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Mia Hubert, Peter Rousseeuw and Pieter Segaert (subsequently HRS) are
to be praised for having developed a visual and well applicable methodology
of treating outliers in functional data. Their principal achievements include a
systematics of functional outliers, novel visualizations and a measure of outly-
ingness (bagdistance), which nicely combines Euclidean distance with location
depth. Most important, the authors offer a consequent multivariate view on
the functions, either assuming genuinely multidimensional functions or consid-
ering multiple aspects of such functions. Several real-data examples illuminate
the capacity and the possible output of the new procedures. Also, an R-package
of the methodology is announced, which will be greatly welcomed.

In the following remarks, I shall first try to put the new methodology into
a broader context of outlier search. Then some specifics of functional data
are discussed, which call for particular treatments. Third a refined approach
is sketched that considers integrals over subintervals. Finally, I will address
the use of different functional depth notions and the computational problems
arising with them.

1 The broad picture

The task of outlier detection is to distinguish ‘irregular’ observations from ‘reg-
ular’ ones. The latter observations are generated by a ‘regular process’, while
the others arise from one (or several) ‘contaminators’. As in every statistical
inquiry, the first question to be posed is: What do we a priori know about the
regular generating process? Which model can be reasonably chosen for it? Of
course, the answer depends primarily on the particular application at hand.
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With functional data, in most applications some prior knowledge is given how
it has been produced or how it should look by its nature. It may result from
the problem setting, e.g., that the functions are monotonic (or bounded to an
interval, or periodic), or that they fit to paths of some ARMA or GARCH
process, or similar.

But, other than standard statistical problems, the problem of outlier detec-
tion needs additional prior considerations. A second question must be answered
in some way: Which sort of outlying observations do we want to detect and
eventually eliminate? This depends to some part on the application at hand
(Which data contaminations have been earlier occurred or are likely due to the
procedure of measurement?), but to a larger part on the goal of the eventual
statistical inquiry. E.g., if inference shall be made about a location parameter,
shift outliers will be relevant, rather than dispersion outliers. Specifically for
functional data, many more possible contaminations have to be thought of
than for univariate or multivariate data. We must decide, at least implicitly,
which of the numerous possible deviations actually turn a function into an
outlier. As an extreme case, consider the problem of outliers in electrocardio-
gram (ECG) data, which is mentioned in the paper. Such data are searched for
pathological deviations, which correspond to certain heart diseases. In this ap-
plication, extensive medical information is available on pathological shapes, so
that the outlier problem rather becomes a problem of supervised classification.

HRS suggest a practical approach to answer Question 2 by offering a par-
tial taxonomy of outlyingness in functional data: They first distinguish an
isolated (= peak) outlier from a persistent one. Among the latter they dis-
cern shift outliers and amplitude outliers. The rest is called outliers of ‘shape’,
which, among others, include outliers regarding slope or phase. Several of the
mentioned categories come with a class of data transformations, by which
an outlier is turned into a regular observation: a shift outlier by a baseline
correction, an amplitude outlier by a rescaling, a phase outlier by a warping
transformation.

A third question to be answered regards the proper statistical procedure of
outlier detection. Which statistics shall be used that identifies and eliminates
the undesirable outliers from the given data? Following their taxonomy of
different aspects of outlyingness, HRS provide diagnostic functions so that
outlyingness in a certain aspect is detected through locational outlyingness
of the respective diagnostic function. Further they offer diagnostic plots, by
which such outliers are visualized. For the categories mentioned, this approach
proves to be clever and practical, which is demonstrated by examples.

More general, the HRS approach says: Construct auxiliary diagnostic func-
tions, like derivatives and warping functions, whose large deviations correspond
to outlyingness in the given application. Augment and partially substitute the
functional observations by the diagnostic functions. If k is the dimension of the
augmented functions, construct a 50% depth-trimmed region (the bag) in Rk

and calculate the bagdistances of all augmented observations. In other words,
the HRS approach adds functional features to the observations so that the
outliers sought for are detected as locational outliers of the augmented data.
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Of course, the ‘taxonomy’ of HRS is not complete and the approach not
universally applicable. However, their basic idea, to substitute or enhance the
given functional observations by other functions that indicate a specific sort
of outlyingness seems to have a promising range of applications.

2 Features of functional data

Functional data can be regarded under many points of view and described
by a multitude of features. Specifically, functions depend on an argument,
usually time or a function of time, and the development of a function over
time has some meaning. Therefore, in comparing functions not only their levels
may be taken into account but also their increasing behavior. For example,
in the classic Berkeley data the growth curves of girls and boys are most
easily distinguished by looking at the average slope of the curves above the
age of 10; see Mosler & Mozharovskyi (2014). Most existing procedures for
functional data analysis largely disregard this aspect by considering levels of
functions only and aggregating this information symmetrically in the time
parameter. This means that an arbitrary permutation of the time variable
will not affect the result: the procedure is rearrangement invariant. A simple
remedy is to include derivatives of the data into the analysis as HRS do, too.
Specifically, slope outliers are identified by enhancing the observations with
their first derivatives and searching them for local locational outliers. Another
remedy consists in fitting a robust time series model to the data and doing
inference about its parameters.

Functional data may also show shifts or other variations in their time
argument. If such deviations are relevant in the eventual statistical inquiry,
HRS propose to detect them by calculating standard warping functions and
checking them for larger differences, that is, location outliers.

3 Local vs. global outlyingness: Considering subintervals

In their ‘taxonomy’, HRS distinguish two extreme cases of functional outliers,
isolated and persistent ones: A deviation at any single time point (or very
short interval) resp. a deviation over the whole interval (or a large part of
it). Depending on the application, local deviations - as opposed to average
deviations over the whole interval - may be expected and their identification
be seen important. For example, deviations in level or phase can be local or
global, while deviations in slope are local.

I think it is a key aspect of outlyingness and to be judged from the ap-
plication at hand (see Question 2), up to which degree local deviations are
regarded as outliers. This degree may be specified by some minimum length of
subinterval over which a deviation should extend in order to constitute an out-
lier. To detect such local outliers, we split the original time interval into small
enough subintervals and take averages over each of these intervals. (Taking
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averages has the advantage that the original functional data can be used and
no interpolation is needed: possible peaks are more or less evened. Also, if the
data is given at discrete time points, these time points need not be common
for all functional observations.) Then, a function is identified as outlying if it
is outlying in at least one of the subintervals, which can be decided by the
diagnostic functions and plots introduced in HRS (cf. e.g. their Figure 2).

To account for a possibly different importance of time regions HRS in-
troduce a weight function in their multivariate functional depth (Equation
(2)). However, such weights are difficult to obtain. Rather, as in Mosler &
Mozharovskyi (2014), I suggest that the whole interval be divided into a num-
ber of subintervals of equal length, and the functions be averaged over the
subintervals. If the number of subintervals is m, we obtain a problem of out-
lier detection in Rm, which may be solved by employing a properly chosen
multivariate data depth. The number of (equal length) subintervals has to be
determined by evaluating some quality index.

4 Depth statistics for functional data

The bagdistance1 of HRS appears to be a felicitous idea to quantify devia-
tions from a center in a robust way. Here, the Tukey depth is only used to
determine a center and a set-valued statistic (the bag) that, among others,
reflects dispersion. The latter is employed for scaling the Euclidean distance
of an observation from the center.

A more direct application of depth statistics is the following: Construct a
functional data depth that is specific for the kind of sought outliers and identify
those observations as outliers whose depth falls below some level. Many notions
of depths for functional data have been introduced in the literature, and some
have been applied to the outlier detection problem in this way; see e.g. the
references given by HRS. In principle, each such depth notion will identify a
different sort of outliers. If the depth is applied to higher-dimensional objects
(like discretizations of the observed functions), only a few depth notions are
feasible: They must not vanish outside the convex hull of the data and should
be computable in reasonable time. Candidates are the Mahalanobis depth, the
spatial depth, and - with some reservation - the projection depth. Note that
the projection depth is very sensitive to small changes in direction. As it is
piece-wise linear, the projection depth attains its maximum at the edges of
direction cones of constant linearity, a randomly chosen direction yields the
exact depth value with probability zero. Consequently, it has to be evaluated
in a huge number of directions (which moreover should increase exponentially
with dimension k), each of which involves the calculation of the median and
MAD of a univariate distribution; see Mosler & Mozharovskyi (2014).

1 The notion of bagdistance defined by HRS should not be mixed up with the notion of
bag distance in data matching, that measures the similarity between strings; see Bartolini
et al. (2002).
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When it comes to computing, the HRS bagdistance needs the calculation
of a Tukey-trimmed region (the bag). There exist recent efficient algorithms
which calculate an exact Tukey region for dimensions k up to 9 (Liu et al.,
2015). As an alternative approach, HRS suggest the use of the skew-adjusted
projection depth (SPD), which is approximately calculated as the infimum of
univariate depths over a finite number of directions. However, I guess that the
number of directions needed for a satisfactory approximation of the SPD is as
large as that needed for the projection depth.

Finally, the functional depth approach extends to situations, where more
than one function is typical for the regular process. If several (types of) func-
tions are seen as typical, multiple centers can be considered. If the regular
process is multimodal, it may be modelled by a location mixture. Then local-
ized depth notions may be employed as e.g. in Sguera et al. (2015).
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