOG ~2—-2=0 (or 5\{}0@ ~ 2 — 1 =1) holds independently of k.

Another estimator appears as a special case in Joe et al. (1992):

R 1_6nn;n;
APEC =9 1(” w) 0<k<n. (11)

This estimator can also be motivated by equation (5), which explains the superscript SEC
illustrating the relationship to the secant of the copula’s diagonal. Asymptotic normality
and strong consistency of )\%EC are, e.g., addressed in Schmidt and Stadtmiiller (2004).

A third nonparametric estimator is proposed below which is motivated in Capéraa et al.
(1997). Let {(U1,V1),...,(Un,Vyn)} be a random sample obtained from the copula C.
Assume that the empirical copula function approximates an EV copula Cgy (take block
maxima if necessary) and define

A\CFG _ Qexp[ Zlog{,/log—logv/l 0g———— U,,V;) }

3.6 Pitfalls

From finitely many observations (z1,¥y1),. .., (Zn,yn) of (X,Y), it is difficult to conclude
whether (X,Y) is tail dependent or not. As for tail-index estimation, one can always
specify thin-tailed distributions which produce sample observations suggesting heavy tails
even for large sample sizes. For example the upper left plot of Figure 2 shows the scatter
plot of 2000 realizations from a distribution with standard normal univariate margins

10



and copula Cnjs corresponding to a mixture distribution of different bivariate Gaussian
distributions, namely:

0 0.49 0.245 1 0.49 0.441
_ 3
N = 10N<[0]’[0.245 0.49 D+10NQ1}’{0.441 0.49 D

At first glance, the scatter plot reveals upper tail dependence although any finite mixture of
normal distributions is tail independent. The upper right plot of Figure 2 shows the scatter
plot of 2000 realizations from a distribution with standard normal univariate margins and
a Gumbel c?pula with 6 = 2.25. As expected, the sample reveals a large upper TDC of
Ay = 2 — 20 =~ 0.64. Nevertheless, the upper left plot with Ay = 0 looks more or less
like the upper right plot. The lower two plots of Figure 2 give the corresponding TDC
estimates of X{}OG for different choices of k. It can be seen that for any choice of k the
TDC estimate for copula Cnps has nearly the same value as the TDC estimate for the
Gumbel copula. Conversely one may create samples which seem to be tail independent
but they are realizations of a tail dependent distribution. Thus, the message is that one
must be careful by inferring tail dependence from a finite random sample. The best way
to protect against misidentifications is the application of several estimators, test or plots
to the same data set.

We address another pitfall regarding the estimation of the marginal distribution functions.
The use of parametric margins instead of empirical margins bears a model risk and may
lead to wrong interpretations of the dependence structure. For instance, consider 3000
realizations of a random pair with distribution function

H (:c,y) = Ceu {tV (x> ity (y) 79} )

where t, denotes the univariate standard t-distribution with v degrees of freedom and
Cqu is the Gumbel copula with parameter 6. Set § = 2 and v = 3. In Figure 3, we
compare the empirical copula densities which are either obtained via empirical marginal
distributions or via fitted normal marginal distributions. Precisely, in the second case
we plot the pairs (G(x;), H(y;)), where G and H are normal distribution functions with
parameters estimated from the data. The left panel of Figure 3 clearly illustrates the
dependence structure of a Gumbel copula. By contrast, the data in the right panel have
nearly lost all the appearance for upper tail dependence. Thus we have shown that not
testing or ignoring the quality of the marginal fit can cause dramatic misinterpretation of
the underlying dependence structure.

4 Simulation Study

In order to compare the finite sample properties of the discussed TDC estimators, we run
an extensive simulation study. Each simulated data set consists of 1000 independent copies
of n realizations from a random sample {(X1,Y1),...,(Xn,Yn)} having one particular
distribution out of four. Three different sample sizes n = 250, 1000, 5000 are considered

11



for each data set. The four different distributions are denoted by H, T, G and AG. For
example the data set 5’%150 contains realizations of 1000 samples with sample size 250 which
are generated from a bivariate symmetric generalized hyperbolic distribution H. This is
an elliptical distribution (see (3.2)), where RU®) has density

_ Ko (Vi+54's)
1) = = R

and Ky is the Bessel function of the third kind with index 0. The correlation parameter
is set to p = 0.5.

Further, T refers to the bivariate ¢-distribution with v = 1.5 degrees of freedom and
p = 0.5. Distribution G is determined by the distribution function

Fa(z,y) = Ca{® (x), @ (y); 0,0},

where ® denotes the univariate standard normal distribution and C¢ is an Archimedean
copula with generator function

e vt 1

6(t:9,) = mant:0)) = (~1og 51

5
1>, 0#0,0>1,

considered by Junker and May (2002). Here, ¢ppank is the generator of the Frank copula,
and values ¥ = —0.76 and § = 1.56 are chosen, for reasons given below.

Finally, distribution AG is an asymmetric Gumbel copula, as defined by Tawn (1988),
combined with standard normal margins, viz.

FAG(xvy) = CAG {(b (x) ,Q)(y) ;97 ¢7 5}7

where
Cac (u,v;0,¢,8) = u* v % exp (— [{—an ()}’ + {—¢In (v)}d} %> .

We set § = 0.5,¢ = 0.9,0 = 2.78. For additional ways of generating asymmetric models
and multi-parameter Archimedean copulas, see Genest et al. (1998).

Note that distribution H has no tail dependence; e.g., see Schmidt (2002). Thus the set
of generalized hyperbolic data is used to control the performance of the TDC estimation
methods under the absence of tail dependence. By contrast, distribution 7" possesses tail
dependence; see also (8). Further, copula Cg is lower tail independent but upper tail
dependent, i.e., )\% =0 and )\5 — 2 — 219 The parametrization of the distributions T, G,
and AG is chosen such that )\E = )\5 = )\g = )\’éG = 0.4406 and Kendall’s tau 77 =
T =76 =746 =1 /3 in order to provide comparability of the estimation results. Figure
4 illustrates the different tail behavior of distributions H,T, G, and AG by presenting the
scatter plots of the respective simulated data-sample with sample size n = 5000, together
with the corresponding empirical copula realizations. Regarding the copula mapping, we
use empirical marginal distribution functions.

12
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The different estimation methods are compared via the sample means fi(A,) and the
sample standard deviations & (\,) of the estimates A, ;, i = 1,...,1000, depending on the
sample size n. Furthermore, to analyze the bias-variance trade-off for different sample

sizes and estimation methods we compare the corresponding root mean squared errors:

. 1 1000 A 9
RMSE (A,) = 000 2 (Ani=2)" (12)

1=

Moreover, we introduce another statistical quantity called MESE (mean error to standard
error):
NN IS ESY
MESE (/\n) SR —— (13)
7 (An)

MESE quantifies the sample bias normalized by the sample standard error. Thus, it
measures the degree of possible misinterpretation caused by considering the standard
error as a criterion for the quality of the estimator. For instance, assume a situation
where the standard error of the estimate is small but the bias is large. In that case the
true parameter is far away from the estimate, though the approximated confidence bands
suggest the opposite. This situation is represented by a large MESE. In particular, if the
bias of the estimator decreases with a slower rate as the standard error (for n — oco) then
MESE tends to infinity. One aim of this quantity is to investigate the danger of this sort
of misinterpretation.

In the following, the TDC is estimated via the various methods discussed in Section 3. It is
reasonable to discard those models which are obviously not compatible with the observed
data. Further, we do not consider TDC estimations using a specific distribution since the
results are not surprising (due to the strong distributional assumptions).

4.1 Estimation within a class of distributions

The following estimation approach is based on the expositions in Section 3.2. We have to
estimate the tail index « and the correlation parameter p. For any elliptical distribution,
the correlation parameter is determined by Kendall’s 7 via the relationship of Lindskog et

al. (2003), viz.
. (T
p = sin (5 T) .

Hence, using 7 = (¢ — d)/(c + d), where c is the number of concordant pairs and d is the
number of discordant pairs of the sample, the correlation parameter may be estimated by
p = sin(77/2). Alternatively, one can apply Tyler’s M-estimator for the covariance matrix,
which is completely robust within the class of elliptical distributions; see Tyler (1987) or
Frahm (2004). Given the covariance matrix, the random variable R can be extracted by
the Mahalanobis norm of (X,Y). Our pre-simulations showed that there is no essential
difference regarding the finite sample properties between these two estimation procedures.
Hence we use the approach via Kendall’s 7 for the sake of simplicity.
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The tail index « could be estimated via traditional methods of EVT, i.e., by taking only
extreme values or excesses of the Euclidean norm ||(X,Y)||2 into consideration. Different
methods for estimating the tail index are discussed, e.g., in Matthys and Beirlant (2002)
or Embrechts et al. (1997). For our purposes, we used a Hill-type estimator with optimal
sample fraction proposed by Drees and Kaufmann (1998).

For the data sets Sg and Sag, we do not assume an elliptical distribution due to the
obvious asymmetry of the data; see the scatter plots in Figure 4. Consequently we will
not apply the latter estimation procedure to these data sets. The estimation results for
Sy and St are summarized in Table 1.

4.2 Estimation using a specific copula

As mentioned in Section 3.3, the marginal distribution functions are now estimated by
their empirical counterparts, whereas the copula is chosen according to our decision. For
the elliptical data sets Sy and S7, we opted for a t-copula, which seems to be a realistic
choice by glancing at the scatter plots in Figure 4. However, we know that the ¢-copula
is not suitable for Sy. The TDC is estimated via relation (8). Regarding the data set
Sa, we fit a Gumbel copula since the empirical copula, which is illustrated in Figure 4,
shows transpositional asymmetry, i.e., the underlying copula does not seem to coincide
with its survival copula. Moreover, the symmetry of the Gumbel copula with respect to
the copula’s diagonal appears to be satisfied by S¢, too. Here the upper TDC is estimated
via 5\5 =2 — 2% However, the original copula of Sg is not the Gumbel copula and thus
the assumed model is wrong. We disregard the data set Ss¢ since it is not obvious which
specific copula might be appropriate in this framework. Note that the empirical copula
is even asymmetric with respect to the copula’s diagonal (see Figure 4). The estimation
results are summarized in Table 1.

4.3 Estimation within a class of copulas

We follow the approach given in Section 3.4, which is based on a result by Juri and
Wiithrich (2002). The upper TDC is estimated, but in the following we refer to the
lower left corner of the underlying survival copula. We choose a small threshold ¢ for
the latter copula in order to obtain the conditional copula (10). In order to increase
the robustness of the copula estimates with respect to the threshold choice, we take the
mean of estimates which correspond to 10 equidistant thresholds between n~/2 and n~1/4.
Note that if the margins of the underlying distribution are completely dependent, then
n'/2 data points are expected in the copula’s lower left quadrant which is determined by
the threshold ¢t = n~Y2. For the smaller threshold ¢t = n~1/4, the same amount of data
(n'/?) is expected for an independence copula.

We assume that the data Spg, S and Sg have an Archimedean dependence structure.
Since S is not permutational symmetric, we reject the Archimedean hypothesis for this
data set. We point out that the Frank copula, Frank (1979), is the only transpositional
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symmetric Archimedean copula and thus suitable for Sy and S7 but it does not comprise
tail dependence. The statistical results for the data sets Sg, ST, and Sg are provided in
Table 1.

4.4 Nonparametric estimation

No specific distributional assumptions for the upper TDC estimation are made in the
present section. Recall that for 5\150(} and S\%EC, we have to choose the threshold k as
indicated in (7) and (11). By contrast, S\SFG needs no additional decision regarding the
threshold. This, however, goes along with the assumption that the underlying copula can
be approximated by an EV copula.

The diagonal section of the copula is supposed to be smooth in the neighborhood of 1,
and the second derivative of the diagonal section is expected to be small (i.e., the first
derivative is approximately constant). Then ;\SUEC(k) is homogeneous for small (thresholds)
k. However, k should be sufficiently large in order to decrease variance. We consider the
graph k — X%Ec(k) in order to identify the plateau which is induced by the homogeneity.
Note that ;\]&OG possesses this homogeneity property even for larger thresholds k if the
diagonal section of the copula follows a power law.

The plateau is chosen according to the following heuristic plateau-finding algorithm. First,
the map k — j\k is smoothed by a simple box kernel with bandwidth b € IN. That is, the
means of 2b+1 successive points of 5\1, ceey A lead to the new smoothed map A, ..., An_2b-
Here we have taken b = |0.005n | such that each moving average consists of 1% of the data,
approximately. In a second step, a plateau of length m = L\/n — 2bJ is defined as a vector
Dr = (Xk, . ,Xk—i-m—l)a k=1,...,n—2b—m+1. The algorithm stops at the first plateau
pi which elements fulfill the condition

k+m—1
> =X <20,
i=k+1
where o represents the standard deviation of A1, ..., A\,_2. Then the TDC estimate is set

to

R 1
M (k) = - E Akti1-
i—1

If there is no plateau fulfilling the stopping condition, the TDC estimate is set to zero.

As outlined above, we may choose a greater bandwidth b for the ALOG in order to reduce
the variance of the estimation. However, for a better comparison we do not change b. The
statistical results related to these nonparametric estimators for the data sets Sy, St,5¢
and Syq are provided in Table 2.
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Method Data set | fi(Ay) | BIAS(Ay) | 6(Av) | RMSE(Ay) | MESE(A\y)

Estimation S20 10.1618 | 0.1618T | 0.0817 | 0.18127F 1.9802
for a SH09 1 0.1698 | 0.1698 0.0413 | 0.1747* 4.1116
specific copula S2900 101739 [ 0.1739 0.0187 0.1749 9.3141
(t- and 5750 10.4281 [ -0.0125 | 0.0403% | 0.04227F 0.3078
Gumbel SI00 104374 | -0.0032 | 0.02047 | 0.0206™ 0.1403
copula) S3900 104400 | -0.0006 | 0.0092 | 0.0092% 0.0652%
5220 10.3905 [ -0.0501~ | 0.0437F |  0.0664 1.1466~

S0 10.3922 | -0.0484~ | 0.02127 | 0.0529 2.2819~

S0 10.3919 | -0.0487 | 0.0097F | 0.0497 5.0252~

Estimation S22010.2031 [ 0.2031 0.0588 0.2114 3.4541
within a class SI00 10.1815 | 0.1815 | 0.0377 0.1854 4.8143
of distributions || S | 0.1575 [ 0.1575 0.0220 0.1590 7.1591

(elliptical 529 10.4379 | -0.0027F | 0.0465 0.0466 0.0490 *
distributions) S0 10.4432 | 0.00267 | 0.0242 0.0243 0.10417F
2900 10,4437 [ 0.0031 0.0109 0.0113 0.2849

Estimation S2010.2278 [ 0.2278 [ 0.19107 |  0.2972 1.19217
within a class SI00 - 10.1671 | 0.16717 [ 0.1357~ 0.2152 1.2309"

of copulas 52900 10.1237 | 0.1237F | 0.0977~ | 0.1576T 1.2657 T
(Archimedean Sz9 105317 [ 0.0911 | 0.1864~ | 0.2074 0.4880
copulas) S0 105575 [ 0.1169~ | 0.1175~ | 0.1657 0.9943~

2900105701 [ 0.1295~ | 0.0647 | 0.1448~ 2.0022 ~

S20 1 0.4352 | -0.0054" | 0.19487 | 0.1948~ 0.0277+

SE0010.4495 | 0.0089" | 0.1312 | 0.1314~ 0.0548 *

S0 1°0.4554 | 0.0148 | 0.0792 | 0.0805~ 0.1818"

Table 1: Various statistical results for the TDC estimation under a specific copula as-
sumption or within a class of distributions or copulas. Best values of the different methods
(including the nonparametric methods in Table 2) are ticked with a plus, worst values are
ticked with a minus.
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Method Data set | i(Ay) | BIAS(Ay) | 6(Av) | RMSE(\y) | MESE(\y)
Nonparametric || S7° | 0.3553 | 0.3553 | 0.0444T |  0.3580 8.0008~
estimator S} 10.3558 | 0.3558~ | 0.0229% | 0.3566 15.5400~
AGFG 52900 10.3568 | 0.3568~ | 0.0104% | 0.3570~ 34.3123~
5250 10.4462 | 0.0056 | 0.0471 0.0474 0.1133
S0 1 0.4509 | 0.0103 | 0.0234 0.0256 0.4437
S3900 10.4511 | 0.0105 | 0.0107 0.0150 0.9825
SZ20 10.3922 | -0.0484 | 0.0450 | 0.0661" 1.0759
SF0010.3939 | -0.0467 | 0.0216 | 0.0514" 2.1593
S0 10.3936 | -0.0470 | 0.0099 0.0480 4.7443
S0 104377 | -0.0029 | 0.0480" | 0.04817" 0.0648"
S0 10.4400 | -0.0006 | 0.0243%7 | 0.0243" 0.0247+
SO0 10.4406 | 0.0000" | 0.0107F | 0.0107" 0.0000"
Nonparametric || S%° ]0.3636 | 0.3636~ | 0.1016 | 0.3775~ 3.5787"
estimator SO0 10.3056 | 0.3056 0.0717 0.3139 4.2622
AEC S2000°1°0.2390 | 0.2390 | 0.0932 | 0.2565~ 2.5644
5720104681 | 0.0275 | 0.0800 0.0845 0.3436
Sp900 - 10.4587 | 0.0181 | 0.0513 0.0545 0.3534
S00010.4463 | 0.0057 | 0.0431 0.0435 0.1322
5250 104841 | 0.0435 | 0.0796 0.0907 0.5467
SE00 - 10.4650 | 0.0244 | 0.0482 0.0541 0.5062
S200010.4453 | 0.0047T | 0.0603 0.0605 0.0775"
520 1 0.5042 | 0.0636~ | 0.0810~ | 0.1029~ 0.7835~
SIPY 104763 | 0.0357~ | 0.05237 | 0.0633~ 0.6818~
S50 1 0.4567 | 0.0161~ | 0.0340~ | 0.0376 0.4722
Nonparametric || SH° [ 0.3144 | 0.3144 | 0.0828 0.3251 3.7968
estimator SI900- 10.2803 | 0.2893 | 0.0539 0.2943 5.3677
ALOG 52900 10,2567 | 0.2567 | 0.0377 0.2595 6.8103
5250 10.3951 | -0.0455~ | 0.0727 0.0857 0.6242~
S0 1°0.4132 | -0.0274 | 0.0491 0.0562 0.5569
57900 1°0.4240 | -0.0166 | 0.0352 0.0389 0.4704
5220 1 0.4016 | -0.0390" | 0.0719 0.0818 0.5426
S0 10.4098 | -0.0308 | 0.0448 0.0544 0.6850
S0 10.4229 | -0.0177 | 0.0233 0.0293 0.7624
520 1 0.4424 | 0.0018% | 0.0696 0.0696 0.0259
SI0010.4403 | -0.0003% | 0.0386 0.0386 0.0078
S50 ] 0.4412 | 0.0006 | 0.0200 0.0200 0.0030

Table 2: Statistical results for the methods of nonparametric TDC estimation. Best values
of the different methods (including the parametric methods in Table 1) are ticked with a
plus, worst are ticked with a minus.
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4.5 Discussion of the simulation results

We discuss the simulation results with regard to the following statistical measures: sample
variance, sample bias, RMSE, and MESE.

Sample variance. The TDC estimations within the class of elliptically contoured dis-
tributions and for specific copulas show the lowest sample variances among all considered
methods of TDC estimation. Of course, the small variances go along with restrictive model
assumptions. Nevertheless the estimation within the class of elliptically contoured distri-
butions has a surprisingly low variance, even though the tail index « is estimated from
few extremal data. Further, a comparably small variance is obtained for the estimator
ACFG which is based on the weaker assumption of an EV copula. By contrast, the sample
variances of ASEC and AMOC are much larger. In particular the TDC estimation within the
class of Archimedean copulas, as described in Section 3.4, shows an exceptionally large
variance. However, note that the latter three estimation methods utilize only sub-samples
of extremal (excess) data. Besides, there is another explanation for the large variance of
the last estimation method: Here, the TDC is estimated (in a second step) from a copula
which is fitted from extremal (excess) data.

We conclude that an effective variance reduction of the TDC estimation is possible for
those estimation methods which use the entire data sample.

Sample bias. It is not surprising that the estimation methods with distributional assump-
tion have a quite low sample bias if the underlying distribution is true. See, for example,
the bias related to St for TDC estimations within the class of elliptical distributions or for
specific copulas; see also Sg for the estimation within the class of Archimedean copulas.
By contrast, the estimation with regard to the sample bias performs badly if we assume an
inappropriate distribution, as can be seen for the data set S under the estimation using
a specific copula; see Section 3.3 and the data set Sp under the estimation within the class
of Archimedean copulas. It is, however, surprising that the TDC estimation from Sy
(recall that H is an elliptical distribution) shows a larger sample bias for the estimation
within the class of elliptical distributions than for the estimation with a specific copula
or within the class of Archimedean copulas. We point out that the largest sample bias is
observed for the nonparametric estimation methods. Further, all estimation methods, in
particular S\CFG, yield a large MESE value (which indicates a large sample bias relative
to the sample variance) for the data set Sy which exhibits tail independence. In most
cases, the MESE is greater than 2, which means that the true TDC value is not included
in the 20 confidence interval. Moreover, this illustrates that the sole consideration of the
sample variance may lead to the fallacy of an exceptionally large TDC, even in the case of
tail independence. Thus it is absolutely necessary to test for tail dependence in the first
instance; see Ledford and Tawn (1996), Draisma et al. (2004) or Falk and Michel (2004).

RMSE. The TDC estimation using a specific copula represents the smallest RMSE if the
underling copula is true, as applies, e.g., to the data set St. The second best RMSE for
the latter data set comes from the estimation within the class of elliptically contoured
distributions. This estimation goes along with a larger variance, due to the estimation of
the tail index . It is remarkable that the nonparametric estimator A (which assumes
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an EV copula) possesses an RMSE in the same range as the two aforementioned estimation
methods for the data sets St, Sg, and Sag. By contrast, the estimators ASEC and A\LOG
have a much larger RMSE. The TDC estimation based on the class of Archimedean copulas
as described in Section 3.4 yields by far the largest RMSE even for the (Archimedean)
data set Sg. Further, the estimation using a specific copula has a similar RMSE under the
wrong model assumption (see Sg) due to its low variance. An RMSE in the same range is
found for the nonparametric estimators ASEC and ALOG | This also suggest a consideration
of the following statistical measure.

MESE. The MESE detects all misspecified models such as Sg under the estimation using
a specific (Gumbel) copula, or Sy under the estimation within the class of Archimedean
copulas. However, if the underlying model is true, then the MESE is quite low (e.g.,
estimation within a class of copulas or distributions for the data set St). In this case and
for all nonparametric estimations, the MESE is usually smaller than 1, which indicates
that the true TDC lies within the 1o confidence band. Only the data set Sy represents an
exception. Especially the estimator ACFG ghows an exceptionally bad performance, which
is due to its small variance. Thus, the sample variance has to be considered with caution
for the latter estimator.

There exists an interesting aspect regarding the estimator MSEC Due to its geometric
interpretation as the slope of the secant along the copula’s diagonal (at the point (1, 1)),
the latter estimator reacts sensitively if the extremal data are not accumulated along the
diagonal. Such is the case, e.g., for the data set S4g and might also explain the bad
performance of ASEC regarding the latter data set.

5 Conclusions

On the basis of the results of our simulation study, we have ranked the various TDC esti-
mators according to their finite-sample performance. Table 3 illustrates the corresponding
rankings in terms of numbers between 1 (very good performance) and 6 (very poor perfor-
mance). Thereby we distinguish between a true and a wrong assumption of the underlying
distribution. Moreover, we rank the estimators according to their performance under the
assumption of tail independence. The second column of Table 3 indicates the heaviness of
the model assumptions required for each TDC estimator.

Clearly the (semi-)parametric TDC estimators perform well if the underlying distribu-
tion/copula is the right one (except the TDC estimator within a class of copulas as de-
scribed in Section 3.4). However, their performance is very poor if the assumed model
is wrong. Thus, we definitely recommend to test any distributional assumptions. For
instance, in the case of empirical marginal distributions and specific copula, we suggest
to test the goodness-of-fit of the copula via (non-)parametric procedures such as those
developed in Fermanian (2003), Chen et al. (2003), Dobri¢ and Schmid (2004) or Genest
et al. (2006). Further, if one makes use of an elliptically contoured distribution, then we
suggest to test for ellipticity; see, e.g., Manzotti et al. (2002). However, we do not recom-
mend a TDC estimation as presented in Section 3.4, since we do not know a suitable test
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TDC estimation degree of | perform. under | perform. under | perform. under
methods assumptions | true assumpt. | wrong assumpt. TDC =0
specific copula strong 1 6 1-2
distr. class strong 2-3 —*) 3
copula class medium 4-5 5 1-2
P weak 2-3 2-3 6
ASEC weak 4 4 5
ALOG weak 3 3 )

Table 3: Overview of the performance of the TDC estimation methods. Grades rank
from 1 to 6 with 1 excellent and 6 poor. *) This TDC estimation method (via elliptical
distributions) is disregarded due to the obvious asymmetry of the data arising from the
wrong distributional assumption.

for Archimedean copulas and the estimator does not perform well if the assumption of
an Archimedean copula is wrong. Goodness-of-fit tests within the family of Archimedean
copulas are developed, e.g., in Wang and Wells (2000) or Genest et al. (2006).

Among the nonparametric estimators, the TDC estimator ACFG (oes well, although we
advise caution regarding the sometimes low variance relative to bias. Further, ACFC shows
a weak performance in the case of tail independence. This estimator is followed by ALOG
and ASEC whereas the last estimator is not robust for non-transpositional symmetric data.
Further, the variance of A could be possibly reduced by enlarging the estimation kernel
(see Section 4.4).

We conclude that, among the nonparametric TDC estimators, ACFG ghows the best per-
formance whereas for (semi-)parametric estimations we recommend a specific copula (such
as the t-copula). For the latter, we suggest to work with empirical marginal distributions.
Further, we point out that the decision for a specific distribution or class of distributions
should be influenced by the visual appearance of the data, e.g., via the related scatter
plots. Unfortunately, if the number of data is small (such as 250 points), it is difficult
to draw sensible conclusions from the scatter plot. Moreover, the nonparametric estima-
tors are too sensitive in case of small sample sizes. Thus, under these circumstances, a
parametric TDC estimation might be favorable in order to increase the stability of the
estimation although the model error could be large.

The previous simulation is based on a limited number of distributions, although we tried
to incorporate a large spectrum of possible distributions. Nevertheless, according to the
pitfalls in Section 3.6 and the statistical results for the tail independent data set H, we see
that tests for tail dependence are absolutely mandatory for every TDC estimation. Un-
fortunately, the current literature on this kind of test is only limited; see Coles, Heffernan,
and Tawn (1999), Draisma et al. (2004), or Falk and Michel (2004).
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Figure 1: Sample means of upper TDC estimates for various thresholds &k using estimator (7) for 1000 samples of a bivariate
t-distribution with 1.5 degrees of freedom and correlation parameter p = 0.5. The black solid line represents the case of 1000
block maxima (£ original data set) and the gray solid line corresponds to 100 block maxima. The related empirical 95%
confidence intervals are indicated by the dashed lines. The true value of the TDC is marked by the solid straight line.
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Figure 2: Scatterplots of 2000 simulated data with standard normal margins and copula
Cna (upper left) and Gumbel copula Cgy (upper right), respectively. The lower plots
show the corresponding TDC estimates ;\%OG for different choices of k. The horizontal
lines indicate the true TDCs.
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Figure 3: Comparison of empirical copula densities obtained via empirical marginal dis-
tributions (left panel) and via fitted normal marginal distributions (right panel). The
marginal transformations in the right panel are misspecified.
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Figure 4: Scatter plots of simulated distributions and corresponding empirical copula
realizations.
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