
Computation of the Oja median by
bounded search

Karl Mosler and Oleksii Pokotylo

Abstract A new algorithm is given for the exact calculation of the Oja median.
It modifies the algorithm of Ronkainen, Oja and Orponen (2003) by employing
bounded regions which contain the median. The regions are built using the centered
rank function. The new algorithm is faster and has less complexity than the previous
one. It is also used for an even faster approximative calculation.

1 Introduction

A basic task in multivariate analysis is to describe the general location of data by
some point in their middle. Several notions of multivariate medians have been pro-
posed in the literature. They extend different properties and characterizations of the
usual univariate median to Euclidean k-space. Besides these defining characteriza-
tions the multivariate medians may be distinguished by their invariance properties.
These include invariances against monotone transformations of the marginals (like
the componentwise median), against spherical transformations (like the spatial me-
dian), against affine transformations (like the Oja median, proposed in the seminal
paper (Oja, 1983)), and combinatorial invariance. The latter means that the data
may be varied in their compartments without changing the median. Examples are
the Tukey median (Tukey, 1975) and the simplicial median by Liu (1988). These
medians are, at least in some sense, more robust against outlying data than the arith-
metic mean, which is the center of gravity. Multivariate medians are surveyed by
Small (1997) and Oja (2013).

Karl Mosler
University of Cologne, Institute of Econometrics and Statistics, 50923 Köln e-mail:
mosler@statistik.uni-koeln.de

Oleksii Pokotylo
University of Cologne, Cologne Graduate School, 50923 Köln e-mail: pokotylo@wiso.uni-
koeln.de

1

2 Karl Mosler and Oleksii Pokotylo

Like the univariate median most of the multivariate medians can be regarded as
maximizers of goal functions, so called data depths, the Tukey depth, the simplicial
depth, the Oja depth, and the spatial depth, among others. See Mosler (2013) for a
recent survey.

To be applicable to realistic problems, a median must be computable for dimen-
sions k > 2 and at least medium sized data sets. Here we develop an algorithm to
calculate the exact value of the Oja median and demonstrate that it is faster, having
also less complexity, than the existing ones by Niinimaa, Oja and Nyblom (1992)
and Ronkainen, Oja and Orponen (2003), ROO hereafter. The exact algorithm can
also serve as a benchmark for faster heuristic procedures. In principle, the computa-
tion of the Oja median involves repeated checking of all intersections of hyperplanes
generated by the data. Our main idea is to introduce bounding hyperplanes that iter-
atively restrict the area where the median is searched.

The paper is structured as follows: Section 2 introduces the Oja median and depth
and some basic notions and properties connected with them, it also sketches the al-
gorithm of Ronkainen, Oja and Orponen (2003) for exact calculation of the Oja
median. In Section 3 the ideas of the new bounding procedure are discussed, fol-
lowed by a description of the algorithm in Section 4. Finally, in Section 5 numerical
experience is reported regarding data in Rk for k up to dimension seven.

2 Oja median and depth

Let X = {x1, ...,xn} be a data set of observations in Rk. Each k observations
xi1 , ...,xik generate an observation hyperplane passing through them, which is no-
tated by p = (i1, ..., ik), 1≤ i1 < ... < ik ≤ n. Let P denote the set of all

(n
k

)
observa-

tion hyperplanes.
k observations together with a given point x ∈ Rk span a simplex in k-space. Its

k-dimensional volume is found as

Vp(x) :=V (xi1 , ...,xik ,x) =
1
k!

abs
(∣∣∣∣ 1 ... 1 1

xi1 ... xik x

∣∣∣∣)
=

1
k!

abs(d0p +dp
>x).

Here d0p is the distance of the hyperplane p from the origin, and dp is its normal,
given by the vector of cofactors of x in the determinant. The average of all such
volumes is mentioned as the Oja outlyingness function of x,

O(x|X) = avei1<...<ik

(
V (xi1 , ...,xik ,x)

)
= avei1<...<ik

(
1
k!

abs
(∣∣∣∣ 1 ... 1 1

xi1 ... xik x

∣∣∣∣))
=

1
k!

avep∈P

(
abs(d0p +d>p x)

)
. (1)

Computation of the Oja median by bounded search 3

It is clear from (1) that the Oja outlyingness function is piecewise linear and convex
on x as well as continuous on x and the data in X. The minimizer of the outlying-
ness function is the Oja median, Med(X). Generally, this median is not unique but
forms a convex set. The Oja median is a measure of location and affine equivariant
regarding X,

Med(Y) = AMed(X)+b , (2)

if Y = {Ax1 +b, . . . ,Axn +b} with some matrix A of full rank k and b ∈ Rk; see
Oja (1983). The outlyingness function can be made affine invariant (to simultane-
ous transformation of x and X) by multiplying it with a proper scale factor, viz.
(detS(X))−1/2, where S(X) is a positive definite k× k matrix depending on X and
measuring the dispersion of the data cloud X in an affine equivariant way, that is,
with Y as above, satisfying

S(Y) = A>S(X)A. (3)

In particular, the usual covariance matrix of X can serve as S(X). The Oja depth
function is defined as (Zuo and Serfling , 2000)

depth(x|X) =
1

1+O(x|X)(detS(X))−1/2 . (4)

Observe that the Oja depth function is affine invariant and continuous. It is maximal
at the Oja median of X and vanishes for ||x|| → ∞. Given X, the depth function
is a strictly decreasing transformation of the outlyingness function and, thus, the
contour lines of the two functions coincide, though at different values. As the func-
tion O(·|X) is convex, all its contour lines are convex. Hence the level sets of the
Oja depth are convex and compact sets in Rk. Moreover, the Oja depth decreases
monotonically on rays from each point in the median set.

In the case of a centrally symmetric distribution the median set includes the cen-
ter of symmetry. It can be shown that the Oja depth function determines the data
cloud X uniquely (Koshevoy , 2003). The usual breakdown point of the Oja depth
is zero, while a slightly different notion of breakdown appears to be positive (Niini-
maa, Oja and Tableman , 1990).

Given X, the centered rank function R is defined by

R(x) =
1
k!

avep∈P (Sp(x)dp) ,

where

Sp(x) = sign(d0p +dp
>x),

indicates on which side of the hyperplane p the point x is located. Note that R(x)
is the derivative of (1), at all x at which O(·|X) is smooth. Hence, as O(·|X) is
convex, the centered rank function is a subgradient of the outlyingness function, at
all x∈Rk. Below,−R(x) will be used as a direction of descent at point x. It is easily

4 Karl Mosler and Oleksii Pokotylo

seen from (1) that the outlyingness function is also represented as

O(x) =
1
k!

(
avep∈P(Sp(x)d0p)+avep∈P(Sp(x)dp

>x)
)

=
1
k!

1(n
k

) (D0(x)+D(x)>x)
)
, (5)

where the sums,

D0(x) = ∑
p∈P

Sp(x)d0p , D(x) = ∑
p∈P

Sp(x)dp , (6)

are piecewise constant. They change by 2d0p and 2dp, respectively, when a hyper-
plane p is crossed.

2.1 Calculating the median according to ROO

In what follows we assume that the data are in general position. Hettmansperger,
Möttönen and Oja (1999) have shown that a version of the Oja median is always
found among the intersection points of observation hyperplanes. The exact algo-
rithm of ROO iteratively optimizes the outlyingness function along the intersection
lines of k−1 observation hyperplanes, called observation lines. At first a searching
line is randomly selected among the observation lines and the outlyingness func-
tion is optimized along the line. When the point of the minimum is found, the next
searching line through this point is chosen. The possible choices of lines depend on
the type of the point: the smallest number of lines is obtained if the point is an inter-
section of hyperplanes that have no common observation points, the largest number
is obtained if the point coincides with one of the observation points; see also the
discussion before subsection 4.1.

Minimizing the outlyingness function along the searching line is the most time
consuming task. The chosen line L is intersected with all hyperplanes and the outly-
ingness function (1) is calculated at each intersection point. At the first intersection
point the constant terms d0p and dp are summed up along with the signs Sp(xm),
yielding the sums D0, and D according to (6). Then the other intersections are con-
sidered step by step. The outlyingness function is calculated as in (5). In each new
point one of the hyperplanes changes its sign and the sums Dp and D are updated.
Note, that there are

(n
k

)
intersections, almost all of which have to be considered,

which causes the great complexity of the algorithm.

Computation of the Oja median by bounded search 5

3 A bounding approach

The centered rank function is a subgradient of the outlyingness function. Note that
no unique gradient exists at intersections of the observation hyperplanes, hence the
centered rank function will in general not vanish at the Oja median. The negative
rank function (= negative subgradient)−R(x) is a vector that points in a direction of
descent of the outlyingness function, hence ascent of the depth function. It defines
a hyperplane through x, which separates the space into two halfspaces. The positive
side of the hyperplane is indicated by the negative subgradient, which equals the
negative rank function. Therefore, the Oja median is always found on the positive
side of these hyperplanes.

Regarding the Oja depth function, observe that its subgradients have the same
direction as the negative subgradients of the Oja outlyingness function,

grad depth(x) =−R(x)(detS(X))−1/2 (depth(x))2 .

Their contour lines coincide since the depth function is a strictly decreasing trans-
form of the outlyingness function.

An example of Oja depth contours and subgradients of the depth function is
shown in Fig. 1. As expected, all negative subgradients point to the halfspace con-
taining the median, and the gradients are perpendicular to the depth contours.

Fig. 1 An example of Oja depth contours with values of the negative rank function. The median
(unique) is shown at the intersection of the observation lines as a bold point, together with its
subgradient.

The halfspaces defined by the negative rank function can be used to build a
bounded region that contains the median. In our algorithm we select those halfs-
paces in an iterative way and restrict the further search to their intersection. The
hyperplanes bordering such a search region will be called bounding hyperplanes or
simply bounds. The bounded regions reduce the complexity of the searching proce-

6 Karl Mosler and Oleksii Pokotylo

dure by reducing the number of hyperplanes that cross the searching lines as well as
the number of their intersections actually considered in the minimization procedure.

The obtained hyperplanes form a bounded region, which is the intersection of the
positive sides of the hyperplanes. Actually, such a bounded region is determined by
part of these hyperplanes only, as bounds lying outside the region provide no ad-
ditional information. In our algorithm, we adjust the bounded regions step by step.
We begin with a rectangular region limited by hyperplanes that are perpendicular
to the coordinate axes and go through the maximal and minimal coordinates of the
data points on these axes. Then we add hyperplanes as new bounds. For each added
new bound it is checked whether it is efficient, that is, actually crosses the bounded
region, and thus reduces it. Then the intersection of the new hyperplane with the
bounded region is determined, and all bounds that are made inefficient by the new
one are removed. To check whether a hyperplane crosses the bounded region, it suf-
fices to check if there exist any two bounds’ intersections lying on different sides of
the hyperplane. As the calculation of the Oja rank function is itself a rather expensive
operation, we will try to obtain the smallest possible central region by performing
as few calculation as possible.

We have developed several approaches of the iterative bounds search. The divi-
sive approach (A) is the simplest solution.

Approach A:

The bounded region is iteratively reduced by a divisive approach (A) viz. by iteratively
adding hyperplanes that go through a properly chosen central point of the region and have
their normal vectors equal to the corresponding negative rank function. The central point
should be selected to cut a large amount of volume from the bounded region, and shall
ideally be the center of the volume, so that any hyperplane through this point will approxi-
mately cut off half of the bounded region’s volume. Here, we select the mean value of the
bounds’ intersection points as a central point. As the region is reduced by a hyperplane
through the central point, it is expected that its volume shall become (on an average) twice
smaller at each step. Ideally, after nine such steps, in any dimension k, a subspace volume
of approximately 0.1% of the initial one should be obtained. The experiments in section 5
show that the volumes decrease slower in concrete calculations.

The divisive approach (A) considers only the directions of the subgradients, al-
though their lengths also give the information about the location of the median.
Another solution (approach B) consists in moving along the subgradients as it is
shown in Fig. 2.a. The length of R(x) decreases as x moves towards the median.

Approach B:

1) Start with i = 0. Select an initial point x0. Specifically, we choose the componentwise
median of all observations.

2) Determine the subgradient −R(xi).

3) Add the subgradient vector, xi+1 = xi−R(xi), and continue.

We continue building such gradients, each time getting closer to the median, until they be-
come either zero or increase in length. The zero case means that the point xi lies in the
median set, where the Oja depth assumes its minimal value. As it is seen in Fig. 1, the
subgradient’s length depends not only on the distance from the median, but also on the sub-
space, formed by hyperplanes, that contains xi. Thus if the gradients become longer, their

Computation of the Oja median by bounded search 7

lengths may be restricted to the length of the shortest one, and this bound will consequently
decrease.

Several of the gradients found may be used to build the bounded searching region, contain-
ing the median. The points having shortest gradients are closest to the median. An example
of a bounded region built on such gradients is shown in Fig. 2.b.

Start

.
a

.
b

Fig. 2 A gradient path (a) and a bounded region (b), built using the gradients. The subspaces, cut
off by each of the bounds are shaded.

The divisive approach needs an almost constant number of calculations to reach
the intended volume. However, the efficiency of moving along the subgradients (ap-
proach A) strongly depends on the form of the data. In most cases, the subsequent
gradients extend in rather different directions, and the volume of the bounded region
decreases fast. But in certain cases, especially with asymmetric datasets, this is not
true. The subgradients in the sequence may approach the median in a more common
direction and thus leave too much space inside the bounded region. The gradients

8 Karl Mosler and Oleksii Pokotylo

may also end outside the bounded region or jump between two subsets formed by
the observation hyperplanes, providing not much information on each step.

It is therefore reasonable to start with moving along the subgradients, and then, as
soon as this procedure slows down, shift to the divisive procedure, until the needed
volume is reached:

Approach C:

This yields the following hybrid approach, where the next cutting point may be defined as
the end of the subgradient, xi+1 = xi−R(xi), as long as it lies inside of the bounded region,
or as the center of the bounded region otherwise.

Approach D:

Also the direction of the subgradients can be used to define the next cutting point as a central
point of the segment between the subgradient’s origin and its intersection with the bound.

Further, the calculation can be accelerated by using rougher bounds, viz. enlarg-
ing the given bounded region by a circumscribed k-variate box. Then a fortiori a
point lies outside the bounded region if it lies outside the circumscribed box.

Once a bounded region is defined, the observation hyperplanes lying outside of
it are excluded from the searching process, which decreases the number of inter-
sections when minimizing on a line. A problem may occur if the bounded region
contains no path through the intersections of the observation lines from the ini-
tial searching line to the line containing the median. Such a path connecting any
two observation lines may be provided by including the bounds themselves into the
searching process as ordinary observation hyperplanes. Fig. 3 shows an example of
a path from the initial line through the observation lines and bounds to the median.

The bounding method may also be used to find the median in an approximative
way with some given precision. The space may be cut until the bounded region has
the proper size and its center may be taken as an approximation of the median. It
is clear, that the median cannot lie outside the bounded region, so its center can
be assumed to be the median with precision equal to half of the region’s size. As
the method considers all observation hyperplanes, it cannot be more efficient than
existing approximative methods that consider subsamples of the data.

4 The algorithm

To start with, the first bounded region is created as described in the previous section.
The desired size of the bounded region is selected as a part of the original volume.
Here the volume is calculated as the volume of a minimal multivariate circumscribed
rectangle with edges parallel to the coordinate axes. In subsequent iterations the first
bounded region is reduced until the desired volume is reached. Here, the divisive
approach (A) is considered, as it shows the best results in experiments (see section
5).

Next the initial line is determined. In a two-dimensional space any of the ob-
servation lines crossing the bounded region may be selected. In higher dimensions

Computation of the Oja median by bounded search 9

A

B

C
D

E

F

M

Fig. 3 A path through the observation lines (thin) and the bounds (bold). We start from taking one
of the bounds AB as the initial line, and find a minimum point B. Then the outlyingness function
is minimized along the next line through this point. As it is seen from the line CE, the point of
minimum E is not necessarily the closest one (D) to the median, and the selected path may be not
the shortest one. The paths BC and EFM are isolated, as there are no observation lines inside the
bounded region to connect them, but they are connected with the bound CE.

the search of the initial line is more complicated. All intersections of (k−1) hyper-
planes are inspected until a first intersection line that crosses the bounded region is
found. For this, we start with the lines that border the initial bounded region, which
makes the search for a fitting line much easier.

It is clear that all points inside the bounded region lie on the same side of any
hyperplane which does not cross this region. Therefore, the respective parts of the
sums in (6) can be calculated beforehand, which significantly decreases the number
of calculations on each step. Thus, on every searching line we may restrict ourselves
to iterating the remaining hyperplanes.

The bounded region reduces the procedure of minimization along a line to its
part lying inside the region. The searching line is usually intersected by most of the
bounds. Therefore the two bounds that cut the bounding region at the intersection
line are of primary interest. In order to find these bounds, all bounds are sorted
according to their intersections with the searching line. Then the intersection point
of the first bound with the searching line is taken as a reference point. The first bound
which has the reference point on its positive side is selected as well as the previous
one. If the searching line goes through the bounded region, all other bounds must
have the reference point on the positive side. This property is used to determine
whether a searching line hits the bounded region in dimensions higher than two, as
there exist hyperplanes that are crossing the bounded region, but whose intersection
line lies outside of it, as it is shown in Fig. 4 for a two-dimensional example and in
Fig. 5 for a higher dimensional one.

The searching line is intersected with the included hyperplanes, and the outly-
ingness function (1) is calculated at every intersection point that lies between the
two bounds, found on the previous step. At first, the hyperplanes that intersect the

10 Karl Mosler and Oleksii Pokotylo

Bounded region

reference
 points

1

2

Fig. 4 Two lines: crossing the bounded region (1) and lying outside of it (2). The arrows show
the positive sides of the hyperplanes. The segments between the bounds, one having the reference
point on the negative and another one on the positive side, are shown in bold. A line that hits the
bounded region has only one such segment.

Fig. 5 An example of an observation line lying outside of the bounded region (shown as a sphere)
formed by two hyperplanes crossing the bounded region in a higher dimensional space.

line outside the rougher, i.e. more liberal, bound are filtered out and added to (6).
Then the first bound’s intersection is taken as a median candidate, and as a starting
point for the minimization procedure. The left hyperplanes are added to (6) with the
sign they have in the first bound’s intersection. The intersection points are iterated,
the corresponding hyperplanes change the sign in the sum (6) and the outlyingness
function is calculated as in (5). The outlyingness function is also calculated at the
intersections with the bounds. When the second bound’s intersection is reached, the
procedure is terminated. The outlyingness function has convex contours and there-
fore is unimodal on any line. However, in practice the outlyingness function may
slightly fluctuate when it is optimized along a line. In this case, as soon as the out-
lyingness value begins to increase by a certain threshold amount, the minimization
along the line is terminated.

When the minimum is found on the searching line, the next observation line is
chosen among the lines that contain the minimum. In the simplest case, k hyper-
planes, each defined by k unique observation points, define a point at their intersec-

Computation of the Oja median by bounded search 11

tion and produce k observation lines through this point. More complex cases occur
when some of the hyperplanes have observation points in common, and their in-
tersection point lies in an affine subspace of dimension d < k, generated by these
common points. Such a point may then be described by all possible observation hy-
perplanes that have the same common points, and thus the number of observation
lines increases. If the number of observation lines exceeds the predefined maximum
number maxnL , ROO propose either to stop, or to take a random subset of these
lines. Fischer et al. (2010) in their R-package OjaNP used to choose a new initial
line in such cases.

If the minimum is defined with one or more bounds, we treat them like ordinary
hyperplanes. In order to explicitly determine the bounded region’s boarding lines
and corners, the bounds are identified by k unique points that are found as intersec-
tions with the coordinate axes. If a bound is parallel to some of the axes, the diagonal
axes in the space are taken. Thus the bounds do not have identifying points in com-
mon, and each intersection of the bounds and observation hyperplanes produces a
minimum possible number of observation lines.

4.1 Formal description of the algorithm

The formal description has modifies the one of Ronkainen, Oja and Orponen (2003,
A.1, A.2) and includes parts of it to make the comparison easier. In particular, Pro-
cedure 1 extends A.1 with the bounded region search (steps 2–14), and Procedure
3 modifies the minimization algorithm A.2 to be used in a bounded region (added
steps 1-6, modified steps 18-31). Procedure 2 describes the bounded region con-
struction as in the divisive approach A.

Procedure 1. Compute the exact Oja median.

Input: Data set X = {x1, ...,xn} in Rk.
The desired size s of the bounded box, s = bounded box volume

original volume .
Max number of observation lines to scan maxnL .

Output: Exact Oja median T = Med(X).
1: Precalculate all observation hyperplanes p = (i1, ..., ik), 1≤ i1 < ... < ik ≤ n.
2: Build the bounded region B, that is, the set of bounds defining it, using proce-

dure 2.
Chose the initial line L:

3: for all subsets Bs ⊂ B with |Bs|= k−1 do . find lines
4: Set L←

⋂
Bs.

5: Sort the bounds b ∈ B according to their intersection points with L as ROO
do in A.2, i.e. if L = {L0+βuL : β ∈R} and we have bi∩L = {L0+βiuL} and
b j ∩L = {L0 +β juL} for some bi,b j ∈ B, then i < j⇐⇒ βi < β j. Denote the
order b(1),b(2), ...,b(nb), where nb = |B|.

6: Set y1← L∩b(1).
7: i← smallest i at which Sb(i)(y1) = 1.

12 Karl Mosler and Oleksii Pokotylo

8: if ∃ j : j > i,Sb(j)(y1) 6= 1 then
9: Continue . the line is out of bounds

10: else
11: Break . the line is found
12: end if
13: end for

14: Precalculate 1
k!× the common part of (6), for given t in the bounded region:

H← ∑p/∈B
1
k! Sp(t)dp,

H0← ∑p/∈B
1
k! Sp(t)d0p.

15: Compute T̂← argmint∈L O(t) using procedure 3.
16: Set the median candidate T← T̂.
17: Initialize the collection of investigated lines L ←{L}.
18: Let nL be the number of the observation lines containing T̂.
19: if nL > maxnL then
20: There are too many possibilities. Goto 3.
21: end if
22: Construct the observation lines L ′← L1, . . .LnL .
23: Set L ′←L ′ \L .
24: while L ′ 6= /0 do
25: Find the line L ∈L ′ of deepest descent.
26: Compute T̂← argmint∈L O(t) using procedure 3.
27: Update L ←L ∪{L} and L ′←L ′ \{L}
28: if O(T̂)< O(T) then
29: T← T̂
30: Goto 16.
31: end if
32: end while
33: return T

Procedure 2. Build the bounded region as in the divisive approach A, sec 3.

Input: Data set X = {x1, ...,xn} in Rk.
Precalculated observation hyperplanes P.
The desired size s of the bounded box, s = bounded box volume

original volume .
Output: The bounded region B.

Enclosing box E.
1: Define B← /0. . the set of bounds
2: Define C← /0. . the set of bounds’ intersections

Build the Initial Box:
3: for d = 1, ...,k do . index (−d) means all coordinates from 1 to k except of d
4: Set the seed of a bound od ←max{x1d , ...,xnd}, o−d ← 0.
5: Set the normal vector nd ←−1, n−d ← 0.
6: Define bound b with o and n.

Computation of the Oja median by bounded search 13

7: ADDBOUND(b)
8: Set the seed of a bound od ←min{x1d , ...,xnd}, o−d ← 0.
9: Set the normal vector nd ←+1, n−d ← 0.

10: Define bound b with o and n.
11: ADDBOUND(b)
12: end for . the Initial Box is now built

Proceed with the following divisions:
13: Calculate the original volume of the space as

OriginalVolume = ∏
k
d=1 (max{x1d , ...,xnd}−min{x1d , ...,xnd})

14: while NewVolume/OriginalVolume > s do
15: Define the center of B as C̄.
16: Calculate the negative rank function g =−R(C̄).
17: Define bound b with C̄ and g.
18: ADDBOUND(b)
19: Calculate NewVolume=∏

k
d=1
(
max{C1d , ...,C|C|d}−min{C1d , ...,C|C|d}

)
using the updated intersection points.

20: end while

21: function ADDBOUND(new bound b)
. here (b ·x) is the dot product of a point x and the normal vector of b

22: if (Initial Box is built) and
(sign(b · c1) = sign(b · c2)∀c1,c2 ∈ C) then

23: exit without changes . b lies outside of B
24: end if
25: for all subsets Bs ⊂ B with |Bs|= k−1 do . find new intersections
26: Set c←

⋂
(Bs∪b)

27: if ∀b ∈ B sign(b · c)! =−1 then
28: Add the new crossing point C← C∪ c.
29: end if
30: end for
31: Add the new bound B← B∪b.
32: C← C\{c : c ∈ C,sign(b · c) =−1}. . Remove the cut off intersections
33: B← B\{b ∈ B : sign(b · c1) = sign(b · c2)∀c1,c2 ∈ C}.
34: end function

Procedure 3. Minimize the outlyingness function O on the chosen line.

Input: Precalculated observation hyperplanes P.
Searching line L.
The bounded region B.
Enclosing box E.

Output: The minimum T̂← argmint∈L O(t) or an empty point if L∩B = /0.
1: Sort bounds b ∈ B according to their intersection points with L as in procedure

1.5, b(1),b(2), ...,b(nb), where nb = |B|.
2: Set y1← L∩b(1).

14 Karl Mosler and Oleksii Pokotylo

3: Set yb1← L∩b(i−1) and yb2← L∩b(i) where i = argmini(Sb(i)(y1) = 1)
4: if ∃ j : j > i,Sb(j)(y1) 6= 1 then
5: return empty point. . the line is out of bounds
6: end if
7: Chose any point t0 ∈ B∩L (e.g. t0 = yb1).
8: Initialize D←H, D0← H0, H ← /0.
9: for all p ∈ B do . Compute the sum for hyperplanes, crossing L outside of E.

10: if p∩L⊂ E then
11: H ←H ∪ p
12: else
13: D← D+ 1

k! Sp(t0)dp

14: D0← D0 +
1
k! Sp(t0)d0p.

15: end if
16: end for
17: Sort hyperplane indexes p ∈H according to their intersection points with L

as ROO do in A.2, p(1) ≤ p(2) ≤ ... ≤ p(np), where np = |H | and < resp. ≤
denote the order of intersection points.

18: Define H1←{p : p ∈H , p∩L < yb1},
H2←H \H1,
H3←{p : p ∈H2, p∩L≤ yb2}.

19: Set y1← L∩ p(1) and ynp← L∩ p(np).
20: Compute D← D+∑p∈H1

1
k! Sp(ynp)dp +∑p∈H2

1
k! Sp(y1)dp and

D0← D0 +∑p∈H1
1
k! Sp(ynp)d0p +∑p∈H2

1
k! Sp(y1)d0p.

21: Set potential minimum T̂← yb1.
22: Evaluate O(T̂) = D>T̂+D0.
23: for all {i : p(i) ∈H3} do
24: Set D← D− 1

k! Sp(i−1)(y1)dp(i−1) +
1
k! Sp(i−1)(ynp)dp(i−1) ,

25: Set D0← D0− 1
k! Sp(i−1)(y1)d0p(i−1) +

1
k! Sp(i−1)(ynp)d0p(i−1) .

26: Set t← L∩ p(i).
27: Evaluate O(t) = D>t+D0
28: if O(t)< O(T̂) then
29: Set T̂← t and O(T̂)← O(t).
30: end if
31: end for
32: return T̂.

5 Numerical experience and conclusions

The new algorithm was implemented along the lines of the R-package OjaNP of Fis-
cher et al. (2010). A function ojaMedianExBwas implemented to be used in place
of the previous ojaMedianEx by ROO. A parameter alg="exact bounded"
was added to the function ojaMedian, and the corresponding C++ routines were

Computation of the Oja median by bounded search 15

modified. The codes may be found on the second author’s page www.cgs.uni-
koeln.de/pokotylo.html. The benchmark values were measured inside the C++ rou-
tines, using the file logging. This allows to easily compare the efficiency of the orig-
inal and modified algorithms, excluding the data transformation and hyperplanes
generation time.

The desired volume of the bounded region was set, and the calculation time was
determined for the new exact algorithm as well as for the ROO procedure. Best
results were received at around 10−8 of the original volume in most of tried datasets.
The new algorithm showed to be three to six times faster than the one by ROO.

The new algorithm is able to calculate data sets of the same size and dimension
as the ROO algorithm. It is mainly restricted by the amount of RAM, as it needs
to store all

(n
k

)
hyperplanes. E.g. the calculation of the median in a data set of size

5× 100 needs 12 GB RAM. A PC with a 3.4 GHz processor and 32 GB RAM
was employed in the experimental studies. Only one processor core was used. The
algorithm was able to find the median in data sets of sizes 3×750, 4×150, 5×75,
6×50 in less than half an hour, and of sizes 4×200, 5×100 in less than an hour.

In constructing the bounded regions we have tried the different variants proposed
in section 3. As it was observed, all proposed approaches (B, C, D) that use the
subgradient’s ending point or direction to define the next cutting point converge
extremely slow, compared to the simple divisive approach (A). Although the sub-
gradients may sometimes produce really good cutting points, which strongly reduce
the bounded region, they often stick at the angles of the bounded region, so that the
next steps reduce the bounded region by a narrow slice only, which is close to an
existing bound. Particularly in higher dimensions, the subgradients also appear to be
too short, so that the amount of the volume cut in each step becomes unsatisfying.
Therefore in out search we desist from the lengths of the subgradients and use only
their directions. All the numerical results provided in this paper were received using
the divisive approach starting with the initial rectangular bounded region. The num-
ber of cuts needed to obtain the desired volume appears to depend only moderately
on the size and dimensionality of the data.

For both algorithms, the ROO and the new one, the performance of the searching
procedure strictly depends on the selected initial line. As ROO select this line at
random, their calculation times differ significantly between different launches. Our
bounding algorithm selects the firstly found border line of the bounded region as the
initial line, which makes the searching path completely deterministic, although in
general not the fastest possible.

Employing bounds considerably decreases the complexity of the algorithm. The
minimization along a line produces most of the complexity of the ROO algorithm.
The line is intersected with H =

(n
k

)
hyperplanes, the intersections are sorted and all

of them iterated, which has a complexity of O(H2 logH). The bounding algorithm
leaves a smaller amount h < H of hyperplanes. Only b hyperplanes, b < h, that have
intersections between the bounds remain to be considered. The rougher bound also
strongly decreases the number of hyperplanes which need to be sorted to s : b < s <
h. This provides a complexity of O(b×h logs) only.

16 Karl Mosler and Oleksii Pokotylo

Tables 1, 2 and 3 exhibit a few exemplary results. The experimental data is
an even mixture of two multidimensional normal distributions N(0k,diag(1k)) and
N([15,0, ...,0]k,diag([1,25,1, ...,1]k)) although the conclusions are the same for the
data having other form and for the real data sets. They show how the performance
parameters listed below depend on the data dimension and size, given the intended
volume equal to 10−8 (for Tables 1 and 2), where #Cuts is the number of cuts needed
to reach the intended volume using the divisive approach, H. planes (%) is the per-
cent of the hyperplanes intersecting the bounded region, #Steps is the number of
minimization steps needed to find the median, and time periods needed to: deter-
mine the bounded region Tbounds, calculate the median (after the bounded region is
determined) Tcount , perform the whole procedure Ttotal , and to find the median using
the algorithm by ROO Toriginal . The given times do not include the generation of all
observation hyperplanes, which is the same for both algorithms.

Table 1 The performance parameters for n ∈ {50,75} and intended volume 10−8.

k n #Cuts H. planes (%) #Steps Tbounds Tcount Ttotal Toriginal

2 50 29 0.16 3 0.009 0.001 0.010 0.018
3 50 39 0.64 9 0.216 0.053 0.269 0.557
4 50 42 3.33 34 3.015 2.433 5.448 25.529
5 50 42 9.65 45 31.359 42.876 74.235 476.600
6 50 45 17.65 77 345.128 774.382 1119.510 3149.010

2 75 32 0.11 2 0.023 0.002 0.025 0.038
3 75 36 0.34 14 0.658 0.243 0.901 3.033
4 75 42 2.11 39 15.353 13.720 29.073 110.291
5 75 45 7.17 70 281.888 474.461 756.349 2667.890

Table 2 The performance parameters for k ∈ {4,5} and intended volume 10−8.

k n #Cuts H. planes (%) #Steps Tbounds Tcount Ttotal Toriginal

4 25 38 3.26 25 0.159 0.095 0.254 0.707
4 50 42 3.33 34 3.015 2.433 5.448 25.529
4 75 42 2.11 39 15.353 13.720 29.073 110.291
4 100 43 2.60 35 49.360 41.691 91.051 338.950

5 25 44 11.77 39 0.930 0.932 1.862 6.171
5 50 42 9.65 45 31.359 42.876 74.235 476.600
5 75 45 7.17 70 281.888 474.461 756.349 2667.890
5 100 43 8.53 71 1166.930 2220.330 3387.260 9803.730

The part of the hyperplanes crossing the bounded region of the given volume
grows quickly with dimension, as it is seen in Tables 1 and 3. On the other hand,
the part of these hyperplanes that take part in the minimization process decreases,
since many of their intersections with a searching line lie outside the bounded re-
gion. Note that the bounded region, being located in the middle of the data cloud, is

Computation of the Oja median by bounded search 17

Table 3 The performance parameters for data sets 4× 100 and 6× 50, with different intended
volumes. Volume equal to one corresponds to the ROO algorithm.

k n Volume #Cuts H. planes (%) #Steps Tbounds Tcount Ttotal

4 100 1 36 338.950
4 100 10−02 14 67.45 50 17.648 283.936 301.584
4 100 10−03 18 46.62 49 23.216 201.245 224.461
4 100 10−04 22 28.47 39 28.304 112.429 140.733
4 100 10−05 27 14.23 48 33.403 97.364 130.767
4 100 10−06 31 9.76 29 37.707 49.499 87.206
4 100 10−07 37 5.47 38 44.391 55.032 99.423
4 100 10−08 43 2.60 35 49.360 41.691 91.051
4 100 10−09 47 1.64 33 57.209 37.402 94.611
4 100 10−10 52 0.83 33 59.709 35.347 95.056
4 100 10−20 97 <0.01 22 108.205 21.089 129.294
4 100 10−30 100 <0.01 13 109.004 12.778 121.782

6 50 1 73 3149.010
6 50 10−05 31 53.86 91 215.747 1842.733 2058.480
6 50 10−06 36 35.61 71 270.619 1272.041 1542.660
6 50 10−07 40 26.68 75 301.413 885.707 1187.120
6 50 10−08 45 17.65 77 345.128 774.382 1119.510
6 50 10−09 49 12.97 70 373.170 545.055 918.225
6 50 10−10 53 9.14 94 378.424 705.386 1083.810

intersected by most of the hyperplanes, so that the part of the included hyperplanes
is much larger than the part of the final volume, compared to the initial one. Our
calculations demonstrate that the part of included hyperplanes strongly depends on
the dimensionality and the number of observations, which is also shown in Fig.6.
However, the number of observations has less influence than the dimension.

These three tables also show that the new exact bounding algorithm finds the
median much faster than the one of ROO. We observe that for each given data set
the number of necessary minimization steps is almost the same in both algorithms.
As the intended volume is reduced, the time needed to build the bounded region
increases, while the minimization time decreases along with the number of hyper-
planes and their intersections involved, and the total time also decreases (table 3,
Fig. 7). However, beyond some point, usually at around 10−08 of the volume, this
procedure becomes less efficient, and the total time increases. A smaller volume
may also contain a higher amount of isolated routes through the observation lines,
which involves travelling along the bounds and additionally slows the procedure
down.

If the volume is small enough, any point of it (e.g. the average of the bounds’
intersections) may be taken as an approximate value of a median. For example, for
a four-dimensional dataset bounded by a cube of side length 10, 10−8 of the vol-
ume was reached in 43 cuts, and the center of the final bounded region equalled the
median ±0.05 by each coordinate, which is quite precise. The precision of this ap-
proximative method depends on the volume of the bounded region and is controlled

18 Karl Mosler and Oleksii Pokotylo

-5 -6 -7 -8 -9 -10

0
.0

5
0

.1
0

.2
0

.5
1

2
5

1
0

5
0

Left volume

%
 o

f
h
yp

e
rp

la
n

e
s

25
50
75

100

7
6
5

4

3

2

10 10 10 1010 10

k:

n:

2
0

Fig. 6 The dependence of the part of hyperplanes crossing the bounded region (log scale) on the
size of the region for k ∈ [2..7] and n ∈ {25,50,75,100}.

Left volume

count

5
0

1
0
0

1
5

0
2
0

0
2
5
0

T
im

e

bounds

totalT

T

T

-5 -10 -15 -20 -25 -30
10 10 10 1010 10

Fig. 7 The dependence of calculation time on the size of the bounded region. Note that the ROO
algorithm has total time of ca. 340 seconds.

by it. The method yields as precise results as the approximative methods provided
in the OjaNP R-package. In general, the approximate value of the median is found
much faster than the exact one. We searched an approximative median with preci-
sion equal to half of the bounded region’s volume, the computation times of which
are given in the column Tbounds of Table 3. However, this approximation method is
not really useful, as it considers all observation hyperplanes and is therefore largely
outperformed by the approximative methods of ROO.

Computation of the Oja median by bounded search 19

References

Fischer, D., Möttönen, J., Nordhausen, K., Vogel, D.: OjaNP: Multivariate Methods
Based on the Oja Median and Related Concepts. R package version 0.9-8 (2014),
http://cran.r-project.org/web/packages/OjaNP/ .

Hettmansperger, T. P., Möttönen, J., Oja, H.: Affine-invariant multivariate one-
sample signed-rank tests. Journal of the American Statistical Association, 92, pp.
1591–1600 (1997)

Hettmansperger, T. P., Möttönen, J., Oja, H.: The geometry of the affine invariant
multivariate sign and rank methods. Journal of Nonparametric Statistics, 11, pp.
271–285 (1999)

Koshevoy, G.: Lift-zonoid and multivariate depths. In: R.Dutter (ed.) Developments
in Robust Statistics, pp.194–202. Springer (2003)

Liu, R.Y.: On a notion of simplicial depth. Proceedings of the National Academy of
Sciences 85, pp. 1732–1734 (1988)

Mosler, K.: Depth statistics. In: C. Becker, R. Fried, S. Kuhnt , eds., Robustness
and Complex Data Structures, Festschrift in Honour of Ursula Gather, pp. 17–34.
Berlin (Springer) 2013

Niinimaa, A., Oja, H. and Nyblom, J.: Algorithm AS 277. The Oja bivariate median.
Applied Statistics 41, pp. 611–617 (1992)

Niinimaa, A., Oja, H. and Tableman, M.: The finite-sample breakdown point of the
Oja bivariate median and of the corresponding half-samples version. Statistics &
Probability Letters, 10, pp. 325–328 (1990)

Oja, H.: Descriptive statistics for multivariate distributions. Statistics & Probability
Letters 1, pp. 327–332 (1983)

Oja, H.: Affine invariant multivariate sign and rank tests and corresponding esti-
mates: a review. Scandinavian Journal of Statistics, 26:3, pp. 319–343. Wiley
Online Library (1999)

Oja, H.: Multivariate Median. In: C. Becker, R. Fried, S. Kuhnt , eds., Robustness
and Complex Data Structures, Festschrift in Honour of Ursula Gather, pp. 3–15.
Springer (2013)

Ronkainen, T., Oja, H., Orponen, P.: Computation of the multivariate Oja median.
In: R.Dutter (ed.) Developments in robust statistics, pp. 344–359. Springer (2003)

Small, C.G.: Multidimensional medians arising from goedesics on graphs. Annals
of Statistics 25, pp. 478–494 (1997)

Tukey, J.W.: Mathematics and picturing data. In: R.D. James (ed.) Proceedings
of the 1974 International Congress of Mathematicians, Vancouver, pp. 523–531
(1975)

Zuo, Y., Serfling, R.: General notions of statistical depth function. Annals of Statis-
tics 28, pp. 461–482 (2000)

