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1 Introduction

Data analysis with generalized hyperbolic distributions has become quite popular in various
areas of theoretical and applied statistics. Originally, Barndorff-Nielsen (1977) utilized this class
of distributions to model grain size distributions of wind-blown sand (cf. also Barndorff-Nielsen
and Blæsild (1981) and Olbricht (1991)). In econometrical finance the latter family of distribu-
tions has been used for multidimensional asset-return modelling. In this context, the generalized
hyperbolic distribution replaces the Gaussian distribution, which is not able to describe the fat
tails and the (distributional) skewness of most financial asset-return data. References are Eber-
lein and Keller (1995), Prause (1999), Bauer (2000), Bingham and Kiesel (2001), and Eberlein
(2001).

Multivariate generalized hyperbolic distributions (in short: MGH distributions) were introduced
and investigated by Barndorff-Nielsen (1978) and Blæsild and Jensen (1981). These distributions
have attractive analytical and statistical properties whereas robust and fast parameter estima-
tion turns out to be difficult in higher dimensions. Furthermore, MGH distribution functions
possess no parameter constellation for which they are the product of their marginal distribution
functions. However, many applications require the multivariate distribution function to model
both: Marginal dependence and independence. Because of these and other shortcomings (see also
Section 4) we introduce and explore a new class of multivariate distributions, the so called mul-
tivariate affine generalized hyperbolic distributions (in short: MAGH distributions). This class
of distributions has an appealing stochastic representation and, in contrast to the MGH distri-
butions, the estimation and simulation algorithms are easier. Moreover, our simulation study
reveals that the goodness-of-fit of the MAGH distribution is comparable to that of the MGH
distribution. The one-dimensional marginals of an MAGH distribution are even more flexible
due to more flexibility in the parameter choice.

After a brief introduction of MGH and MAGH distributions in Sections 2 and 3, we start with
a discussion of advantages and disadvantages of both types of distributions in data modelling
and data analysis (see Section 4).

The analysis of the paper is divided into four different stages:

(1) Elaboration of statistical-mathematical properties of MGH and MAGH distributions (Sec-
tion 5),

(2) Computational procedures for the parameter estimation of MGH and MAGH distributions
(Section 6),

(3) Random number generation for MGH and MAGH distributions (Section 7),

(4) Simulation study and real data analysis (Sections 8 and 9).

The paper’s main contributions on each stage are as follows: At the first stage we concentrate on
the dependence structure of both distributions by utilizing the theory of copulae. In particular,
we show that the dependence structure of an MAGH distribution is very appealing for data
modelling. This is because the correlation matrix as an important dependence measure is more
intuitive and easier to handle for an MAGH distribution than for an MGH distribution. Further,
certain parameter constellations imply independent margins of the MAGH distribution whereas
the margins of an MGH distribution do not have this property. Moreover, in contrast to MGH
distributions, MAGH distributions can model dependencies of extreme events (so called tail
dependence) which is an important property for financial risk analysis. At the next stage we show
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that the parameters of the MAGH distribution can be estimated in a simple two-stage method.
This procedure reduces to the estimation of the covariance matrix and the parameters which
are related to the univariate marginal distributions. Thus, generally speaking, the estimation
simplifies to a one-dimensional estimation problem. In contrast, this type of estimation for MGH
distributions can only be perform within the subclass of elliptically contoured distributions.
The third stage establishes a fast and simple random-number generator which is based on the
well-known rejection algorithm. In particular, we provide the explicit algorithm, while avoiding
difficult minimization routines, which outperforms the known algorithms in the literature for
MGH distributions under particular parameter constellations. Finally, at the fourth stage we
present a detailed simulation study to illustrate the suitability of MAGH distributions for data
modelling. The Appendix contains various results and proofs which are mainly related to the
tail behavior of MGH and MAGH distributions.

2 Multivariate generalized hyperbolic model (MGH)

In the first place, a subclass of MGH distributions, namely the hyperbolic distributions, has
been introduced via so-called variance-mean mixtures of inverse Gaussian distributions. This
subclass suffers from not having hyperbolic distributed marginals, i.e., the subclass is not closed
with respect to passing to the marginal distributions. Therefore and because of other theoretical
aspects, Barndorff-Nielsen (1977) extended this class to the family of MGH distributions. Many
different parametric representations of MGH density functions are provided in the literature,
see e.g. Blæsild and Jensen (1981). The following density representation is appropriate in our
context.

Definition 1 (MGH distribution) An n-dimensional random vector X is said to have a mul-
tivariate generalized hyperbolic (MGH) distribution with location vector µ ∈ IRn and scaling
matrix Σ ∈ IRn×n if it has the stochastic representation X

d= A′Y + µ for some lower triangular
matrix A′ ∈ IRn×n such that A′A = Σ is positive-definite and Y has a density function of the
form (y ∈ IRn) :

fY (y) = c
Kλ−n/2(α

√
1 + y′y)

(1 + y′y)n/4−λ/2
eαβ′y, with c =

αn/2 (1− β′β)λ/2

(2π)n/2Kλ(α
√

1− β′β)
. (1)

Kν denotes the modified Bessel-function of the third kind with index ν (cf. Magnus, Oberhet-
tinger, and Soni (1966), pp. 65) and the parameter domain is ‖β‖2 < 1, α > 0 and λ ∈ IR (‖ ·‖2

denotes the Euclidian norm). The family of n-dimensional generalized hyperbolic distributions
is denoted by MGHn(µ,Σ, ω), where ω := (λ, α, β).

An important property of the above parameterization of the MGH density function is its invari-
ance under affine-linear transformations. For λ = (n+1)/2 we obtain the multivariate hyperbolic
density and for λ = −1/2 the multivariate normal inverse Gaussian density. Hence λ = 1 leads
to hyperbolically distributed one-dimensional margins. It can be shown that MGH distributions
with λ = 1 are closed with respect to passing to the marginal distributions and under affine-
linear transformations. The latter subclass turns out to be important for practical applications
(see also Section 8.1).

An MGH distribution belongs to the class of elliptically contoured distributions if and only if
β = (0, . . . , 0)′. In this case the density function of X can be represented as

fX(x) = |Σ|−1/2g((x− µ)′Σ−1(x− µ)), x ∈ IRn, (2)
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for some density generator function g : IR+ → IR+. Consequently, the random vector Y in
Definition 1 is spherically distributed. The density generator g in (2) is given by g(u) =
cKλ−n/2(α

√
1 + u)/(1 + u)n/4−λ/2, u ∈ IR, with some normalizing constant c. For a detailed

treatment of elliptically contoured distributions, see Fang, Kotz, and Ng (1990) or Cambanis,
Huang, and Simons (1981).

Remark. Usually the following representation of an MGH density is given in the literature:

f̄X(x) = c̄
Kλ̄−n/2(ᾱ

√
δ̄2 + (x− µ̄)′Σ̄−1(x− µ̄))

(
ᾱ−1

√
δ̄2 + (x− µ̄)′Σ̄−1(x− µ̄)

)n/2−λ̄
eβ̄′(x−µ̄), x ∈ IRn, (3)

with some normalizing constant c̄. The domain of variation 2 of the parameter vector ω̄ =
(λ̄, ᾱ, δ̄, β̄) is as follows: λ̄, ᾱ ∈ IR, β̄, µ̄ ∈ IRn, δ̄ ∈ IR+, β̄′Σ̄β̄ < ᾱ2 and Σ̄ ∈ IRn×n being a positive-
definite matrix with determinant |Σ̄| = 1. The one-to-one mapping between the parameter vector
ω corresponding to (1) and ω̄ corresponding to (3) is given by: λ = λ̄, µ = µ̄, α = ᾱδ̄, β =
1/ᾱ · Āβ̄, Ā′Ā = Σ̄, and Σ = δ̄2Σ̄.

3 Multivariate affine generalized hyperbolic model (MAGH)

A disadvantage of multivariate generalized hyperbolic distributions (and of many other families
of multivariate distributions) is that the margins Xi of X = (X1, . . . , Xn)′ are not mutually
independent for some choice of the scaling matrix Σ. In other words, they do not allow the
modelling of phenomena where random variables result as the sum of independent random
variables. This shortcoming is serious since the independence may be an undisputable property
of the problem for which the stochastic model is sought. Furthermore, in case of asymmetry (i.e.,
β 6= 0) the covariance matrix is in a complex relationship with the matrix Σ, which is shown in
the next section.

Therefore we propose an alternative concept. Instead of a multivariate generalized hyperbolic
distribution, a distribution is considered which is composed of n independent margins with uni-
variate generalized hyperbolic distributions with zero location and unit scaling. Such a canonical
random vector is then subject to an affine-linear transformation. As a consequence, the trans-
formation matrix can be modelled proportionally to the square root of the covariance-matrix
inverse even in the asymmetric case. This property holds, for example, for multivariate normal
distributions.

Definition 2 (MAGH distribution) An n-dimensional random vector X is said to be mul-
tivariate affine generalized hyperbolic (MAGH) distributed with location vector µ ∈ IRn and
scaling matrix Σ ∈ IRn×n if it has the following stochastic representation X

d= A′Y +µ for some
lower triangular matrix A ∈ IRn×n such that A′A = Σ is positive-definite and the random vector
Y = (Y1, . . . , Yn)′ consists of mutually independent random variables Yi ∈ MGH1(0, 1, ωi), i =
1, . . . , n. In particular the one-dimensional margins of Y are generalized hyperbolic distributed.
The family of n-dimensional affine generalized hyperbolic distributions is denoted by MAGHn(µ,Σ, ω),
where ω := (ω1, . . . , ωn) and ωi := (λi, αi, βi)′, i = 1, . . . , n.

2 This representation omits the limiting distributions obtained at the boundary of the parameter
space; see e.g. Blæsild and Jensen (1981)
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Observe that an MAGH distribution has independent margins if the scaling matrix Σ equals the
identity matrix I. However, no MAGH distribution belongs to the class of elliptically contoured
distributions for dimension n ≥ 2 which is illustrated by the density contour-plots in Figure 2.

Fig. 1. Contour-plots of the bivariate density function of an MGH2(0, I, ω) distribution with
parameters λ = 1, α = 1 and β = (0, 0)′ (left figure), β = (0.5, 0.25)′ (right figure)

Fig. 2. Contour-plots of the bivariate density function of an MAGH2(0, I, ω) distribution with
parameters λ = (1, 1)′, α = (1, 1)′ and β = (0, 0)′ (left figure), β = (0.5, 0.25)′ (right figure).

General affine transformations. The consideration of the lower triangular matrix A′ in the
stochastic representations of Definitions 1 and 2 is essential since any other decomposition of
the scaling matrix Σ would lead to a different class of distributions. This phenomenon and a
possible extension are discussed below.

Only the elliptically contoured subclass of the MGH distributions is invariant with respect to
different decompositions A′A = Σ. In particular, all decompositions of the scaling matrix Σ
lead to the same distribution since they enter the characteristic function via the form Σ = A′A.
Equation (2) also justifies the latter property. However, in the asymmetric or general affine
case this equivalence does not hold anymore. In this case, for example, the matrix A can be
sought via a singular value decomposition A = UWV ′, where W is a diagonal matrix having
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the square roots of eigenvalues of Σ = A′A on its diagonal and where the matrix V consists
of the corresponding eigenvectors of Σ. The matrices W and V are directly determined from
Σ whereas the matrix U might be some arbitrary matrix with orthonormal columns (rotation
and flip). However, the most common case, of course, is U = I. Here the matrix A is directly
computed from Σ utilizing its eigenvalues and eigenvectors. Consequently, every margin of Y is
distributed according to a linear combination of the margins of X determined by the principal
components (PC) (i.e., the eigenvectors) of the covariance matrix Σ: Y = A′−1X = W−1V ′X.

4 MGH versus MAGH: Advantages and disadvantages

In this section we list and compare some advantages and disadvantages of MGH distributions and
MAGH distributions. We start with the distributional flexibility to fit real data. An outstanding
property of MAGH distributions is that, after an affine-linear transformation, all one-dimensional
margins can be fitted separately via different generalized hyperbolic distributions. In contrast to
this, the one-dimensional margins of MGH distributions are not that flexible since the parameters
α and λ relate to the entire multivariate distribution and determine a strong structural behavior
(see Definition 1). However, this structure causes a large subclass of MGH distributions to
belong to the family of elliptically contoured distributions which inherit many useful statistical
and analytical properties from multivariate normal distributions. For example, the family of
elliptically contoured distribution is closed under linear regression and passing to the marginal
distributions (see Cambanis, Huang, and Simons (1981)).

Regarding the dependence structure, the MAGH distributions may have independent margins
for some parameter constellation (see Theorem 4). In particular, they support models which are
based on a linear combination of independent factors. In contrast, the MGH distributions are
not capable of modelling independent margins. They even yield ”extremal” dependencies for
bivariate distributions having correlation zero. Moreover, the correlation matrix of MAGH dis-
tributions is proportional to the scaling matrix Σ within a large subclass of asymmetric MAGH
distributions (see Theorem 6), whereas Σ is hardly to interpret for skewed MGH distributions.
Further, the copula of MAGH distributions, being the dependence structure of an affine-linearly
transformed random vector with independent components, is quite illustrative and possesses
many appealing modelling properties. On the other hand, the copula structure of MGH distri-
butions may suffer from inflexibility. Regarding the dependence of extreme events, the MAGH
distributions can model tail dependence whereas MGH distributions are always tail independent.
Therefore, MAGH distributions are suitable especially within the field of risk management.

Sections 6 and 8 reveal that in contrast to MGH distributions, parameter estimation for MAGH
distributions is considerably simpler and more robust. Even in an asymmetric environment,
the parameters of MAGH distributions can be identified in a two-stage procedure which has a
considerable computational advantage in higher dimensions. The same procedure can be applied
for elliptically contoured MGH distributions (β = 0). The random vector generation algorithms
for MGH and MAGH distributions turn out to be equally efficient and fast, irrespectively of the
dimension.

The simulations in Sections 8 and 9 show that both distributions fit simulated and real data well.
Thus, summarizing the above advantages and disadvantages, the MAGH distributions have much
to recommend them regarding their parameter estimation, dependence structure, and random
vector generation. However, it depends also on the kind of application and the user’s taste which
model to prefer.
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5 Some properties of MGH and MAGH distributions

In this section we investigate and compare several statistical-mathematical properties of the
MGH distribution and the MAGH distribution. In this context, the dependence structures will
be of our particular interest. It has been already mentioned that the one-dimensional marginals
of both types of distributions are quite flexible. The copula technique combines these marginals
with the respective dependence structure leading to a multidimensional MGH or MAGH distri-
bution. The dependence structure of affine-linearly transformed distributions, such as MAGH
distributions, in terms of copulae has not attracted much attention in the literature yet. How-
ever, the usefulness of copulae has been shown for many applications especially in finance (see
Cherubini, Luciano, and Vecchiato (2004) for an overview). The main contribution of this sec-
tion is a detailed analysis of the dependence structure of MGH and MAGH distributions. We
consider the respective copulae and various dependence measures, such as the covariance and
correlation coefficients, Kendall’s tau, and tail dependence. It turns out that the dependence
structure of MAGH distributions is quite different to the respective MGH counterpart, although
for example, the contour plot in Figure 2 does not reflect this fact. In particular, we show that
the behavior of common extreme events is different and that for any parameter constellation the
margins of the MGH distributions cannot be independent.

It is precisely the copula which encodes all information on the dependence structure unencum-
bered by the information on marginal distributions and which couples the marginal distributions
to give the joint distribution. In particular if X = (X1, . . . , Xn)′ has joint distribution F with con-
tinuous marginals F1, . . . , Fn, then the distribution function of the vector (F1(X1), . . . , Fn(Xn))′

is a copula C, and F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

The MGH and MAGH copulae. According to Definitions 1 and 2, the MGH and MAGH
distributions are represented by affine-linear transformations of random vectors following a stan-
dardized MGH distribution and MAGH distribution, respectively. Leaving the affine-linear trans-
formation aside, we are interested in the dependence structure (copula) of the underlying random
vector. In particular we set the scaling matrix Σ = I and µ = 0. Note that the copula of an
MGH or MAGH distribution does not depend on the location vector, i.e., µ is not a copula
parameter.

Theorem 3 Let Y ∈ MGHn(0, I, ω). Then the copula density function of Y is given by

c(u1, . . . , un) = c
Kλ−n/2(α

√
1 + y′y)

(1 + y′y)n/4−λ/2

n∏

i=1

(1 + y2
i )

1/4−λ/2

Kλ−1/2(α
√

1 + y2
i )

exp(αβ′y)
exp(

∏n
i=1 αβiyi)

∣∣∣∣∣∣
yi=F−1

i (ui)

,

for ui ∈ [0, 1], i = 1, . . . , n, and some normalizing constant c. Here Fi refers to the distribution
function of the one-dimensional margin Yi, i = 1, . . . , n. Let Y ∈ MAGHn(0, I, ω). Then the
corresponding copula equals the independence copula, i.e, the copula density function is given by

c(u1, . . . , un) ≡ 1, ui ∈ [0, 1], i = 1, . . . , n.

Proof. The first part follows from the copula definition. For the second part note that Y has
independent margins if and only if Y possesses the independence copula C(u1, . . . , un) = u1 ·
. . . · un according to Theorem 2.10.14 in Nelsen (1999). 2

Figure 3 clearly reveals that, in contrast to the MGH distribution, the copula of an MAGH
distribution shows strong dependence in the limiting corners of the respective quadrants. This
property is investigated in more detail later when we discuss the concept of tail dependence.
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Fig. 3. Copula-density function c(u, v) of an MGH2(0, I, ω) distribution (left figure) with pa-
rameters λ = 1, α = 1 and β = (0, 0)′ and that of an MAGH2(0, I, ω) distribution (right figure)
with arbitrary parameter constellation.

Theorem 4 (Limiting cases) Let Σ(m) := (σ(m)
ij )i,j=1,2 be a sequence of symmetric positive-

definite matrices and ρ(m) := σ
(m)
12 /

√
σ

(m)
11 σ

(m)
22 . Suppose that X(m) ∈ MGH2(µ,Σ(m), ω) or

X(m) ∈ MAGH2(µ,Σ(m), ω) for every m ∈ IN, and let C(m) denote the corresponding copula.
Denote with W (u1, u2) = max(u1 +u2−1, 0) and M(u1, u2) = min(u1, u2) the well-known lower
and upper Frechet copula bounds and let Π(u1, u2) = u1 · u2 be the product or independence
copula. Then

i) C(m) → M pointwise if ρ(m) → 1, σ
(m)
ij → σij 6= 0, i, j = 1, 2, as m →∞,

ii) C(m) → W pointwise if ρ(m) → −1, σ
(m)
ij → σij 6= 0, i, j = 1, 2, as m →∞,

iii) if X(m) ∈ MGH2(µ,Σ(m), ω), then C(m) 6= Π for each parameter constellation, and

iv) if X(m) ∈ MAGH2(µ,Σ(m), ω), then C(m) = Π if and only if Σ(m) = I.

Proof. i)+ii) Consider the Cholesky decomposition of Σ(m) and use the fact that the copula
C of X is invariant under strictly increasing transformations of the margins since X possesses
continuous marginal distribution functions. iii) Suppose X(m) ∈ MGH2(µ,Σ(m), ω). Then X(m)

possesses the product copula if and only if it has independent margins (see Theorem 2.4.2 in
Nelsen (1999)). According to Definition 1, X(m) does not have independent margins if Σ(m) is
not a diagonal matrix. Thus it suffices to consider Σ(m) = I. Further we can put β = 0 since β
has no influence on the factorization of the density function of an MGH distribution (see formula
(1)). However, in that case X(m) belongs to the family of elliptically contoured distributions.
Therefore Theorem 4.11 in Fang, Kotz, and Ng (1990) implies that X(m) possesses independent
margins if and only if X(m) has a bivariate normal distribution. Since normal distributions and
MGH distributions are disjoint classes of distributions, the assertion follows. Part iv) follows
with the definition of MAGH distributions. 2

Remark. The results of Theorem 4 can be extended to n-dimensional MGH and MAGH dis-
tributions. However, for n ≥ 3 the lower Fréchet bound is not a copula function anymore; see
Theorem 2.10.13 in Nelsen (1999) for an interpretation of the lower Fréchet bound in that case.

The covariance and correlation matrix. Among the large number of dependence measures
for multivariate random vectors the covariance and the correlation matrix are still the most
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favorite ones in most practical applications. However, according to Embrechts, McNeil, and
Straumann (2002), these dependence measures should be considered with care for non-elliptically
contoured distributions such as MAGH distributions.

Theorem 5 (Mean and covariance for MGH distributions)
Let X ∈ MGHn(µ,Σ, ω) and define Rλ,i(x) := Kλ+i(x)

xiKλ(x)
. Then the mean vector and the covariance

matrix of X are given by

E[X] = µ + αRλ,1

(√
α2(1− β′β)

)
A′β and

Cov[X] = Rλ,1

(√
α2(1− β′β)

)
Σ +

[
Rλ,2

(√
α2(1− β′β)

)
−R2

λ,1

(√
α2(1− β′β)

)] A′ββ′A
1− β′β

.

For the symmetric case β = (0, . . . , 0)′ and λ = 1, the mean vector and the covariance matrix of
X simplify to E[X] = 0 and Cov[X] = K2(α)/(αK1(α)) · Σ.

Proof. Let X ∈ MGHn(µ̄, Σ̄, ω̄) with parameter representation as in (3). Then X is distributed
according to a variance-mean mixture of a multivariate normal distribution, i.e., X|(Z = z) ∼
N(µ̄ + zΣ̄β̄, zΣ̄), where the mixing random variable Z is distributed according to a generalized
inverse Gaussian distribution GIG(λ̄, δ̄,

√
δ̄2(ᾱ2 − β̄′Σ̄β̄)) (see e.g. Barndorff-Nielsen, Kent, and

Sørensen (1982)). The respective mean vector and covariance can be calculated via this rep-
resentation (see Eberlein and Prause (2002) for more details) utilizing the parameter mapping
δ̄2(ᾱ2 − β̄′Σ̄β̄) = α2(1− β′β), Σ̄β̄δ̄2 = ΣαA−1β and δ̄4Σ̄β̄β̄′Σ̄ = A′ββ′A. 2

Theorem 6 (Mean and covariance for MAGH distributions)
Let X ∈ MAGHn(µ,Σ, ω). Then the mean vector and the covariance matrix are given by

E[X] = A′eY + µ and Cov[X] = A′CA,

where eY = (E[Y1], . . . , E[Yn])′ with E[Yi] = Rλi,1(
√

α2
i (1− β2

i ))αiβi and C = diag(c11, . . . ,

cnn) with

cii = Rλi,1(
√

α2
i (1− β2

i )) +
[
Rλi,2(

√
α2

i (1− β2
i ))−R2

λi,1
(
√

α2
i (1− β2

i ))
] β2

i

1− β2
i

.

The covariance matrix Cov[X] is proportional to Σ if α = αi, β = βi and λ = λi for all
i = 1, . . . , n.

Proof. The assertion follows immediately from Theorem 5 and Definition 2. 2

Kendall’s tau. The correlation coefficient is a measure of linear dependence between two ran-
dom variables and therefore it is not invariant under monotone increasing transformations.
However, not only does ”scale-invariance” present an undisputable requirement for a proper
dependence measure in general (cf. Joe (1997), Chapter 5), but also in practice ”scale-invariant”
dependence measures play an increasing role in dependence modelling. Kendall’s tau is the most
famous one and therefore we determine it for MGH and MAGH distributions.

Definition 7 (Kendall’s tau) Let X = (X1, X2)′ and X̄ = (X̄1, X̄2)′ be independent bivariate
random vectors with common continuous distribution function F and copula C. Kendall’s tau is
defined by

τ = IP((X1 − X̄1)(X2 − X̄2) > 0)− IP((X1 − X̄1)(X2 − X̄2) < 0) = 4
∫

[0,1]2

C(u, v) dC(u, v)− 1.
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Theorem 8 Let Σ = (σij)i,j=1,2 be a positive-definite matrix and ρ := σ12/
√

σ11σ22.

i) If X ∈ MGH2(µ,Σ, ω) with β = 0, then τ = 2
π arcsin(ρ).

ii) If X ∈ MAGH2(µ,Σ, ω) with stochastic representation X
d= A′Y + µ, A′A = Σ, then for

ρ 6= 0

τ =
4
|c|

∫

IR2

fY1(x1)fY2

(
x2 − x1

c

)
·

x1∫

−∞
FY2

(
x2 − z

c

)
fY1(z) dzd(x1, x2)− 1, (4)

where c := sgn(ρ)
√

1/ρ2 − 1. Further τ = 0 for ρ = 0.

The proof is given in the Appendix.

Remark. An explicit expression of Kendall’s tau for MAGH distributions (given by (4)) cannot
be expected. However, since the density functions of Y1 and Y2 are available, formula (4) yields a
tractable numerical solution. Further, the values of Kendall’s tau and the correlation coefficient
for the class of bivariate MGH and MAGH distributions cover the entire interval [−1, 1]. For
Kendall’s tau, this can be seen from part i) and ii) in Theorem 4 (note that Kendall’s tau is
a measure of concordance). For the correlation coefficient of an MGH distribution, Theorem 5
implies that the parameter ρ ∈ [−1, 1] corresponds to the correlation coefficient if β = 0. The
conditions where ρ equals the correlation coefficient for an MAGH distribution are stated in
Theorem 6.

Tail dependence. A strong emphasis in this paper is put on the dependence structure of MGH
and MAGH distributions. In this context we establish the following result about the dependence
structure of extreme events (tail dependence or extremal dependence) related to the latter types
of distributions. The importance of tail dependence especially in financial risk management is
addressed in Hauksson et al. (2001) and Embrechts, Lindskog, and McNeil (2003). The following
definition (according to Joe (1997), p. 33) represents one of many possible definitions of tail
dependence.

Definition 9 (Tail dependence) Let X = (X1, X2)′ be a 2-dimensional random vector. We
say that X is upper tail-dependent if

λU := lim
u→1−

IP(X1 > F−1
1 (u) | X2 > F−1

2 (u)) > 0, (5)

where the limit is assumed to exist and F−1
1 , F−1

2 denote the generalized inverse distribution
functions of X1, X2, respectively. Consequently, we say that X is upper tail-independent if λU

equals 0. Similarly, X is said to be lower tail-dependent (lower tail-independent) if λL > 0
(λL = 0), where λL := limu→0+ IP(X1 ≤ F−1

1 (u) | X2 ≤ F−1
2 (u)) provided they exist.

Figure 3 reveals that bivariate standardized MGH distributions show more evidence of de-
pendence in the upper-right and lower-left quadrant of its distribution function than MAGH
distributions. However, the following theorem shows that MGH distributions are always tail in-
dependent whereas non-standardized MAGH distributions can even model tail dependence. For
the sake of simplicity we restrict ourselves to the symmetric case β = 0.

Theorem 10 Let Σ = (σij)i,j=1,2 be a positive-definite matrix and ρ := σ12/
√

σ11σ22. Suppose
β = 0. Then
i) the MGH2(µ,Σ, ω) distributions are upper and lower tail-independent,
ii) the MAGH2(µ,Σ, ω) distributions are upper and lower tail-independent if
α2 < α1

√
1/ρ2 − 1 or ρ ≤ 0, and
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iii) the MAGH2(µ,Σ, ω) distributions are upper and lower tail-dependent if
α2 > α1

√
1/ρ2 − 1 and ρ > 0.

The proof is given in the Appendix.

Remark. Additionally to Theorem 10 it can be shown that an MGH2(µ,Σ, ω) distribution
(with β = 0) is tail independent if α2 = α1

√
1/ρ2 − 1 and λ2 < λ1.

Other properties. It has been already mentioned that the family of MGH distributions is
closed with respect to the marginal distributions. Similarly, if X = (X1, . . . , Xn)′ is an MAGH-
distributed random vector, then the partitions X(1) = (X1, . . . , Xk)′ and X(2) = (Xk+1, . . . ,
Xn)′ are MAGH distributed. Further, the conditional distribution of X(2) given X(1) and regu-
lar affine-linear transformations of X are MAGH, too. For general partitions of X and singular
affine-linear transformations, the latter properties hold also if the definition of an MAGH dis-
tribution (see Definition 2) allows for the stochastic representation X = A′Y + µ, where Y is
not necessarily n-dimensional. However, in this case the stochastic representation is not unique
anymore (which is comparable to elliptically contoured distributions). We may also allow for
general decompositions of the scaling matrix Σ = A′A in Definition 2 in order to remain in
the class of MAGH distributions after a permutation of the margins of X (cf. the discussion in
Section 3).

6 Parameter estimation

Following a brief setup of the estimation procedure, we show that the parameters of the MAGH
distribution can be estimated with a simple two-stage method. This method refers to the estima-
tion of the covariance matrix and the parameters which correspond to the univariate marginal
distributions. Thus, generally speaking, the estimation reduces to a one-dimensional estimation
problem. In contrast, for the MGH distributions one can only perform this type of estimation
within the subclass of elliptically contoured distributions.

Minimizing the cross entropy. A common descriptive statistics to measure the similarity
between two (multivariate) distribution or density functions f∗ and f, respectively, is given by
the (directed) Kullback divergence (see Kullback (1959) and Ullah (1996)) which is defined as

HK(f, f∗) :=
∫

IRn

f∗(x) log
f∗(x)
f(x)

dx =
∫

IRn

f∗(x) log f∗(x)dx−
∫

IRn

f∗(x) log f(x)dx.

The Kullback divergence HK is zero if and only if the densities f and f∗ coincide. It is also
additive across the marginal densities if the marginal distributions are stochastically indepen-
dent. This is one desired property of a pseudo-distance measure for multidimensional random
vectors. In our context, we use the Kullback divergence to measure the similarity between the
”true” density f∗ and its approximation f . For example, minimizing the Kullback divergence by
varying f is a common way to find a good approximation (or good fit) of the ”true” density f∗.
This kind of descriptive statistics is frequently used if common goodness-of-fit tests such as the
χ2-square test turn out to be too complicated. The latter is often the case for high-dimensional
distributions. In Sections 8 and 9 we investigate the problem of goodness-of-fit for simulated
and real data by means of Kullback divergence and χ2-square tests.

Note that the first term of HK is constant and can be dropped. The resulting expression is
called cross entropy. Because f∗ is unknown, we approximate it by its empirical counterpart. In
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this case, minimizing the cross entropy (or Kullback divergence) coincides with the concept of
maximum likelihood.

For computational reasons it may be advantageous to work with the standardized vector y =
B(x−µ) where B := A′−1. The density transformation theorem yields that the density function
fX of X

d= A′Y + µ ∈ MGH(µ,Σ, ω) is given by fX(x) = fA′Y +µ(x) = |B|fY (y), with |B| > 0
being the determinant of B and parameters η = (µ,B, ω) and ω = (λ, α, β).

While the location vector µ can take arbitrary values in IRn, B and ω are subject to various
constraints. The matrix B must be triangular with positive diagonal such that A′A is positive-
definite. The parameter α is supposed to be positive and the vector β must fulfill ||β||2 ≤ 1.

Many approaches are possible regarding the latter optimization problem, inter alia we mention
two methods:

• constrained nonlinear optimization methods, and

• unconstrained nonlinear optimization methods after suitable parameter transformations.

We prefer the unconstrained approach due to reasons of robustness. The following parameter
transformations are appropriate. The matrix B can be sought of the form B = UD where D
is some diagonal matrix having strictly positive elements and U is a triangular matrix having
only ones on its diagonal. In order to enforce the strict positivity of the diagonal elements
dii, i = 1, . . . , n, of D, the following transformations are applied:

bii = dii = eνi , i = 1, . . . , n,

bij = diiuij = eνiuij , i = 1, . . . , n− 1, j = 2, . . . , n, j > i,

with unknown parameters νi and uij . The parameter α is estimated via the same exponential
map. For the vector β we utilize the smooth transformation

β = γ · 1
1 + exp(−‖γ‖2)

· 1
‖γ‖2

. (6)

The optimization algorithm we use belongs to the probabilistic ones (note that the objective
function is non-convex) and consists of two characteristic phases:

1. In a global phase the objective function is evaluated at a random number of points being part
of the search space.

2. In a local phase the samples are transformed to become candidates for local optimization
routines.

Results concerning the convergence of probabilistic algorithms to the global minimum are, for
example, given in Rinnooy Kan and Timmer (1987). The latter reference motivates us to use a
Multi-Level Single-Linkage procedure. Here the global optimization method generates random
samples from the search space by identifying the samples belonging to the same objective func-
tion attractor and eliminating multiple ones. For the remaining samples in the local phase a
conjugate gradient method (see Fletcher (1987)) is started. Further, a Bayesian stopping rule is
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applied in order to assess the probability that all attractors have been explored. For an account
on the Bayesian stopping rule we refer the reader to Boender and Rinnooy Kan (1987).

Estimation of MAGH distributions. A big advantage of the MAGH distribution is that its
parameters can be easily identified in a two-stage procedure comprising the following steps:

(1) Compute the sample covariance matrix S of the random vector X. Transform X to the
vector Y = BX with independent margins. The matrix B is received via Cholesky decom-
position S−1 = B′B.

(2) Identify the parameters λi, αi and βi which belong to the univariate marginal distributions
of Y. The location vector µ can be received via B−1e with ei being the location parameter
of Yi (see Theorem 5). The scaling matrix Σ equals B−1′DB−1 where the diagonal matrix
D is determined by the scaling parameters of Yi on its diagonal.

The latter procedure considerably simplifies the complexity of the numerical optimization. Note
that the parameters of the one-dimensional MAGH distributions can be estimated via uncon-
strained optimization as explained above. We remark that the two-stage estimation may affect
the (asymptotic) efficiency of the estimation. However, a theoretical analysis of the loss of effi-
ciency goes beyond the scope of this article. Though, our empirical results show that this two-
stage estimation is quite robust with respect to the finite-sample volatility of the corresponding
estimators.

It is important for applications that the univariate densities are not necessarily identically pa-
rameterized. This means that the margins may have different parameters λi, αi, βi, i = 1, . . . , n.
In other words, there is a considerable freedom of choosing the parameters λ, α, and β. There-
fore, in addition to a parameterization similar to that for MGH distributions (i.e., the same
λ and α for all one-dimensional margins and different βi) two further extreme alternatives are
possible:

• Minimum parameterization: Equal parameters λ, α and β for all one-dimensional margins.

• Maximum parameterization: Individual parameters λi, αi and βi for all one-dimensional mar-
gins.

The appropriate parameterization depends on the kind of application and the available data
volume. The optimization procedure presented in this section is a special case of an identifica-
tion-algorithm for conditional distributions explored in Stützle and Hrycej (2001, 2002a, 2002b).

7 Sampling from MGH and MAGH distributions

Complementing the question of estimation as described in Section 6, we provide now an efficient
and self-contained generator of random vectors for the families of MGH and MAGH distribu-
tions. The generator, which is based on a rejection algorithm, comprises several features which
to our knowledge have not been published yet. In particular, we provide an explicit algorithm,
while avoiding difficult minimization routines, which outperforms the known algorithms in the
literature for MGH distributions with general parameter constellations. In principle, the gen-
eration of random vectors reduces to the generation of one-dimensional random numbers. For
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MGHn(µ,Σ, ω) distributions this is possible via the following variance-mean mixture represen-
tation. Let the random variable Z be distributed according to a generalized inverse Gaussian
distribution with parameters λ, χ, and ψ. In particular the latter family is referred to as the
GIG(λ, χ, ψ) distributions. Then, X ∈ MGHn(µ,Σ, ω) is conditionally normally distributed
with mixing random variable Z, i.e., X|(Z = z) ∼ Nn(µ + zβ̃, z∆), where ∆ ∈ IRn×n is a sym-
metric positive-definite matrix with determinant |∆| = 1 and µ, β̃ ∈ IRn. The parameters Σ and
ω = (λ, α, β) are given by

α =
√

(ψ + β̃′∆β̃)χ, β = 1/

√
ψ + β̃′∆β̃Lβ̃, Σ = χ ·∆,

with Cholesky decomposition L′L = ∆. The inverse map is given by

χ = |Σ|1/n, ψ = α2/|Σ|1/n · (1− β′β), ∆ = Σ/|Σ|1/n, and β̃ = α · (A)−1β,

with Cholesky decomposition A′A = Σ.

The sampling algorithm is now of the following form: A pseudo random number is sampled from
a random variable Z having a generalized inverse Gaussian distribution with parameters λ, χ,
and ψ. Then an n-dimensional random vector X being conditionally normally distributed with
mean vector µ + Z∆β̃ (”drift”) and covariance matrix Z∆ (determinant |∆| = 1) is generated.

The density function of the generalized inverse Gaussian distribution GIG(λ, χ, ψ), is given by

fZ(x) = c · xλ−1 exp
(
− χ

2x
− ψx

2

)
, x > 0, (7)

with normalizing constant c = (ψ/χ)λ/2/(2Kλ(
√

ψχ)). The range of the parameters is given by

i) χ > 0, ψ ≥ 0 if λ < 0, or

ii) χ > 0, ψ > 0 if λ = 0, or

iii) χ ≥ 0, ψ > 0 if λ > 0.

The following algorithm is formulated for generalized hyperbolic distributions MGHn(µ,Σ, ω)
with parameter λ = 1. Section 8.1 justifies the restriction to this class of distributions. In this
context the GIG(λ, χ, ψ) distribution is referred to as inverse Gaussian distribution. However,
the algorithm can be extended to general λ. Our empirical study shows that the algorithm
outperforms the efficiency of the sampling algorithm proposed by Atkinson (1982) which suites
to a larger class of distributions (see also Prause (1999), Section 4.6). Moreover, the algorithm
avoids tedious minimization routines and time-consuming evaluations of the Bessel function
Kλ. The generation utilizes a rejection method (see Ross (1997), pp. 565) with a three part
rejection-envelop. We define the envelop d : IR+ → IR+ by

d(x) :=





d1(x) = ca1 exp(b1x), if 0 < x < x1,

d2(x) = ca2, if x1 ≤ x < x2,

d3(x) = ca3 exp(−b3x), if x2 ≤ x < ∞,

(8)

with ai > 0, i = 1, . . . , 3, bi > 0, i = 1, 3, and x1 ≤ x2 ≤ x3 to be defined later. Let
zi, i = 1, 3 denote the inflection points and z2 =

√
χ/ψ denote the mode of the unimodal
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density fZ . Further we require d1(z1) = fZ(z1), d2(z2) = fZ(z2), d3(z3) = fZ(z3). The points
x1 > 0 and x2 > 0 correspond to the intersection points of d1, d2 and d2, d3, respectively, i.e.
d1(x1) = d2(x1), d2(x2) = d3(x2).

Fig. 4. Three part envelop d for the inverse Gaussian density function fZ with parameters
χ = 1 , ψ = 1.

Primarily, the rejection method requires the generation of random numbers with density s ·d(x)
where the scaling factor s has to be computed in order to obtain a density function s·d(x), x > 0.
This scaling factor is derived below.

Pseudo algorithm for generating an inverse Gaussian random number:

(1) Compute the zeros z1, z2 for ψ2z4 − 2χψz2 − 4χz + χ2 = 0.

(2) Set b1 = (χ/z2
1 − ψ)/2 and a1 = exp(−χ/z1).

(3) Set a2 = exp(−√χψ).

(4) If (ψ − χ/z2
2)/2 > 0 then

Set b3 = (ψ − χ/z2
2)/2 and a3 = exp(−χ/z2).

Else Set b3 = ψ/2 and a3 = 1.

(5) Set x1 = ln(a2/a1)/b1 and x2 = − ln(a2/a3)/b3.

(6) Set
s =

(a1

b1
exp(b1x1)− a1

b1
+ (x2 − x1)a2 +

a3

b3
exp(−b3x2)

)
.

(7) Set

k1 =
1
s

(a1

b1
exp(b1x1)− a1

b1

)
and k2 = k1 +

1
s
(x2 − x1)a2.

(8) Generate independent and uniformly distributed random numbers U and V on the interval
[0, 1].

(9) If U ≤ k1 goto step 10.
ElseIf k1 < U ≤ k2 goto step 11.
Else goto step 12.

(10) Set
x =

1
b1

ln(
b1

a1
sU + 1).

If
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V ≤ fZ(x)
d1(x)

=
1
a1

exp
(
− (

χx−1 + ψx

2
+ b1x)

)
,

Then Return x
Else goto step 8.

(11) Set
x =

sU

a2
− a1

b1a2

(
exp(b1x1)− 1

)
+ x1.

If

V ≤ fZ(x)
d2(x)

=
1
a2

exp
(
− (

χx−1 + ψx

2
)
)
,

Then Return x.
Else goto step 8.

(12) Set

x = − 1
b3

ln
[
− b3

a3

{
sU − a1

b1
(eb1x1 − 1)− (x2 − x1)a2 − a3

b3
e−b3x2

}]
.

If

V ≤ fZ(x)
d3(x)

=
1
a3

exp
(
− (

χx−1 + ψx

2
) + b3x

)
,

Then Return x.
Else goto step 8.

Remark. In order to generate a sequence of inverse Gaussian random numbers repeat step 8.

So far we have generated random numbers from an univariate inverse Gaussian distribution. We
turn now to the generation of multivariate generalized hyperbolic random vectors. For this we
exploit the above introduced mixture representation.

Pseudo algorithm for generating an MGH vector:

(1) Set ∆ = L′L via Cholesky decomposition.

(2) Generate an inverse Gaussian random number Z with parameters χ and ψ.

(3) Generate a standard normal random vector N.

(4) Return X = µ + Z∆β̃ +
√

ZL′N.

Pseudo algorithm for generating an MAGH vector:

(1) Set Σ = A′A via Cholesky decomposition.

(2) Generate a random vector Y with independent MGH1(0, 1, ωi), i = 1, . . . , n, distributed
components (see above).

(3) Return X = µ + A′Y.

Table 1 presents the empirical efficiency of the MGH random vector generator for various pa-
rameter constellations. In our framework, efficiency is defined by the following ratio

Efficiency =
] of generated samples

] of algorithm-passes including rejections
.
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χ/ψ 0.1 0.5 1 2 5 10

0.1 0.94 0.913 0.904 0.886 0.877 0.872

0.5 0.916 0.884 0.877 0.865 0.859 0.852

1 0.901 0.877 0.867 0.863 0.857 0.851

2 0.889 0.866 0.857 0.856 0.856 0.845

5 0.876 0.858 0.854 0.852 0.847 0.849

10 0.866 0.86 0.851 0.853 0.842 0.847
Table 1
Empirical efficiency of the MGH random number generator for λ = 1 and 10, 000 generated
samples.

8 Simulation and empirical study

A series of computational experiments with simulated data is performed in this section. The
experiments disclose that

• MGH density functions with parameter λ ∈ IR seem to have very close counterparts in the
MGH-subclass with parameter λ = 1 (in short: MH distribution),

• The MAGH distribution can closely approximate the MGH distribution with similar para-
meter values.

8.1 General MGH distributions versus MGH distributions with parameter λ = 1 (MH)

Figure 5 shows the identification results of two univariate MGH distributions and two univariate
MH distributions (i.e., λ = 1). All four plots simultaneously show the respective fit via MGH
distribution (bright dotted line) and via MH distribution (dark dotted line). In both plots on
the left side of the figure, samples were drawn from an MH distribution. The fit illustrates the
phenomenon that although the identification procedure with MGH densities frequently produces
λ 6= 1, the approximation of the original MH density function remains good. The plots on the
right side illustrate the opposite case, namely, a good approximation of the MGH density function
(λ 6= 1) via an MH density function (λ = 1).

Consider now a bivariate MGH2(µ,Σ, ω) distribution with Σ = (σij)i,j=1,2. The mutual tradeoff
between λ, α, and the scaling parameters S1 :=

√
σ11 and S2 :=

√
σ22 of the corresponding dis-

tribution function is shown in Table 2. While all samples were drawn from an MGH distribution
with parameter λ = 1 (MH distrubution), MGH identification usually leads to an overestimation
of λ which is traded off by lower values of α, S1, and S2. In contrast to that, the parameter
identifications via MH distributions are close to the reference values. However, the differences
between the cross entropies are hardly discernible, showing that both parameter combinations
correspond to densities which are close to each other.

The following conclusions can be drawn:

• The fit of both distributions, MGH and MH distribution, measured by cross entropy and visual
closeness of the density plots, is satisfying. This implies the existence of multiple parameter
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various parameter constellations. The values m(·) denote the sample mean of the respective
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constellations for MGH distributions which lead to quite similar density functions. Similar
results have been observed for the corresponding tail functions.

• Generalized hyperbolic densities seem to have very close counterparts in the class of MH
distributions (even for large λ). Therefore, the class of MH distributions will be sufficiently
rich for our considerations.

In view of the above results, only MH distributions and the corresponding MAH distributions
(multivariate affine generalized hyperbolic distributions with λ = 1) will be considered in the
next section.

8.2 MH distributions versus MAH distributions

Parameter estimates are compared for the following three classes of bivariate distributions:

(1) MH distributions.

(2) MAH distributions with minimal parameter configuration (same value of α and β for each
margin).

(3) MAH distributions with maximal parameter configuration (different values of αi and βi for
each margin).

All types of distributions in Table 3 have been identified from data sampled from an MH dis-
tribution. The two-stage algorithm introduced in Section 6 has been used for the identification
of the MAHmax model (determining first the sample correlation matrix, then transforming
the variables, and finally identifying the univariate distributions). The identification results are
provided in Table 3.

The following conclusions can be drawn:

• For all three models, most parameters show an acceptable fit regarding the sample bias and the
sample standard deviation. The relative variability of the estimates increases with decreasing
α (fatter tailed distributions). Such fatter tailed distributions seem to be more ill-posed with
respect to the estimation of individual parameters.

• The differences between the parameter estimates obtained either for the MH, the MAHmin,
or the MAHmax distribution are negligible (although the data are drawn from an MH distri-
bution).

• The fit in terms of the cross entropy does not differ significantly between the various models.
As expected, the MAHmax estimates are closer to the MH reference distribution than are the
MAHmin estimates in terms of the cross entropy (Note that in one case they are even better
than the MH estimates). The fitting capability of the MAHmax model comes at the expense
of a larger variability and a sometimes larger bias (”overlearning effect”).
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9 Application to financial data

The MGH and MAGH distributions are now fitted to various asset-return data: Dax/Cac and
Nikkei/Cac returns (both comprising 3989 samples) and Dax/Dow (1254 samples). In particular,
the following distributions are used:

(1) MGH/MH,

(2) MAGH/MAH with minimum parameterization (denoted by (min)), that is, with all margins
equally parameterized,

(3) MAGH/MAH with maximum parameterization (denoted by (max)), that is, with each
margin individually parameterized.

For some of these distributions we have also estimated the symmetric pendant (denoted by
(sym)), i.e., β = 0. Further, we illustrate estimations following the affine-linear transformation
method provided at the end of Section 3 (denoted by (PC)). The results are presented in Table
4. The dependence parameter Dep.Par. refers to the sub-diagonal elements of the normed matrix
Σ, i.e., Dep.Par.:= σij/

√
σiiσjj = σij/(SiSj).

We have already mentioned that the Kullback divergence or cross entropy is a widespread mea-
sure of the goodness-of-fit of multidimensional distributions (in particular, lower cross entropy
signals a better fit), see Ullah (1996) for an overview. For small divergences between the dis-
tributions (i.e., good fits), cross entropy is approximately equal to another popular divergence
measure, the χ2 divergence:

∫
f(x) log

f(x)
g(x)

dx =
∫

f(x) log
(

f(x)− g(x)
g(x)

+ 1
)

dx ≈
∫

(f(x)− g(x))2

g(x)
dx.

Thus, one cannot expect substantially different results if alternative divergence measures are
applied.

Taking additional parameters or degrees of freedom, such as

• λ 6= 1 (MAGH or MGH) instead of λ = 1 (MAH or MH),

• β 6= 0 (MAGH or MGH) instead of β = 0 (symmetric MAGH or MGH),

• multiple λ, α, and β parameters (maximum parametrizations) instead of single ones (minimum
parametrizations)

can be justified by means of the individual cross entropies. Consider the cross entropies Hi and
Hj of variants i and j with variant i having k additional parameters in contrast to variant j.
The fact that the cross entropy times the sample size n is equal to the negative log-likelihood
leads to the following likelihood ratio L between the variant j and the variant i :

Ln(i, j) = n(Hj −Hi).

The statistics 2Ln(i, j) possesses a χ2-distribution with k degrees of freedom (see Stuart and
Ord (1994)) and can be used as a test for additional parameters.
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In our case, a single additional parameter such as λ or β is justified on a significance level
of 0.05 with Hj − Hi > 3.84146/3989 ≈ 0.001 for Dax/Cac and Nikkei/Cac data and with
Hj −Hi > 3.84146/1254 ≈ 0.003 for Dax/Dow data. However, this is not the case for minimally
parameterized variants, in particular generalized asymmetric variants are not justified on this
significance level.

Three additional parameters (λ, α, and β in the maximally parameterized variants) are justified
on a significance level 0.05 with Hj −Hi > 7.81473/3989 ≈ 0.002 for Dax/Cac and Nikkei/Cac
data and with Hj−Hi > 7.81473/1254 ≈ 0.006 for Dax/Dow data. On the significance level 0.01,
the critical differences are 0.003 for Dax/Cac and Nikkei/Cac data and 0.009 for Dax/Dow data.
These significance thresholds are exceeded for Dax/Cac data - the flexibility of the maximally
parameterized variants is obviously valuable for the modelling in this case.

To evaluate the goodness-of-fit of the respective distribution models to the financial data, the χ2

test has been performed. While there are diverse recommendations (see Stuart and Ord (1994))
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concerning the choice of the class intervals in the univariate case, the choice remains difficult
for multivariate distributions. Unfortunately, the results of the test depend essentially on this
choice. We have used some simple choices: 62, 82, and 102 intervals of width 0.005 or 0.01. For
62 and 82 intervals, the hypotheses that Dax/Dow data do not arise from the individual MGH
and MAGH distributions cannot be rejected on the one per cent significance level (for MGH
distributions and 82 intervals the hypothesis cannot be rejected on the five per cent significance
level). For the other data sets, the hypothesis could be rejected on the one percent significance
level. However, according to our analysis the hypothesis must be rejected for any other common
parametric multidimensional distribution which is different from the hyperbolic family.

Due to the total or approximate symmetry of some distribution models, the dependence param-
eters can be roughly interpreted as ”correlation coefficients” for MGH and MAGHmin distribu-
tions. They are even close to the corresponding sample correlation coefficient (column ”Corr.”).
Note that such an interpretation is not possible for the MAGHmax model due to the different
parameterization of the one-dimensional margins.

Conclusion

Summarizing the results we have investigated an interesting new class of multidimensional dis-
tributions with exponentially decreasing tails to analyze high-dimensional data, namely the
multivariate affine generalized hyperbolic distributions. These distributions are attractive re-
garding the estimation of unknown parameters and random vector generation. We illustrated
that this class of distributions possesses an appealing dependence structure and we derived sev-
eral dependence properties. Finally, an extensive simulation study showed the flexibility and
robustness of the introduced model. Thus, the use of multivariate affine generalized hyperbolic
distributions is recommended for multidimensional data modelling in statistical and financial
applications.

Appendix

Proof (Theorem 8). i) Suppose X ∈ MGH2(µ,Σ, ω) with parameter β = 0. Then X belongs
to the family of elliptically contoured distributions and the assertion follows by Theorem 2 in
Lindskog, McNeil, and Schmock (2003).
ii) Suppose X ∈ MAGH2(µ,Σ, ω) with stochastic representation X

d= A′Y + µ, A′A = Σ,
copula C and parameter ρ. For ρ = 0, the assertion follows by Theorem 5.1.9 in Nelsen (1999)
due to the independence of X1 and X2. For the remaining case we can assume ρ > 0 as for
ρ < 0 the assertion is shown similarly. According to Theorem 5.1.3 in Nelsen (1999), Kendall’s
tau is a copula property what justifies the assumption µ = 0. Further, Kendall’s tau is invariant
under strictly increasing transformations of the margins (see Theorem 5.1.9 in Nelsen (1999))
and therefore we may set

A′ =


 1 0

1 c


 with c :=

√
1/ρ2 − 1.
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Consequently, the distribution function of X = (X1, X2)′ has the form

FX(x1, x2) = IP(Y1 ≤ x1, Y1 + cY2 ≤ x2) =

x1∫

−∞
FY2

(
x2 − z

c

)
fY1(z) dz,

and the corresponding density function is fX(x1, x2) = fY2

(
x2−x1

c

)
fY1(x1)/|c|. Thus, using the

fact that

τ = 4
∫

[0,1]2

C(u, v) dC(u, v)− 1 = 4
∫

IR2

FX(x1, x2)fX(x1, x2) d(x1, x2)− 1,

formula (4) is shown. 2

In order to prove Theorem 10 we first investigate the tail behavior of the univariate symmetric
MGH and MAGH distributions. The tail of the distribution function F , as always, is denoted
by F := 1− F.

Definition 11 (Semi-heavy tails) A continuous (symmetric) function g : IR → (0,∞) is
called semi-heavy tailed (or exponentially tailed) if it satisfies

g(x) ∼ c|x|ν exp(−η|x|) as x → ±∞, (9)

with ν ∈ IR, η > 0 and some positive constant c. The class of (symmetric) semi-heavy tailed
functions is denoted by Lν,η.

Lemma 12 Let f be a density function such that f ∈ Lν,η, ν ∈ IR, η > 0. Then the cor-
responding distribution function F possesses the same asymptotic behavior as its density, i.e.,
F (x) ∼ c̄|x|ν exp(−η|x|) as x → −∞ and F̄ (x) ∼ c̄xνexp(−ηx) as x → ∞ for some positive
constant c̄; write F ∈ Lν,η.

Proof. Consider e.g. the tail function F̄ . Applying partial integration we obtain

F̄ (x) =

∞∫

x

f(u) du ∼ c

∞∫

x

uν exp(−ηu) du = cηxν exp(−ηx) + ηcν

∞∫

x

uν−1 exp(−ηu) du.

Thus, the proof is complete if we show that
∫∞
x uν−1 exp(−ηu) du

/
xν exp(−ηx) = o(1) as

x →∞. Rewriting the latter quotient yields

0 ≤ 1
x

∞∫

x

(u

x

)ν−1
exp(−η(u− x)) du =

1
x

∞∫

0

(u + x

x

)ν−1
exp(−ηu) du.

The assertion is now immediate because
(u

x
+ 1

)ν−1
≤ (u + 1)ν−1 for ν ≥ 1 and

(u

x
+ 1

)ν−1
≤ 1 for ν < 1,

and the corresponding integrals exist. 2

The next lemma is quite useful; it states that the tail of the convolution of two semi-heavy tailed
distributions is determined by the heavier tail.
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Lemma 13 Let F1 and F2 be distribution functions with F1 ∈ Lν1,η1 and F2 ∈ Lν2,η2 where
0 < η2 < η1, ν1, ν2 ∈ IR. Then F1 ∗ F2 ∈ Lν2,η2 and, moreover,

lim
t→∞F1 ∗ F2(t)/F 2(t) = m1 :=

∞∫

−∞
eη2udF1(u). (10)

Proof. For some fixed s > 1, we have

F1 ∗ F2(t) =

∞∫

−∞
F 2(t− u)dF1(u) =

t/s∫

−∞
F 2(t− u)dF1(u)−

t−t/s∫

−∞
F 2(u)dF1(t− u)

=

t/s∫

−∞
F 2(t− u)dF1(u) +

t−t/s∫

−∞
F 1(t− u)dF2(u) + F 2(t− t/s)F 1(t/s),

where the last equality follows by partial integration. Thus, dominated convergence yields

lim
t→∞F1 ∗ F2(t)/F 2(t) = lim

t→∞

t/s∫

−∞
F 2(t− u)/F 2(t)dF1(u) =

∞∫

−∞
eη2udF1(u) =: m1 < ∞,

because

0 ≤
t−t/s∫

−∞
F 1(t− u)/F 2(t)dF2(u) ≤ F 1(t/s)

F 2(t)
· F 2(t− t/s) → 0 as t →∞.

A consequence of the symmetric tails of F1 and F2 is that limt→−∞ F1∗F2(t)/F2(t) = m1. Hence,
F1 ∗ F2 ∈ Lν2,η2 is proven. 2

According to Barndorff-Nielsen and Blæsild (1981), the univariate MGH distributions have semi-
heavy tails, in particular

MGH1(0, 1, ω) ∼ c|x|λ−1 exp((∓α + αβ)x) as x → ±∞, (11)

with some positive constant c. Hence, in the symmetric case β = 0 we obtain MGH1(0, 1,
ω) ∈ Lν,η with ν = λ− 1 and η = α. Now we are ready to prove Theorem 10.

Proof (Theorem 10). We only show upper tail-dependence and upper tail-independence, respec-
tively, as the lower pendant is obtained similarly. Recall that tail dependence is a copula property
and therefore we may put µ = 0.

i) Let X ∈ MGH2(0,Σ, ω) with β = 0. In that case X belongs to the family of elliptically con-
toured distributions. According to Theorem 6.8 in Schmidt (2002) the assertion follows because
of the exponentially-tailed density generator.

ii) Let X ∈ MAGH2(0, Σ, ω) with stochastic representation X
d= A′Y and Cholesky matrix

A′ = (aij)i,j=1,2. Note that a11, a22 > 0. Then
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IP(X2 > F−1
X2

(v) | X1 > F−1
X1

(v)) =
IP(a11Y1 > F−1

X1
(v), a12Y1 + a22Y2 > F−1

X2
(v))

IP(a11Y1 > F−1
X1

(v))

=
1

1− v

∞∫

F−1
Y1

(v)

IP(Y2 > (F−1
X2

(v)− a12y)/a22)fY1(y) dy =: I,

because Y1 and Y2 are independent random variables. If ρ ≤ 0 then a12 ≤ 0 and upper tail-
independence immediately follows by dominated convergence.

Consider now ρ > 0 and therefore a12 > 0. Let α2 < α1

√
1/ρ2 − 1. Then α2/a22 < α1/a12. For

all ε ∈ (0, 1] we conclude with u := 1− v that

I ≤ ε +
1
u

F−1
Y1

(1−uε)∫

F−1
Y1

(1−u)

IP(Y2 > (F−1
X2

(1− u)− a12y)/a22)fY1(y) dy

≤ ε + (1− ε)IP(Y2 > (F−1
X2

(1− u)− a12F
−1
Y1

(1− uε))/a22). (12)

Due to (11) we know that Fa12Y1 ∈ Lν1,η1 with ν1 = λ1 − 1 and η1 = α1/a12. Thus, Lemma 13
gives FX2 ∈ Lν2,η2 with ν2 = λ2−1 and η2 = α2/a22 as 0 < η2 < η1. Then the probability in (12)
converges to zero as u → 0+ if F−1

X2
(1−u)−a12F

−1
Y1

(1−uε) = F−1
a12Y1+a22Y2

(1−u)−F−1
a12Y1

(1−uε) →
∞ as u → 0+. Put xu := F−1

a12Y1
(1− uε) and yu := F−1

a12Y1+a22Y2
(1− u). Then

u =
1
ε
F a12Y1(xu) = FX2(yu) ∼ c1

ε
xν1

u exp(−η1xu) ∼ c2y
ν2
u exp(−η2yu), (13)

as u → 0+ and therefore xu, yu → ∞. The asymptotic behavior (13) implies yu − xu → ∞ as
u → 0+ because 0 < η2 < η1. Hence, upper tail-independence is shown.

iii) Now suppose ρ > 0 and α2 > α1

√
1/ρ2 − 1 which yields a12 > 0 and α2/a22 > α1/a12.

According to Lemma 13 we have Fa12Y1 ∈ Lν1,η1 and FX2 ∈ Lν1,η1 with ν1 = λ1 − 1 and
η1 = α1/a12. Notice that with u := 1− v

I ≥ IP(Y2 > (F−1
X2

(1− u)− a12F
−1
Y1

(1− uε))/a22). (14)

Further u = F a12Y1(xu) = FX2(yu) ∼ c1x
ν1
u exp(−η1xu) ∼ c2y

ν1
u exp(−η1yu). Hence

c2

c1

( yu

xu

)ν1

exp(−η1(yu − xu)) → 1 as u → 0+.

Suppose that lim supu→0+(yu − xu) = ∞. If ν1 ≥ 0, then the fact

lim inf
u→0+

c2

c1

( yu

xu

)ν1

exp(−η1(yu − xu)) ≤ lim inf
u→0+

c2

c1
(2(yu − xu))ν1 exp

(
− η1(yu − xu)

)
= 0,

as u → 0+ would lead to a contradiction. On the other hand, if ν1 < 0 then

lim inf
u→0+

c2

c1

( yu

xu

)ν1

exp(−η1(yu − xu)) ≤ lim inf
u→0+

c2

c1
exp

(
− η1(yu − xu)

)
= 0 as u → 0+

would also lead to a contradiction. Therefore we conclude that lim infu→0+ IP(Y2 > (F−1
X2

(1 −
u) − a12F

−1
Y1

(1 − uε))/a22) > 0 as Y2 is supported on IR. Finally, the limit limv→1− IP(X2 >

F−1
X2

(v) | X1 > F−1
X1

(v)) exists due to the convexity of FX1 and FX2 for large arguments. 2
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