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control the risk arising from violations of the constraints. This risk is measured
by set-valued risk measures, which extend the usual univariate coherent distortion
(= spectral) risk measures to the multivariate case. To obtain a robust solution
in d variables, the linear goal function is optimized under the restrictions hold-
ing uniformly for all parameters in a d-variate uncertainty set. This set is built
from uncertainty sets of the single constraints, each of which is a weighted-mean
trimmed region in Rd and can be efficiently calculated. Furthermore, a possible
substitution of violations between different constraints is investigated by means of
the admissable set of the multivariate risk measure. In the case of no substitution,
we give an exact geometric algorithm, which possesses a worst-case polynomial
complexity. We extend the algorithm to the general substitutability case, that is,
to robust polyhedral optimization. The consistency of the approach is shown for
generally distributed parameters. Finally, an application of the model to super-
vised machine learning is discussed.
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1 Introduction

1.1 The robust model

In the last decade, much progress has been made in the field of robust linear opti-
mization, that is, in finding worst-case solutions under uncertain side conditions.
A wide spectrum of models and methods has been proposed. Recent developments
in theory and practice are reviewed by Gabrel et al (2014). For a systematized
collection of most significant ones, the reader is referred to Bertsimas et al (2011).
An important part of the literature uses risk measures to quantify the uncertainty
of violations of side conditions; see, e.g., Mosler and Bazovkin (2014), Bertsimas
and Brown (2009), and Natarajan et al (2009). Such risk measures are flexible and
allow an immediate interpretation. They can be properly selected and tuned to
control the relevant sources of uncertainty. Then, essentially, the goal function is
optimized under the restriction that the risk of violation stays within acceptable
bounds.

The present paper contributes to this strand. We generalize the approach of
Mosler and Bazovkin (2014), where a single-constraint optimization was solved, to
much more general restrictions. In doing this, for each linear restriction of a given
linear program a so-called uncertainty set of parameters is constructed. It consists
of all possible values of the unknown coefficients that are acceptable at a specified
risk level of constraint violation. We employ multivariate coherent distortion risk
measures, which are extensions of the usual univariate coherent distortion risk
measures: The uncertainty sets of these measures are convex bodies and come out
to coincide with weighted-mean (WM) trimmed regions. WM regions, as recently
developed by Dyckerhoff and Mosler (2011), describe a multivariate distribution
by regions of different depth (= centrality). They can be exactly calculated in any
dimension; see Bazovkin and Mosler (2012).

Various other notions of uncertainty sets have been proposed in the recent lit-
erature; a review in the context of portfolio optimization is given in Fabozzi et al
(2010). These approaches define uncertainty sets like confidence sets, describing
the uncertainty in parameters of parametric distributional assumptions (e.g. De-
lage and Ye (2010)), or by special functionals (e.g. ϕ-divergences in Ben-Tal et al
(2013)). In our approach we avoid such assumptions and represent the uncertainty
of constraint violations in a purely nonparametric way, viz. by depth-based central
regions. To obtain a numerical solution of a given optimization problem, we pro-
pose an algorithm that employs the well developed geometric machinery of central
regions calculation.

Originally, we consider the following linear program,

c′x −→ min s.t. Ãx ≥ b̃ , (1)

and assume that Ã is an m× d matrix having stochastic entries and that b̃ ∈ Rm
may be stochastic, too. From now on, we will mark random variables with a tilde:
For example, b̃ will denote the stochastic right-hand side vector, while b is used
for a deterministic value of it.

The linear program (1) is called a stochastic linear optimization problem, or
stochastic linear program (SLP). Of course, whether the stochastic side condition
is satisfied or not for some x, depends on the realizations of Ã and b̃. Thus an
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optimal solution to (1) becomes a random vector itself. One possibility to cope
with this randomness is to quantify the degree of violation of the side condition
by some risk measure and to substitute the condition by a bound on the measure.

Risk measures are widely used in financial mathematics, where they assess the
ex-ante risk of a financial position. The uncertain position is generally modeled
by a random vector Y. A univariate risk measure basically provides the value c of
a monetary deposit that, being added to the given uncertain position Y, cancels
its risk. The latter means that the location of the distribution of Y + c satisfies
certain requirements that are set by, say, a regulator. Similarly, an m-variate risk
measure maps anm-variate random vector to a deterministicm-vector of monetary
deposits.

For example, if Y is univariate, the regulator may require that some α-quantile
QY (α) of Y be non-negative. If we add the constant −QY (α) to Y, which can
be interpreted as an insurance deposit to the distribution, we make the condition
hold. In other words, only the worst α · 100% of outcomes of the insured posi-
tion are expected to be negative. This risk measure is called the value-at-risk at
α (V@Rα) and widely used in finance. Actually, many risk measures have been
proposed and investigated in the literature, each controlling a particular aspect of
the outcome distribution. Another popular univariate risk measure is the expected
shortfall. Others are the expected minimum and the entropic risk measure. These
measures easily transfer from financial losses to losses incurred by violating the
side conditions of a general stochastic program.

In what follows, the stochastic side condition in (1) is handled by means of risk
constraints,

ρm(Ãx− b) ≤ 0 , resp. (2)

ρ1(Ãjx− bj) ≤ 0 , j = 1 . . .m , (3)

where Ãj denotes the j-th row of Ã, and ρm is a risk measure taking values in
Rm, m ≥ 1. An SLP that minimizes c′x subject to the restrictions (2) or (3) is
called a risk-constrained stochastic linear program.

Alternatively, in place of a risk constraint, the probability of satisfying all
restrictions may be controlled by a joint chance constraint,

Prob[Ãx− b ≥ 0] ≥ 1− α . (4)

Limiting the violation probability by some fixed α the well-known chance-constrained
linear program is obtained. Sometimes, neglecting eventual stochastic dependen-
cies among the constraints, separate chance constraints,

Prob[Ãjx− bj ≥ 0] ≥ 1− αj , j = 1 . . .m , (5)

are considered. Here, a chance constraint limits the risk of each single side condition
by imposing a maximum probability αj on its violation.

Obviously, when using the constraints (2) or (3), the choice of the risk mea-
sure is a crucial point. In this paper we consider no single risk measure but a
comprehensive class of such measures, the coherent distortion risk measures.
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Definition 1 (Coherent distortion risk measure) Let r : [0, 1] → [0, 1] be a
given function that is increasing and concave with r(0) = 0 and r(1) = 1. For any
univariate random variable Y define

ρ(Y ) = −
∫ 1

0

QY (t)dr(t) , (6)

provided the integral exists. Here again, QY denotes the quantile function of Y .
Then ρ is mentioned as a coherent distortion risk measure, and r as its weight
generating function.

If Y has an empirical distribution on the ordered values y(1), y(2), . . . , y(n), this
definition becomes

ρ(Y ) = −
n∑
i=1

wi y(i) , (7)

with weights wi = r
(
i
n

)
− r

(
i−1
n

)
* decreasing in i. Coherent distortion risk1 Weights

measures possess certain desired properties: monotonicity, translation invariance,
law invariance, positive homogeneity and subadditivity. The last two properties
imply a most important postulate of risk measurement: coherence, that means
that the risk measure decreases with diversification. An example of a coherent
distortion risk measure is the expected shortfall, which is defined by choosing

r(t) =

{
t/α if 0 ≤ t < α ,
1 if α ≤ t ≤ 1 .

(8)

Note that the value-at-risk V@Rα satisfies (6) with r(t) = 0 for t < α and
r(t) = 1 otherwise, which is no concave function. The V@Rα is an example of a
non-coherent distortion risk measure.

In a more general context, a risk measure can be regarded as a quality measure
(cf. Kall and Mayer (2010)). Our choice of the quality measure, besides its gen-
erality, possesses a clear interpretation and always generates a convex program.
Later we will demonstrate that our approach in fact suites an even more general
robust program that not only copes with linear stochastic restrictions, but also
with those of a robust polyhedral type, which include robust conic restrictions as
a special case.

In applications, information about the stochastic parameters has to be ex-
tracted from data. Here we assume that a sample of coefficient matrices A1, . . . ,An ∈
Rm×d has been observed and the solution of the SLP is based on this data. The
data is mentioned as an empirical distribution giving equal mass 1

n to A1, . . . ,An,
and with this data the SLP is named an empirical risk-constrained SLP. Similarly,
when also the right hand side is stochastic, a joint sample of (Ã, b̃) is considered.

The next subsection outlines the single-constraint algorithm of Mosler and
Bazovkin (2014) and provides preliminaries for its extension.

1.2 The single-constraint problem

In case of a single stochastic constraint (m = 1) the SLP (1) specializes to

c′x −→ min s.t. ãx ≥ b , (9)
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where ã is a random vector of parameters in Rd. To solve (9), an uncertainty set
U is constructed that yields a robust linear program:

c′x −→ min s.t. a′x ≥ b for all a ∈ U . (10)

The uncertainty set U consists of all parameters that are taken into account by the
decision maker to make his or her risk acceptable. It was found that the solution
of (10) corresponds to a parameter a that lies on the surface of U .

To transform (9) into (10) we have to construct the uncertainty set U , de-
pending on the data and the risk measure. For a distortion risk measure ρ on an
empirical distribution it turns out that the single restriction (3) can be equiva-
lently formulated as the restriction in (10) with U being a so-called weighted-mean
region whose weights depend on ρ.

For an empirical distribution on a1, . . . ,an ∈ Rd, a WM region is a polytope
in Rd and defined as

Dwα(a1, . . . ,an) = conv


n∑
j=1

wα,ja
π(j) : π permutation of {1, . . . , n}

 . (11)

Here wα = [wα,1, . . . , wα,n]′ is a vector of ordered non-negative weights that add
up to 1. Additionally, for all k = 1, . . . , n, the sum

∑k
j=1 wα,j has to increase

with α. Any such family of weight vectors {wα}0≤α≤1 defines a notion of WM
regions. There are many notions of weighted-mean trimmed regions, among them
well-known families like the zonoid regions and the expected convex hull regions.
For example, the zonoid regions are given by

wα,j =


1
nα if j > n− bnαc,

nα−bnαc
nα if j = n− bnαc,
0 if j < n− bnαc,

0 ≤ α ≤ 1. For details on WM regions and their extension to general probability
measures, see Dyckerhoff and Mosler (2011) and Dyckerhoff and Mosler (2012).
The connection between univariate coherent distortion risk measures and WM
regions is established in the following Proposition:

Proposition 1 (Mosler and Bazovkin (2014)) Let ρ be a univariate coherent
distortion risk measure and let the random vector ã have an empirical distribution
on a1, . . . ,an ∈ Rd. Then there exists a weight vector wα such that Dwα is a WM
region and it holds

{x ∈ Rd | ρ(ã′x− b) ≤ 0} (12)

= {x ∈ Rd |a′x ≥ b ∀a ∈ Dwα(a1, . . . ,an)}. (13)

Specifically, this Proposition states that the class of univariate restrictions (3)
involving coherent distortion risk measures corresponds to weighted-mean trimmed
regions in Rd as uncertainty sets. Calculating U turns out to be computationally
feasible due to the direct connection between the uncertainty set and a trimmed
region, which can be efficiently determined by the algorithm of Bazovkin and
Mosler (2012).
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According to (7), the risk measure ρ defines the vector wα uniquely* and, by 2 RM and weights corre-

spondencethis, the trimmed region Dwα . For instance, for the expected shortfall at level α
we generate the the following weights by the formula (8):

wj =


1
nα if j < dnαe,

nα−bnαc
nα if j = dnαe,
0 if j > dnαe,

and see that the obtained weight vector is equivalent, up to the transposition of
components, to the one defining the zonoid regions. Obviously, knowing n and
the parameter α we can calculate wα in advance* and use it as an input for the3 Precalculated weights -

for the algorithm algorithm.
The further steps of the algorithm of Mosler and Bazovkin (2014) are essentially

standing on the search for an intersection of a ray (in the direction of c) with the
uncertainty set U = Dwα . The solution is characterized by the normal to the facet
of U that is intersected by the line in direction of the vector c.

The goal of this paper is to develop a similar approach to (2) and more general
SLPs. Specifically, we

1. generalize the analysis of the single-constraint SLP to multiple risk constraints
(m ≥ 2);

2. construct a geometric algorithm to solve the multi-constraint problem (if con-
straints cannot be compensated by each other, i.e. in the unsubstitutability
case, the algorithm operates in the same dimension d as the single-constraint
procedure does);

3. extend the robust multi-constraint linear optimization to robust polyhedral op-
timization (which covers the substitutability case);

4. estimate the uncertainty set and the robust solution consistently.

The further material is organized as follows. The construction of the solution
for the multi-constraint SLP is described in Section 2. The formal algorithm is
given in the subsequent Section 3. In the same Section the algorithm is extended
to a program with stochastic right-hand side. The consistency of the solution for
generally distributed data is proven in Subsection 3.5. Finally, Section 4 is devoted
to a discussion of the algorithm and an application to supervised learning.

2 Multiple constraints

2.1 A general model

Consider the SLP (1) with m ≥ 2 constraints and deterministic right-hand side
b. We aim at generalizing Proposition 1 and eliminating uncertainty by a robust
linear program as follows:

c′x −→ min s.t. Ax ≥ b for all A : δ(A) ∈ U , (14)

where δ(A) = (A1, ...,Am)′ ∈ Rm·d is the vectorized matrix A.
Again, a proper uncertainty set U has to be constructed. In doing so, we specify

a risk measure that is no single vector but a whole set of such vectors in Rm. Such
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a set-valued risk measure is interpreted as the set of deterministic vectors in Rm
which, when being added to the random variable Ãx−b, cannot completely shift
its α-central region1 out of the negative orthant Rd−. In other words, which cannot,
at the given acceptance level, guarantee to avoid a strictly negative outcome of
the shifted random variable.

Cascos and Molchanov (2007) have shown that certain multivariate risk mea-
sures correspond to trimmed regions of the considered distribution. In particular,
the m-variate set-valued analogue µm of a spectral risk measure is defined through
a WM region Dwα in the following way:

µm(Ãx− b) = −
(
Dwα(Ãx− b)⊕ Rm+

)
⊂ Rm, (15)

where ⊕ denotes the Minkowski sum.

We should mention that spectral risk measures are equivalent to coherent dis-
tortion risk measures. It is easy to see, that in dimension one µ1(ã′x − b) is the
half-line bounded above by ρ1(ã′x− b), where ρ1 is a coherent distortion measure
of a univariate risk. Thus, (15) can be regarded as a set-valued extension of a
univariate distortion risk measure to multiple dimensions2. In this paper, we use µ
for denoting set-valued, and ρ for denoting vector-valued or real-valued measures.

If a linear program (1) has more than one stochastic constraints, we must
consider not only that some or all of them may be violated, but also that the
degree of violation of a restriction may be offset against that of another restriction.
That is, the decision maker, in evaluating a possible solution, may compensate the
missing strictness of one constraint by the fact that another constraint or a group
of constraints is more strictly satisfied. In this, the values of single constraint
satisfaction are regarded as substitutable by the decision maker, and his or her
task in selecting a solution includes some kind of diversification regarding the
constraints. Note that this possible value compensation between the constraints
has nothing to do with a potential stochastic dependency among the parameters
of different constraints.

To include the possibility of value substitution in our model, we introduce a
multivariate utility (= negative loss) function u : Rm → R that evaluates the
violations v1, . . . , vm of the m constraints. Consider F = {v : u(v) ≥ 0} as the
set of admissable violations. If u is a quasiconcave function, F is convex. Later we
will specialize F to be a convex polyhedron, see (17). The marginals may or may
not substitute each other. This fact actually affects the form of F .

1 An α-central region is a set of possible outcome vectors that are taken into reasonable
account by the decision maker (dependent on his or her risk posture α).

2 Rüschendorf (2013) proposes a different notion of a multivariate distortion risk measure,
which is scalar-valued: Given a d-variate distribution having p.d.f. F , he considers the level
set Q(t) of F at level t and defines some scalar measure of Q(t) as the t-quantile. Then, based
on these scalar-valued quantiles, he introduces multivariate risk measures in the same way as
univariate ones.
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Fig. 1 Illustration of the measure µm on a plane.

Using F , we rewrite the joint risk constraint (2) as follows3:

−µm(Ãx− b) ⊂ F . (16)

The above is illustrated on Figure 1 in a simplified representation. There the
orange dotted trimmed region Dwα(Ãx − b) augmented by the Minkowski sum
with Rm+ (the red dashed lines) forms the set −µm(Ãx−b), which, in turn, should
be contained in the green set F .

Generally, the set µm(Ãx − b) is contained in the set of all violation vectors
v ∈ Rm that are admitted. If substitution between constraints is possible, the
level of substitutability may vary from full substitutability to unsubstitutability. It
is easy to show, that the first extremal case leads to an equivalent single-constraint
SLP.

Full substitutability means that u is additive, u(v) =
∑
j uj(vj), and marginal

utilities uj are linear. In this case we obtain

Fsub = {v : u(v) =
∑
j

uj(vj) =
∑
j

kj · vj = k′v ≥ 0}

with some k ≥ 0. This reduces to a problem with a single constraint (k′Ã)x ≥ k′b.
Here the admissable set Fsub is a halfspace bordered by the hyperplane passing
the origin and having normal k. In the second extreme case (unsubstitutability)
the admissable set is the positive orthant, Funsub = Rm+ . Solving the SLP in

3 Here, F coincides with the admissable set of the vector-valued multivariate risk measure ν
described in Bazovkin (2014). This measure consists in the smallest vector which, when being
added to the random returns vector Y, puts −µm (Y + ν(Y)) into the admissable set. The
latter is the set of returns which appear to be acceptable to the risk taker (or the regulator).
In this model, we obtain (16) with only µm and F being involved:

ν(Ãx− b) ≤ 0 ⇐⇒ −µm(Ãx− b) ⊂ F .
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this case will be the subject of Section 3. In the intermediate case of the partial
substitutability F is a set lying in Fsub and containing Funsub.

To sum up, for obtaining a general solution of the multi-constraint SLP we have
to consider different levels of substitutability among the violation of constraints. It
turns out that the general substitutability case can be reduced to unsubstitutabil-
ity via a special transformation of the model. In the next subsection we will define
the transformation and demonstrate this fact. After that, to manage the complete
task, we solve the SLP with unsubstitutability.

2.2 The general substitutability case

Now we consider the case that violations of constraints can be balanced against
each other. Let us assume that the set F of feasible violations is a convex polyhe-
dron being characterized by K linear inequalities,

F = {y ∈ Rm : p′ky ≥ dk, k = 1 . . .K } (17)

with some p1, . . . ,pK ∈ Rm+ and d1, . . . , dK ∈ R, that is, F is an upper convex poly-
tope. Obviously, this assumption includes the extreme cases of full substitutability
and unsubstitutability, and can be seen as an approximation for the intermediate
cases.

Proposition 2 Let ρ1(Z) denote the upper border of the halfline µ1(Z) ⊂ R.
Then it holds: −µm(Ãx− b) ⊂ F if and only if

ρ1(p′kÃx− p′kb) ≤ −dk , for all k = 1 . . .K . (18)

Proof. Let hmS denote the support function4. For any y ∈ −µm(Ãx− b) and
k = 1 . . .K we obtain:

p′ky ≥ min
z∈−µm(Ãx−b)

{p′k · z}

= hm−µm(Ãx−b)(−pk)

= h1p′k·µm(Ãx−b)(1) = h1µ1(p′kÃx−p′kb)(1)

= −ρ1(p′kÃx− p′kb) .

Consequently, we have y ∈ F if −ρ1(p′kÃx − p′kb) ≥ dk . Hence the “if” part of
the proposition is proved. On the other hand, there exists some y ∈ −µm(Ãx−b)
so that the first-line inequality is met with equality. Hence the “only if” part holds,
too. ut

Proposition 2 leads to the following Theorem, which for every general model
provides an equivalent unsubstitutability model:

Theorem 1 The SLP with the m-fold risk constraint (16) and F defined by (17)
is equivalent to an SLP with K unsubstitutable constraints

p′kÃx ≥ p′kb for k = 1 . . .K . (19)

4 The support function of a set S in Rm is defined as hmS (p) = sup{x′p : x ∈ S}, p ∈ Rm.
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Proof. According to Proposition 2, the SLP with joint risk constraint (16) is
equivalent to the SLP with constraints (18). On the other hand, an SLP with
constraints (19) produces the same risk constraints. ut

Theorem 1 enables us to determine a generalized uncertainty set in the multi-
constraint case. Notice * that we can discriminate between the K constraints by4 Different α’s!

choosing different distortion risk measures ρ1 for each of them. Keeping in mind
the one-to-one correspondence (7) between such a measure and a weight vector wα,
we may use a weight vector wαj for the j-th constraint. For example, it can be the
expected shortfall with proper α1, . . . , αK chosen for each constraint separately.
However, clearly, we are not limited to using only the expected shortfall for all
constraints.

Corollary 1 The uncertainty set U of the matrix Ã in an SLP with risk constraint
(16) and violations admissable set F (17) equals

U =
{

A : δ([p′kA]k=1...K) ∈ Xj=1..KDwαj
(p′jÃ)

}
. (20)

Proof. Here X denotes the K-fold Cartesian product of WM regions. Due to The-
orem 1, we can transform the general model into a model with unsubstitutability.
In this case single uncertainty sets will not affect each other. In turn, each single
uncertainty set is calculated as for the single-constraint SLP. ut

2.3 The equivalent unsubstitutability case

We see that U splits up into K parts, which can be calculated individually. It leads
to the following key representation theorem:

Theorem 2 The SLP (1) with admissable set F satisfying (17) and joint risk
constraint (16) is equivalent to the following problem:

c′x −→ min s.t. Ax ≥ b for all A ∈ U , (21)

where U is defined as in Corollary 1.

Proof. Follows from Theorem 1, Corollary 1 and Proposition 1. ut
Note that if all dk equal zero, we get the general risk-constrained robust conic

program. Besides this, again, note that unsubstitutability does not imply stochastic
independence of the constraints.

3 Unsubstitutable violations risks: The optimal solution

3.1 Generalizing the single-constraint approach

By Theorem 1 the general risk-constrained SLP is reduced to an SLP with unsub-
stitutable constraints. Therefore, it suffices to construct an algorithm for solving
the latter SLP. Moreover, Theorem 2 reformulates the stochastic constraints in
terms of an uncertainty set.

In this subsection we pursue the following idea: We want to reformulate our
problem in a way that makes it similar to the single-constraint case. In doing so,
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we first define a convolution set that will play the same role as the uncertainty
set in the single-constraint SLP algorithm. Then, we show how to construct an
equivalent to the optimization line. Having proved the equivalence of the elements,
we are able to formulate the generalization of the algorithm to the multi-constraint
case.

Let us write Xi for the feasible set generated by the constraint i, i = 1 . . .K,
and X for the common feasible set,

X =
K⋂
i=1

Xi. (22)

We aim at solving the SLP by a geometric procedure in the parameter space. For
each constraint, the parameter space has dimension d, while the uncertainty set
U lives in Rd·K . We will construct a set G ⊂ Rd such that X can be rewritten as
follows:

X = {x ∈ Rd : Ax ≥ b whenever δ(A) ∈ U} = {x ∈ Rd : a′x ≥ 1 ∀a ∈ G}. (23)

G is obtained by convolving the general uncertainty set U into Rd; we will call G
the parameter convolution set. U is then decomposed into the sets Ui, i = 1, . . . ,K,
that can be separately calculated. This dimension reducing construction is possible
as the constraints are not substitutable.

The proper way here is to represent G as an image of X in the parameter space.
According to (22), all Xi are combined in one space. Combining Ui in the parameter
space becomes possible if any parameter a contained by other uncertainty sets
corresponds to the same Xa = {x : a′x ≥ b} in each case. This condition holds if
the right-hand sides bi are the same for all constraints. If b > 0, we multiply all
sets Ui with 1

bi
and obtain b = 1, without changing the set of feasible solutions. If

b ≯ 0 we apply the transform (26), which is described in the next subsection.
G contains the union of 1

bi
Ui, i = 1 . . .K. Thus, according to (22) and similar

to Lemma 1 in Mosler and Bazovkin (2014):

X =
⋂
a∈G

Xa =
⋂

a∈ extG
Xa,

where extG denotes the set of extreme points of G, which for a convex body
corresponds to its set of vertices.

This proves that G has similar properties as the uncertainty set of the single-
constraint SLP. In particular, any convex combination of two points in G belongs
to G. We obtain:

G = conv

{
K⋃
i=1

1

bi
· Ui

}
. (24)

This transformation of X is familiar to polar duality (see, e.g., Grünbaum
(2003)). In our robust problem we need no explicit representation of X and profit
from the ready machinery of WM regions that allows the direct construction of G
in the parameter space.

The next step is constructing the optimization line, which is equivalent to the
single-constraint case and is the line passing through the origin in direction c.
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Fig. 2 Alternative to the simplex algorithm

Actually, ϕ is the locus of points that are dual to hyperplanes with the normal c.
However, combining the Ui in one parameter space requires individual transforms
of each constraint’s parameter spaces, thus resulting in different ϕi. Observe that

• ϕi ≡ s · ϕi for any s 6= 0,
• ϕi ≡ ϕ for all i.

Hence all lines ϕ coincide. Further, they are invariant to the affine transform
in (24). Therefore, the search of the optimum on G equals the search on U in the
single-constraint SLP.

In concluding this subsection, we turn to the deterministic case, where each Ui
degenerates to a one-point-set {ai}.5 The steps of our procedure stay the same but
allow some simplifications. For example, calculating G according to (24) reduces
to the simple quickhull routine.6

In many practical tasks one has to consider some additional deterministic con-
straints, in particular, those of nonnegativity type. In such a setting, a group of
trivial constraints xk ≥ 0, k ∈ J , is mapped to a finite cloud of points in the
parameter space without calculating the WM region. The latter implies that such
constraints do not significantly influence the algorithm’s computational complex-
ity.

5 Consequently we do not need to calculate WM regions (see Figure 2).
6 Thus, the above approach can be also employed as an alternative to the regular simplex

method.
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3.2 Relaxing the right-hand side

In this subsection we show that the model (1) of the SLP also covers the case of a
random coefficient vector b, denoted by b̃, as the restriction Ãx ≥ b̃ is equivalent
to [

Ã 1− b̃
] [x

1

]
≥ 1 , (25)

where 1 is a K-vector of ones. By this we obtain an SLP with deterministic right-
hand side equal to 1. Now the solution vector has d + 1 components, the last of
which is fixed to 1. Geometrically the solution is searched at the intersection of the
feasible set with the d-dimensional hyperplane {(x′, xd+1)′ ∈ Rd+1 : xd+1 = 1},
that is, the task is actually solved on a convex polytope of affine dimension d.

Formally speaking, we have to solve an SLP of the form (1) with an additional
equality constraint. For this we propose a similar geometrical approach. The idea
is to relax the equality to a regular inequality constraint, thus obtaining the SLP
in canonical form. The vector c is accordingly modified.

First, we replace c with the vector c̄ that equals the normal of the facet lying
on the hyperplane {(x′, 1)′ ∈ Rd+1}. By this, we get a non-unique solution, which
also contains the sought-for optimum x∗. Looking simultaneously to the parameter
space, we see an intersection of ϕ with G (which will be defined in the next section)
at the point (0, . . . 0, 1)′. To get rid of this non-uniqueness, we perform a small
rotation of c̄ towards x∗. The latter amounts to rotating c̄ towards (c′, 0)′, that
is, to some new vector cε = (1− ε)c̄ + ε · (c′, 0)′ with some 0 < ε < 1.

Proposition 3 Let b̃ be a stochastic vector of dimension K. Then (1) is equiva-
lent to the following model: There exists ε̄ > 0 such that

c′ε

[
x

xd+1

]
−→ min (26a)

s.t.

[
Ã 1− b̃
0′ 1

] [
x

xd+1

]
≥ 1 , (26b)

where cε=(1− ε)(0, . . . 0, 1)′ + ε · (c′, 0)′, 0 < ε < ε̄.

Proof. The constraints of (1) are equivalent to (25). Obviously, if xd+1 = 1
holds, (26b) is also equivalent to (25). To show that there exists such a small
ε > 0 that the last inequality in (26b) necessarily turns into an equality and, as a
consequence, (26b) transforms into (25), we first set ε to zero. The corresponding
program has a trivial non-unique solution, because the vector cε equals c̄, which
was shown above to pick a whole facet of the feasible set for a solution.

Some small rotation of cε shifts the solution to the border of this facet, however
remaining on it. This rotation is given by setting ε > 0, i.e. combining the initial
vector with the augmented vector c, namely (c′, 0)′. Both facts together guarantee
that xd+1 is fixed to 1 while optimizing (26) with cε. In this situation, (26b) reduces
to (25). Moreover, the objective function turns into εc′x + 1 − ε, which is, up to
a constant, equivalent to the objective of (1). This proves the equivalence of (26)
and (1). ut

Let us now imagine the procedure shown above in the parameter space (see
Figure 3). The additional UK+1 is just a point (0, . . . 0, 1)′. The virtual optimiza-
tion vector cε generates a line ϕε = ε · ϕ + (1 − ε) · {x : xj = 0, j = 1 . . . d},
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Fig. 3 Adding a dimension

that is, an equivalent affine combination of ϕ and an axis passing through the
point (0, . . . 0, 1)′. ϕε intersects necessarily the cone (part of the surface of G) hav-
ing (0, . . . 0, 1)′ as its apex. The respective facet of G determines the optimum x∗

similar to step (D.c.) of the algorithm in Subsection 3.3 below.

3.3 The algorithm

Prerequisites:
In solving the general robust polyhedral optimization problem with an arbitrary

F , we first modify our set of constraints and the vector b according to Theorem 1,
thus obtaining the K × d matrix Ã and the K-dimensional vector b.

Without loss of generality, the algorithm is applied to a minimization problem
with all constraints of the same type “≥”. If either b /∈ RK+ or b is stochastic,
the pretransformation of Proposition 3 should be applied first. In the sequel both
modifications (including that for stochastic right-hand side b̃) are assumed to be
done if necessary. Hence, we have to solve an SLP of form (26),

c′ε

[
x

xd+1

]
−→ min

s.t.

[
Ã 1− b̃
0′ 1

] [
x

xd+1

]
≥ 1 ,

with cε=(1 − ε)(0, . . . 0, 1)′ + ε · (c′, 0)′, 0 < ε < ε̄, where ε̄ is a small positive
constant.

Input:

– a vector c ∈ Rd of coefficients of the goal function,

– a combined sample from Ã and b̃ :
[ aji

1−bij

]
j=1...K

, i = 1, . . . , n,

– a distortion risk measure µK , given by a name or an explicit weight vector.

Output:

– A part of the convolution set G that includes the optimal solution,
– the optimal solution x∗.
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Steps:

A. Construct the individual uncertainty sets:
a. Determine, by the algorithm of Bazovkin and Mosler (2012), {Uj}j=1...K ,

i.e. the WM regions {Dwαj
}j=1...K of each random vector

[
ãj

1−b̃j

]
having

an empirical distribution on
[ aj1 ... ajn

1−b1j ... 1−bnj

]
, j = 1 . . .K.

b. Add the uncertainty set for the (K+1)-th deterministic constraint in (26b):
UK+1 = {(0′, 1)′}.

c. For each nonnegativity restriction xj ≥ 0, add d point-sets Nj = {(e′j , 1)′}
to the uncertainty sets, where ej is the j-th unit vector in Rd.

B. Calculate the convolution set G represented by its facets {(nj ; dj)}j∈G:
a. Take the representation of {Ui}i=1...K by their vertices and put them into

the same space after having rescaled them according to (24).
b. Calculate the convex hull of the set using the standard quickhull (Barber

et al, 1996) or some divide-and-conquer algorithm (Grünbaum, 2003).
C. Impose the optimization ordering on the space of parameters, creating the dual

representation of the optimization vector c. It is a line ϕ connecting the origin
(0′, 0)′ and the point

(
ε · c′, 1− ε

)′
, with a small ε > 0.

D. Search for a facet Hj∗ of G that is intersected by ϕ (see Figure 4). Its dual
defines the sought-for optimal solution x∗:

a. Define a set of facets Gsel to be analysed: This may be either G itself or its
part where the intersection is expected; Gsel = {(nj , dj) : j ∈ Jsel}.

b. Take some u = λc, λ ≥ 0, outside the augmented G. Find the j∗ =
arg max

j
{ dj
u′nj
}j∈Jsel .

c. x∗ = 1
dj∗
· nj∗ is the optimal solution.

d. If there is no intersection, the solution is at infinity.
e. If (0′, 1)′ ∈ G, there is no solution.

For efficient calculation of the intersection of ϕ with G we can apply an approx-
imative procedure which converges to the precise solution. The procedure finds a
facet of some scaled Ui that is closest from outside to the sought-for facet of G.
Obviously, if the facet is part of some uncertainty set, the obtained solution is
optimal.

3.4 Complexity

The complexity of the algorithm is firstly determined by the routine for the convex
hull. Before analyzing the general algorithm, we take a look at its deterministic
counterpart. In solving a deterministic LP we have to calculate the convex hull

of K + 1 points, which has a worst-case complexity of O(K logK + K[ d2 ]); see
Chazelle (1993). The naive linear search on the set of n facets has a complexity
of O(nd). Consequently, the worst-case complexity of our algorithm amounts to

O(d ·K[ d2 ]), which is polynomial. It is well known (e.g. Borgwardt (2001)) that no
variant of the simplex method exists that solves an LP with polynomial complex-
ity. Only ellipsoid and interior-point methods (using randomizations) can achieve
polynomial complexity.
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Fig. 4 Obtaining the solution using the convex hull computation routine.

For the general algorithm is is very natural to use ”divide and conquer” algo-
rithms, which construct the convex hull of the whole data out of convex hulls of
subsets of data. Such procedures have best complexities in dimensions 2 and 3,
namely O(n logn). For example, the standard quickhull algorithm has complexity
between O(n logn) and O(n2), depending on the input. However, to our knowl-
edge, such ”divide and conquer” algorithms are available in the literature only for
dimensions up to 5 (see, e.g., Buckley (1988)).

In fact, we need not calculate the whole convex hull, because we are interested
only in the normal to the hyperplane at the intersection (even the actual facet is
not interesting for us). That is why we can substantially reduce the complexity by
cutting off the region of the intersection by an ellipsoid or a cylinder having axis
ϕ. The worst-case complexity of the general algorithm is also polynomial, however
of a high power, which can cause difficulties for large-scale problems.

3.5 Robust SLP for generally distributed coefficients

In the previous sections we assumed the random parameters Ã and b̃ to follow
an empirical distribution based on observations {A1, . . . ,An} and {b1, . . . ,bn}.
Now we want to consider an SLP (1), where (Ã, b̃) follows a general probability
distribution P and realizations are randomly sampled from this distribution.

Actually, Mosler and Bazovkin (2014) have shown that the individual uncer-
tainty set Uj is a consistent estimator of its population counterpart. Convergence
is almost surely in the Hausdorff sense, which is based on the law of large num-
bers for weighted-mean regions (Dyckerhoff and Mosler (2012)). Here, our general
algorithm constructs Gn as the convex union of individual uncertainty sets, which,
obviously, also converges almost surely in the Hausdorff sense to G:
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Proposition 4 Gn converges to G almost surely in the Hausdorff sense.

Also the cutting point, where the line ϕ hits the convolution set G, is consis-
tently estimated by our algorithm. A potential complication lies in the fact that
the surface of G is, in general, not smooth. That is why the optimal solution x∗,
which, obviously, is defined by the tangent hyperplane at the cutting point can be
ambiguous. However, even in such situations, the algorithm automatically selects
a unique facet of G determining x∗.

4 Conclusion and an application to supervised learning

A new geometric algorithm is proposed for robust linear optimization under distor-
tion risk constraints. The algorithm constructs an uncertainty set in the parameter
space, which measures the risk arising from non-deterministic parameters in the
original linear constraints. The randomness may affect the coefficient matrix A
as well as the right hand side b. In our setting a multivariate coherent distortion
risk measure is applied to the joint distribution of the parameters. This results
in uncertainty sets for each single constraint, which are so called weighted-mean
trimmed regions. A multi-constraint uncertainty set then comes out as the convex
hull of the union of rescaled single-constraint uncertainty sets. It is determined by
calculating the relevant parts of weighted-mean trimmed regions, which is done by
the algorithm of Bazovkin and Mosler (2012). Note that the uncertainty set needs
not be determined from a sample; alternatively, it can be introduced explicitly by
the optimizer. In this case the algorithm starts with step C.

The algorithm can be applied to multi-constraint as well as single-constraint
problems. Also, as a special case, deterministic linear optimization problems are
solved by the algorithm. To cope with substitution in evaluating the violation of
different constraints, a variant of the model is introduced, which is mentioned as
robust polyhedral optimization.

At this point it is reasonable to compare the present framework with that of
chance-constrained problems. Such SLPs (5) with individual constraints are ex-
tremely critical to distributional assumptions: in most cases the program turns
out to be non-convex (see, e.g., Kall and Mayer (2010)) and computationally in-
tractable. Plausible results are recently obtained only for elliptically distributed
random coefficients. If we have a joint chance-constraint (4) the difficulty increases.
A straight-forward approach, which distributes the common violation probability
equally among the individual constraints, tends to give poor results, especially if
the constraints are stochastically dependent. An approximative solution based on
the Bonferroni inequality has been improved by Chen and Sim (2009) and Chen
et al (2010), who propose more efficient bounds for the individual probabilities of
constraint violation using results from order statistics. But altogether these ap-
proximative methods still lack strong interpretation and universality. In contrast,
our approach leads to a natural decomposition of (15), while remaining jointly con-
strained. Any stochastic dependency among parameters (and, thus, constraints) is
completely feasible.

A powerful flexibilization of our model consists in varying the α’s in (20), if,
for instance, we are using the expected shortfall* . This is practical, since some 5 Flexible alphas

constraints can be more tolerant to violations while others, on the contrary, are
rather strict or even exact (e.g., a non-negativity requirement).
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We conclude the investigation with an efficient application of our optimization
model and algorithm to classification problems. Our procedure can be applied to
supervised machine learning as a robust alternative to the support vector machine
(SVM). The basic problem is: Two classes of points are given in the Euclidean d-
space Q1 = {x1, . . . , xn1} and Q2 = {y1, . . . , yn2}. A rule has to be constructed by
which any new point x is classified to one of those classes Q1 and Q2. The classical
SVM of Vapnik (1998) determines a hyperplane that discriminates the two classes
linearly in a higher-dimensional space and serves as a separator for classifying
new points. Technically, this approach results in a convex quadratic program. To
tackle the problem in a robust way, mostly methods of replacing each point by
its neighbourhood are proposed in the literature; see e.g. Ben-Tal et al (2009). In
contrast, we consider no single points of the training classes as uncertain, but the
whole classes, and observe the points as a sample of the random variables defining
the classes. Besides having a better interpretation, we obviously can expect getting
less constraints. In fact, it turns out that the robust SVM can be represented as a
robust linear program with two risk constraints. To achieve these representation,
we start with the following linear program:

C → max
ω,C

s.t.

{
ω′xi + b ≥ C, xi ∈ Q1,

ω′yj + b ≤ −C, yj ∈ Q2.
(SVM1)

Generally, the solution of (SVM1) does not coincide with the solution of the usual
quadratic program. Like Vapnik’s SVM, (SVM1) produces a central separating
hyperplane that lies between the classes. However, it does not necessarily minimize
the Euclidean distances between support vectors, as the Euclidean distance is not
the only possible criterion here. Note that the Euclidean distance is not easily
interpreted when the data have been transformed into a higher-dimensional feature
space, as it is done by SVM.

To control the quality of our proposed solution, we rewrite the model (SVM1)
as a stochastic linear program:

0′ · y − 1 · z → min
y,z

s.t.

{
ã′1 · y − 1 · z ≥ −1,

(−ã2)′ · y − 1 · z ≥ 1 ,
(SVM2)

where ã1 ∼ Q1, ã2 ∼ Q2.

ã ∼ Q means that ã has an empirical distribution on the finite set Q. Following
our approach, we next remove the negative values in b = (−1 1)′. After applying
the transformation of Proposition 3, we get:

[0′ ε 1− ε] (y′ z yd+1)′ → min
y,z,yd+1

s.t.

 ã′1 −1 2
−ã′2 −1 0
0′ 0 1

 ·
 y

z
yd+1

 ≥ 1 , (SVM3)

where ã1 ∼ Q1, ã2 ∼ Q2.
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The origin 0 must not be situated between the classes, otherwise we may obtain
an infinite solution. We extend this application as follows: To control the width
of the margin we make b stochastic (instead of fixing it at (−1 1)′). The more
uncertain b, the wider is the margin of the separating hyperplane.

A soft margin is introduced as usual; see Vapnik (1998). However, in contrast to
the classical approach, the additional margin variable ξ appears to be particularly
natural in our stochastic linear program:

0′ · y − 1 · z +M · ξ → min
y,z,ξ

s.t.

{
ã′1 · y − 1 · z + ξ ≥ −1,

(−ã2)′ · y − 1 · z + ξ ≥ 1 ,
(SVM-soft)

where ã1 ∼ Q1, ã2 ∼ Q2.

Our soft-margin model has the advantage that, if we are unsure about the
proper class labels of the training points, we can introduce a random coefficient
for ξ that describes the level of certainty in labeling. It is also clear that we can
use the kernel trick here, because the inner product and the induced norm are
sufficient for all calculations in the algorithm.

Further, our robust optimization model and the new algorithm can be applied
in many other fields of operations research. In particular, it is well suited to formal-
ize problems in supply chain management, like the management of an inventory.
This will be the topic of future work.
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