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SUMMARY

We consider nonparametric estimation of multivariate versions of Blomqvist’s beta, also known
as the medial correlation coefficient. For a two-dimensional population, the sample version of
Blomqvist’s beta describes the proportion of data which fall into the first or third quadrant of a
two-way contingency table with cutting points being the sample medians. Asymptotic normality
and strong consistency of the estimators are established by means of the empirical copula process,
imposing weak conditions on the copula. Though the asymptotic variance takes a complicated form,
we are able to derive explicit formulas for large families of copulas. For the copulas of elliptically
contoured distributions we obtain a variance stabilizing transformation which is similar to Fisher’s
z-transformation. This allows for an explicit construction of asymptotic confidence bands used for
hypothesis testing and eases the analysis of asymptotic efficiency. The computational complexity of
estimating Blomqvist’s beta corresponds to the sample size n, which is lower than the complexity
of most competing dependence measures.

Keywords: Blomqvist’s beta, copula, tail dependence, asymptotic normality, empirical copula,
asymptotic efficiency.

AMS 2000 subject class.: Primary 62H20, 62G20, Secondary 62G30, 62H10.

1 Introduction

Suppose (x1, y1), . . . , (xn, yn), n ∈ N, is a sample of a two-dimensional population with joint dis-
tribution function F and continuous marginal distribution functions. Consider the corresponding
two-way contingency table with cutting points being the sample medians of the respective margins.
In that case, the cell counts in the contingency table do not follow a multinomial distribution. Let
n1 denote the number of sample data which belong to the first or third quadrant of the table and
n2 denote the number belonging to the second or fourth quadrant. If the sample size is odd, we
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adjust this definition appropriately. Blomqvist (1950) suggested the following simple dependence
measure, which is based on the above contingency table:

n1 − n2

n1 + n2
=

2n1

n1 + n2
− 1 =: β̂n. (1)

This measure is commonly referred to as Blomqvist’s β or the medial correlation coefficient. For a
pair of continuous random variables X and Y, the population version of β̂n, as given in (1), takes
the form

β := P {(X − x̃) (Y − ỹ) > 0} − P {(X − x̃) (Y − ỹ) < 0} , (2)

where x̃ and ỹ, respectively, denote the median of X and Y. Several generalizations of Blomqvist’s
β to d > 2 dimensions have previously been developed in the literature. We mention Joe (1990),
Nelsen (2002), Taskinen, Oja, and Randles (2005), and Úbeda-Flores (2005). Most of them are
based on the notion of a copula which we shortly recall in the next section.

As a measure of multivariate dependence, Blomqvist’s β has some advantages over competing mea-
sures such as Spearman’s ρ or Kendall’s τ. First, Blomqvist’s β can explicitly be derived whenever
the copula is of explicit form, what is often not possible for the previously mentioned dependence
measures, see Joe (1997), Chapter 5. Even for the copulas of elliptically contoured distributions -
most of them are given implicitly - we are able to derive explicit formulas for Blomqvist’s β. This
family of copulas is frequently encountered in financial engineering, see Cherubini et al. (2004) for
an overview. Another advantage of Blomqvist’s β is the low computational complexity of its esti-
mation. Whereas most implementations of Spearman’s ρ and Kendall’s τ have a complexity of n2,
the estimation of Blomqvist’s β has a complexity of n. This holds because only the median of the
univariate margins needs to be determined (Schöning 1997, p.69). Thus, Blomqvist’s β represents
a fast alternative of estimating copula parameters via the ’method of moments’. Further, although
the asymptotic theory of (multivariate versions of) Spearman’s ρ and Kendall’s τ has already been
developed - see e.g. Rüschendorf (1976), Ruymgaart and van Zuijlen (1978), Gänßler and Stute
(1987), Joe (1990), Stepanova (2003), Schmid and Schmidt (2006a) - and compact expressions for
the related asymptotic variances are known, they can only be evaluated in very special cases since
they involve multiple integration. On the contrary, the asymptotic variance of the estimator β̂n is
much simpler and can be explicitly derived for large families of copulas as we will see in Section 5.
For the copulas of elliptically contoured distributions we even obtain a variance stabilizing transfor-
mation which is similar to Fisher’s z-transformation. This opens the possibility to use standardized
β̂n not only as a test statistics for testing independence, but also for testing general dependence
structures.

The aim of this paper is twofold. First, we generalize Blomqvist’s β in order to obtain a new class
of multivariate dependence measures which measure the amount of dependence in the tail region
of a distribution of d random variables (X1, . . . , Xd). A related class of (conditional) dependence
measures based on Spearman’s ρ has been developed in Schmid and Schmidt (2006b). Both families
of dependence measures are increasing with respect to the multivariate concordance ordering and
are determined by the copula only. Thus both are invariant with respect to the distributions of
the margins Xi. In particular in financial engineering, these types of (conditional) dependence
measures are frequently used in order to investigate the effects of contagion between financial
markets, see Campbell, Koedijk, and Kofman (2002) or Forbes and Rigobon (2002). Our second
aim is the nonparametric estimation of Blomqvist’s β and its multivariate versions. The estimators
we utilize are expressed by the empirical copula process, see Rüschendorf (1976), Deheuvels (1979),
Fermanian et al. (2004) or Tsukahara (2005) and related techniques are used in order to establish
asymptotic normality and strong consistency. As a byproduct we can show that for d = 2 the
asymptotic distribution derived in Blomqvist’s original paper arises if the marginal distributions
of the underlying population are known. This is incorrect for β̂n in (1), which is also reported in
Borkowf et al. (1997).

The paper is organized as follows. Section 2 introduces some notation and gives a short account on
copulas. In Section 3 we define the multivariate versions of Blomqvist’s β (in short: Blomqvist’s
multivariate β) and examine some of their analytical properties. Section 4 deals with the nonpara-
metric estimation under the assumption of known or unknown marginal distributions. A nonpara-
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metric bootstrap for estimating the asymptotic variance is stated at the end of the section. Various
families of copulas are examined in Section 5. Explicit formulas of the asymptotic variance are
calculated for a number of Archimedean and elliptical copulas. Amongst others, it is shown that
a subclass of Blomqvist’s multivariate β is invariant with respect to the characteristic generator
of d-dimensional elliptically contoured distributions. A simulation study investigates the perfor-
mance of the nonparametric bootstrap procedure. Section 6 establishes a relationship between the
coefficient of (extremal) tail dependence λL - which is based on Blomqvist’s multivariate β - and
the family of elliptically contoured distributions. In Section 7 we address asymptotic efficiency.
Relative efficiency and Pitman efficiency of Blomqvist’s multivariate β with respect to multivariate
versions of Spearman’s ρ are considered.

2 Notation and definitions

Let X1, X2, . . . , Xd, d ≥ 2, be random variables with joint distribution function

F (x) = P (X1 ≤ x1, . . . , Xd ≤ xd) , x = (x1, . . . , xd) ∈ Rd,

and marginal distribution functions Fi (xi) = P (Xi ≤ xi) for xi ∈ R and i = 1, . . . , d. Throughout
the paper we write bold letters for vectors, e.g., x = (x1, . . . , xd) is a d-dimensional vector. In-
equalities x ≤ y are understood componentwise, i.e, xi ≤ yi for all i = 1, . . . , d. Let `∞(T ) denote
the space of all uniformly bounded real-valued functions on some set T. The indicator function on
a set A is denoted by 1A. If not stated otherwise, we assume that the Fi are continuous functions.
Thus, according to Sklar’s theorem (Sklar 1959), there exists a unique copula C : [0, 1]d → [0, 1]
such that

F (x) = C (F1 (x1) , . . . , Fd (xd)) , for all x ∈ Rd.

The copula C is the joint distribution function of the random variables Ui = Fi(Xi), i = 1, . . . , d.
Moreover, C(u) = P (U ≤ u) = F (F−1

1 (u1), . . . , F−1
d (ud)) for all u ∈ [0, 1]d. The generalized

inverse function G−1 is defined via G−1(u) := inf{x ∈ R ∪ {∞} | G(x) ≥ u} for all u ∈ (0, 1] and
G−1(0) := sup{x ∈ R ∪ {−∞} | G(x) = 0}. We will need the survival function C̄(u) = P (U > u).
It is well known that every copula C is bounded in the following sense:

W (u) := max {u1 + . . . + ud − (d− 1), 0}
≤ C (u) ≤ min {u1, . . . , ud} =: M (u) for all u ∈ [0, 1]d,

where W and M are called the lower and upper Fréchet-Hoeffding bounds, respectively. The upper
bound M is a copula itself and is also known as the comonotonic copula. It represents the copula
of X1, . . . , Xd if F1 (X1) = · · · = Fd (Xd) with probability one, i.e., if there exists an almost surely
strictly increasing functional relationship between Xi and Xj . By contrast, the lower bound W is
a copula only for dimension d = 2. Another important copula is the independence copula

Π (u) :=
d∏

i=1

ui, u ∈ [0, 1]d ,

which describes the dependence structure of stochastically independent random variables X1, . . . , Xd.
A detailed treatment of copulas is given in Joe (1997) and Nelsen (2006).

It is easy to see that Blomqvist’s β, as given in (2), can be expressed via the copula C of X and Y,
namely

β = 2P {(X − x̃) (Y − ỹ) > 0}−1 = 4C (1/2)−1 =
C (1/2)−Π(1/2) + C̄ (1/2)− Π̄ (1/2)
M (1/2)−Π(1/2) + M̄ (1/2)− Π̄ (1/2)

(3)

with notation 1/2 = (1/2, 1/2). Thus, β can be interpreted as a normalized distance between the
copula C and the independence copula Π. We also mention that β can be written as the Bravais-
Pearson correlation coefficient of sign(X−x̃) and sign(Y −ỹ), i.e. β = E{sign(X−x̃)·sign(Y −ỹ)}.
The right-hand formula in (3) will motivate the following multivariate versions of Blomqvist’s β.
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3 Multivariate Versions of Blomqvist’s β

Suppose C is the copula of d random variables X1, . . . , Xd. A first multivariate version of Blomqvist’s
β is defined by

β : =
C (1/2)−Π(1/2) + C̄ (1/2)− Π̄ (1/2)
M (1/2)−Π(1/2) + M̄ (1/2)− Π̄ (1/2)

= hd

{
C (1/2) + C̄ (1/2)− 21−d

}
, (4)

where hd := 2d−1/(2d−1 − 1) and 1/2 := (1/2, . . . , 1/2). Obviously M (1/2) = 1/2 and Π (1/2) =
2−d. This multivariate version of Blomqvist’s β coincides with the bivariate version, as given in
formula (3) for dimension d = 2. Note that C

(
1
2 , 1

2

)
= C̄

(
1
2 , 1

2

)
holds for any bivariate copula C.

In general, C (1/2) 6= C̄ (1/2) for d ≥ 3.

The next generalization of Blomqvist’s β plays the central role in our analysis. The generalization
is such that emphasis is put on the tail regions of the copula which determine the degree of large
co-movements between the marginal random variables. For example in financial markets, large
co-movements of (negative) asset-returns occur often during market crash or stress situations, cf.
e.g. Karolyi and Stulz (1996), Longin and Solnik (2001), or Forbes and Rigobon (2002). Financial
engineers are particularly interested in the precise modelling and measuring of this kind of depen-
dence since it principally determines the distribution of large losses in a portfolio, see Ong (1999).
We do not fix the point 1/2 (or the median) in formula (4) anymore, but allow for arbitrary cutting
points; we define

β(u,v) := hd(u,v)
[{

C (u) + C̄ (v)
}− gd(u,v)

]
for (u,v) ∈ D, (5)

with norming constants hd(u,v) = {min(u1, . . . , ud)+min(1− v1, . . . , 1− vd)−
∏d

i=1 ui−
∏d

i=1(1−
vi)}−1 and gd(u,v) =

∏d
i=1 ui +

∏d
i=1(1− vi). The domain of the cutting points is D := {(u,v) ∈

[0, 1]2d | u ≤ v,u > 0 or v < 1}. In the following we distinguish between three important cases:

i) β = β(1/2,1/2) which measures the ’overall’ dependence,

ii) β(u,v) with u < 1/2 < v which measures dependence in the tail region,

iii) limp↓0 β{(p, . . . , p),1} which measures (lower) extremal dependence.

Case iii) is a multivariate version of the so-called tail-dependence coefficient which measures bi-
variate tail dependence and plays a role in extreme value theory, see Section 6. Though from a
theoretical point of view measures of extremal dependence are interesting, they have there limita-
tions in application due to the finite number of observations. Usually the statistician fixes a cutting
point which splits the extremal observations from the non-extremal observations. The statistical
inference is then based on extreme value techniques whose performance is sensitive to the choice
of the cutting point, see e.g. Frahm et al. (2005). The measure defined in case ii) also measures
dependence in the tail of a distribution utilizing a cutting point. However, in the present paper,
the statistical inference is elaborated without using extreme value techniques and its applicability
is shown.

Alternative representations of β are developed in a pre-version of this paper which is available on
the authors’ webpage. Further multivariate versions of Blomqvist’s β - such as an average pairwise
version - are given, for example, in Joe (1990) or Úbeda-Flores (2005).

Multivariate concordance. An order of multivariate concordance C ≺c C∗ - in the sense of Joe
(1990) - between two copulas C and C∗ holds if

C (u) ≤ C∗ (u) and C̄ (u) ≤ C̄∗ (u) for every u ∈ [0, 1]d .

Scarsini (1984) proposed a set of axioms for a measure of bivariate concordance, see also Nelsen
(2006), Definition 5.1.7. Various sets of axioms for a measure of multivariate concordance have re-
cently been proposed by Dolati and Úbeda-Flores (2006) and Taylor (2006). The following axioms
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are fulfilled by β(u,v) :
i) β(u,v) is well-defined for every d-dimensional random vector X (d ≥ 2) with continuous mar-

gins Xi and it is solely determined by its (unique) copula C;
ii) −1 ≤ β(u,v) ≤ 1 and β(u,v) = 1 if C = M ;
iii) βX(u,v) = βπ(X)(u,v) for any permutation π of the components of X if u = (u, . . . , u) and

v = (v, . . . , v), i.e., where u,v have equal coordinates.
iv) if X has stochastically independent components, then β(u,v) = 0;
v) if C and C∗ are copulas such that C ≺c C∗, then βC(u,v) ≤ βC∗(u,v);
vi) if (Xn)n∈N is a sequence of random vectors with continuous margins Xi,n and copulas Cn, and

if limn→∞ Cn(u) = C(u) for all u ∈ [0, 1]d and some copula C, then limn→∞ βCn
(u,v) = βC(u,v).

4 Estimation

This section deals with the estimation of the multivariate versions of Blomqvist’s β. We consider
estimators under the assumption of completely known and completely unknown marginal distribu-
tions. For each estimator, asymptotic normality is established and the differences of the asymptotic
variances are elaborated.

4.1 Estimation under known margins

Let X be a d-dimensional random vector with distribution function F, continuous marginal distri-
bution functions Fi, and copula C. Suppose (Xj)j=1,...,n is a random sample generated from X.
In the present section we assume that the univariate marginal distribution functions Fi of F are
continuous and known. We set Uij := Fi(Xij), i = 1, . . . , d, j = 1, . . . , n. Thus, the random vectors
Uj = (U1j , . . . , Udj), j = 1, . . . , n, are distributed according to the copula C. The assumption of
known marginal distributions is dropped in the next section. We make that assumption at this
point in order to show that the asymptotic distribution calculated by Blomqvist (1950), Chapter
4, arises in that special case. Blomqvist considered the case β = β(1/2,1/2), thus, we first confine
ourselves to this dependence measure. The utilized estimator is of the form

β̂?
n = hd





1
n

n∑

j=1

(
d∏

i=1

1{Uij≤ 1
2} +

d∏

i=1

1{Uij> 1
2}

)
− 21−d



 . (6)

The next proposition states the asymptotic normality of the estimator. The proof follows by an
application of the central limit theorem.

Proposition 1 Suppose F is a d-dimensional distribution function with known continuous marginal
distribution functions and copula C. Let β̂?

n be the estimator defined in (6). Then

√
n(β̂?

n − β) d−→ Z with Z ∼ N(0, σ2
?)

and σ2
? = 22d−2[C(1/2) + C̄(1/2)− {C(1/2) + C̄(1/2)}2]/(2d−1 − 1)2.

Example. For the d-dimensional independence copula Π we have C(1/2) = C̄(1/2) = 2−d and
thus, σ2

? = 1/(2d−1 − 1).

Remark. For dimension d = 2, β can always be represented by β = 4C(1/2)− 1, cf. formula (3),
which motivates the consideration of the following estimator for β :

4
n∑

j=1

1{U1j≤1/2 and U2j≤1/2} − 1. (7)
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This estimator possesses an asymptotic variance of 4[C(1/2)− {C(1/2)}2] which is larger than σ2
?

for any copula C. For example, if C is the independence copula Π, the asymptotic variance of the
latter estimator is three times the asymptotic variance of β̂?

n. This is intuitive since the estimator
in (7) retrieves less information from the data than β̂?

n.

Blomqvist (1950) claims that
√

n(β̂n − β), as defined in formulas (1) and (2), is asymptotically
normal with variance 1 − q2, where q = 4C̄(1/2) − 1 = 4C(1/2) − 1. The asymptotic variance σ2

?

for dimension d = 2, as given in Proposition 1, coincides with 1 − q2 = 1 − {4C(1/2) − 1}2 =
4[2C(1/2) − {2C(1/2)}2] = σ2

?. This implies that the asymptotic variance derived in the above
reference equals the asymptotic variance of

√
n(β̂?

n− β). In other words, the asymptotic variance is
valid if the marginal distributions or the corresponding medians are known. By contrast, Corollary
3 later shows that

√
n(β̂n − β) does not possess this asymptotic variance in general. In particular,

Blomqvist (1950) utilized an incorrect change of limits in his formula (7). For the Ali-Mikhail-Haq
copula C(u1, u2) = u1u2/{1 − θ(1 − u1)(1 − u2)}, θ ∈ [−1, 1), Figure 1 illustrates the differences
between these asymptotic variances over θ. Only for θ = 0 - which corresponds to the independence
copula Π - the variances coincide.

Figure 1: Asymptotic variance of Blomqvist’s β̂n (dotted line) and β̂?
n (solid line) for the Ali-

Mikhail-Haq copula depending on the parameter θ.

4.2 Estimation under unknown margins

We drop the assumption of known marginal distributions and discuss nonparametric estimators
for the versions of Blomqvist’s β defined in (5). More precisely, we consider a random sample
(Xj)j=1,...,n from a d-dimensional random vector X with joint distribution function F and copula
C which are completely unknown. The marginal distribution functions Fi are estimated by their
empirical counterparts

F̂i,n(x) =
1
n

n∑

j=1

1{Xij≤x}, for i = 1, . . . , d and x ∈ R̄.

Further, set Ûij,n := F̂i,n(Xij) for i = 1, . . . , d, j = 1, . . . , n, and Ûj,n = (Û1j,n, . . . , Ûdj,n). Note
that

Ûij,n =
1
n

(rank of Xij in Xi1, . . . , Xin). (8)

The estimation of β will therefore be based on ranks and not on the observations themselves. The
copula C and the survival function C̄ are estimated using the empirical copula Cn and the empirical
survival function C̄n which are defined by

Cn(u) =
1
n

n∑

j=1

d∏

i=1

1{Ûij,n≤ui} and C̄n(u) =
1
n

n∑

j=1

d∏

i=1

1{Ûij,n>ui} for u = (u1, . . . , ud)′ ∈ [0, 1]d.
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The natural estimator for β(u,v), as stated in formula (5), is then given by

β̂n(u,v) = hd(u,v)
[{

Cn (u) + C̄n (v)
}− gd(u,v)

]
. (9)

with norming constants hd(u,v) and gd(u,v) defined in (5). The asymptotic distribution of√
n{β̂n(u,v)− β(u,v)} is established next.

Theorem 2 Let F be a continuous d-dimensional distribution function with copula C. Set Dε :=
{(u,v) ∈ [0, 1]2d | u ≤ v, u ≥ ε or v ≤ 1 − ε} for arbitrary but fixed ε > 0. Under the additional
assumption that the i-th partial derivatives DiC and DiC̄ exist and are continuous:

√
n

{
β̂n(u,v)− β(u,v)

}
w−→ G(u,v),

where G(u,v) is a centered tight continuous Gaussian process. Weak convergence takes place in
`∞(Dε) and

G(u,v) = hd(u,v)

[
BC (u) + BC̄ (v)−

d∑

i=1

{
DiC (u)BC

(
u(i)

)
+ DiC̄ (v)BC

(
v(i)

)}]
(10)

with u(i) := (1, ..., 1, ui, 1, ..., 1) . Here, BC and BC̄ are centered tight Gaussian processes on [0, 1]d

with covariance functions E{BC(u1)BC(u2)} = C(u1∧u2)−C(u1)C(u2) and E{BC̄(u1)BC̄(u2)} =
C̄(u1 ∨ u2) − C̄(u1)C̄(u2). Moreover, BC (u) and BC̄ (v) are jointly normally distributed with co-
variance

E{BC(u)BC̄(v)} = −C(u)C̄(v). (11)

Proof. Let (u,v) ∈ Dε, ε > 0, and F̄ (x) = P (X > x). The following holds:

√
n(β̂n(u,v)− β(u,v))/hd(u,v) + O(1/

√
n)

=
√

n
[
F̂n

{
F̂−1

1,n(u1), . . . , F̂−1
d,n(ud)

}
+ ˆ̄Fn

{
F̂−1

1,n(v1), . . . , F̂−1
d,n(vd)

}
− {C(u) + C̄(v)}

]
= (∗),

with empirical joint distribution and survival function

F̂n(x) =
1
n

n∑

j=1

d∏

i=1

1{Xij≤xi} and ˆ̄Fn(x) =
1
n

n∑

j=1

d∏

i=1

1{Xij>xi}. (12)

It is well known (see e.g. Example 2.10.4 in Van der Vaart and Wellner (1996)) that the empirical

processes Hn =
√

n(F̂n − F ) and H̄n =
√

n( ˆ̄Fn − F̄ ) converge weakly in `∞([−∞,∞]d) to centered
tight continuous Gaussian processes. Similarly, the empirical process Hn(x) + H̄n(y) converges
weakly in `∞([−∞,∞]2d) to a centered tight Gaussian process. The verification of this is standard;
for example, marginal convergence is proven via a multivariate version of the Lindeberg-Feller
theorem for triangular arrays, cf. Araujo and Giné (1980), p.41.
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We have

(∗) = Hn{F−1
1 (u1), . . . , F−1

d (ud)}+ H̄n{F−1
1 (v1), . . . , F−1

d (vd)} (13)

+
√

n
[
F{F̂−1

1,n(u1), . . . , F̂−1
d,n(ud)} − C(u)

]

+
√

n
[
F̄{F̂−1

1,n(v1), . . . , F̂−1
d,n(vd)} − C̄(v)

]

+
d∑

i=1

[
Hn{F−1

1 (u1), . . . , F−1
i−1(ui−1), F̂−1

i,n (ui), . . . , F̂−1
d,n(ud)

}
(14)

−Hn{F−1
1 (u1), . . . , F−1

i (ui), F̂−1
i+1,n(ui+1), . . . , F̂−1

d,n(ud)
}]

+
d∑

i=1

[
H̄n{F−1

1 (v1), . . . , F−1
i−1(vi−1), F̂−1

i,n (vi), . . . , F̂−1
d,n(vd)

}
(15)

−H̄n{F−1
1 (v1), . . . , F−1

i (vi), F̂−1
i+1,n(vi+1), . . . , F̂−1

d,n(vd)
}]

.

The sums in formulas (14) and (15) converge to zero in probability due to the weak convergence
of Hn and H̄n in `∞([−∞,∞]d); utilize tightness of Hn and H̄n. The expression in formula (13)
converges in distribution to BC(u) + BC̄(v), where BC and BC̄ are d-dimensional Brownian sheets
with the following covariance functions on [0, 1]d :

E{BC(u1)BC(u2)} = C(u1∧u2)−C(u1)C(u2) and E{BC̄(u1)BC̄(u2)} = C̄(u1∨u2)−C̄(u1)C̄(u2).

The covariance structure between BC(u) and BC̄(v), which are jointly normally distributed, is of
the form (11). Moreover,

√
n
[
F{F̂−1

1,n(u1), . . . , F̂−1
d,n(ud)} − C(u)

]
+
√

n
[
F̄{F̂−1

1,n(v1), . . . , F̂−1
d,n(vd)} − C̄(v)

]

w−→ −
d∑

i=1

{
DiC (u)BC

(
u(i)

)
+ DiC̄ (v)BC

(
v(i)

)}

due to the prerequisites and the Bahadur representation of the uniform empirical process. An
application of the functional Delta method (Van der Vaart and Wellner 1996, p.374) to the map
φ(F, F̄ )(u,v) = F (F−1

1 (u1), . . . , F−1
d (ud)) + F̄ (F−1

1 (v1), . . . , F−1
d (vd)) = C(u) + C̄(v) yields the

asserted weak convergence of
√

n(β̂n(u,v)− β(u,v)) to a centered tight continuous Gaussian pro-
cess. ¤

Remarks. i) A version of the classical Glivenko-Cantelli theorem yields that both empirical func-

tions F̂n(x) and ˆ̄Fn(x), as defined in equation (12), are uniformly almost-surely convergent in
x ∈ Rd. As a consequence we obtain that Cn(u) and C̄n(u), respectively, are strongly consistent
estimators for C(u) and C̄(u) for every u ∈ [0, 1]d. Thus, β̂n(u,v) is also a strongly consistent
estimator for β(u,v) for every (u,v) ∈ D.
ii) Weak convergence of the empirical (tail) copula process on the space Dε with ε = 0 is addressed
in Schmidt and Stadtmüller (2006).

The special case β = β(1/2,1/2) is considered in the next corollary, where we state the asymptotic
distribution of its estimator.

Corollary 3 Let X have a continuous d-dimensional distribution function F with copula C. Con-
sider the following estimator for β = β(1/2,1/2)

β̂n = β̂n(1/2,1/2) = hd

{
Cn (1/2) + C̄n (1/2)− 21−d

}
. (16)
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Under the assumptions that the i-th partial derivatives DiC and DiC̄ exist and are continuous at
the point 1/2, we have

√
n

(
β̂n − β

)
d−→ Z with Z ∼ N(0, σ2)

and variance σ2 = E{G(1/2,1/2)2} as defined in Theorem 2. Thus, the asymptotic variance σ2

involves the following expressions

E {BC (1/2)BC (1/2)} = C (1/2)− {C (1/2)}2

E
{
BC (1/2)BC (1/2)(i)

}
=

1
2
C (1/2)

E
{
BC (1/2)(i) BC (1/2)(j)

}
=

{
1
2 −

(
1
2

)2
i = j

Cij

(
1
2 , 1

2

)− (
1
2

)2
i 6= j

E {BC (1/2)BC̄ (1/2)} = −C (1/2) C̄ (1/2) E
{
BC (1/2)BC̄ (1/2)(j)

}
= −1

2
C (1/2) .

Here, Cij denotes the marginal copula which refers to the variables Xi and Xj for i 6= j and
i, j ∈ {1, ..., d} .

One advantage of the considered multivariate versions of Blomqvist’s β is that the asymptotic vari-
ance of their estimators can explicitly be computed whenever the copula and its partial derivatives
take an explicit form. For other rank-based dependence measures, such as Kendall’s τ or Spear-
man’s ρ, this is rarely possible even in the two-dimensional setting, see Schmid and Schmidt (2006a)
for some special cases.

The estimation of the asymptotic variance in Theorem 2 may not be straightforward if the copula
is given in implicit form or is completely unknown. This is because the variance involves the copula
and its partial derivatives. One may either estimate the copula and its partial derivatives via the
empirical copula or apply a nonparametric bootstrap procedure. The following theorem shows that
the bootstrap works. In this context, let (XB

j )j=1,...,n denote the bootstrap sample which is obtained
by sampling from (Xj)j=1,...,n with replacement. In Section 5.4 we illustrate the performance of
the bootstrap using a simulation study.

Theorem 4 (The bootstrap) Let β̂n(u,v) be the estimator defined in formula (9) and denote
by β̂B

n (u,v) the corresponding estimator for the bootstrap sample (XB
j )j=1,...,n. Then, under the as-

sumptions of Theorem 2,
√

n{β̂B
n (u,v)−β̂n(u,v)} converges weakly to the same limit as

√
n{β̂n(u,v)−

β(u,v)} with probability one. Weak convergence takes place in `∞(Dε).

Proof. According to Theorem 3.6.2 in Van der Vaart and Wellner (1996), p.347, the empirical
process Hn =

√
n(F̂n−F ) and its bootstrapped version HB

n =
√

n(F̂B
n − F̂n) converge to the same

limit with probability one. The weak convergence of HB
n and Hn takes place in `∞([−∞,∞]d). By

mimicking the proof of Theorem 2 one obtains the asserted weak convergence of
√

n{β̂B
n (u,v) −

β̂n(u,v)}. ¤

4.3 The radial symmetric case C(u) = C̄(1− u)

In formula (3) it was shown that β = β(1/2,1/2) takes the form β = 4C(1/2) − 1 in the two-
dimensional case d = 2. For higher dimensions d ≥ 3, this relationship is generally not true.
However, if the copula is radially symmetric, i.e. C(u) = C̄(1− u), the population version of
β(u,v) is of the form

β(u,v) = hd(u,v) {C (u) + C (1− v)− gd(u,v)} . (17)

Note that especially in higher dimensions it can be tedious to calculate the survival function C̄.
Also radial symmetry implies that the asymptotic variance of the corresponding estimator can be
expressed using the copula C only.
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Examples of radially symmetric copulas are the families of elliptical copulas such as the normal or
the Student’s t-copula, the bivariate Archimedean Frank copula or the independence copula, see
Section 5. The following multidimensional extension of Theorem 2.7.3 in Nelsen (2006) provides a
method to check for radial symmetry of a copula.

Proposition 5 Let X be a d-dimensional random vector with joint distribution function F and
copula C. Suppose the marginal random variables Xi are continuous and symmetric about ai, i =
1, . . . , d. Then X is radially symmetric about a = (a1, . . . , ad), i.e. F (a + x) = F̄ (a − x) for all
x ∈ Rd, if and only if C is radially symmetric.

5 Examples

A number of copulas are considered now for which we calculate Blomqvist’s multivariate β and the
asymptotic variance of its nonparametric estimator.

5.1 Independence

Consider a random vector X = (X1, ..., Xd) where the X1, ..., Xd are stochastically independent
(but not necessarily identically distributed). The related copula is the independence copula Π.

Proposition 6 Let C be the independence copula Π. Then, the asymptotic variance σ2
u,v := E{G(u,v)2}

as given in Theorem 2, for u = 1/2 and v = 1/2 is of the form

σ2
1/2,1/2 =

1
2d−1 − 1

= σ2
? , (18)

where σ2
? denotes the asymptotic variance stated in Proposition 1. Thus, the asymptotic variances

of the respective estimators under known margins and under unknown margins coincide.

The asymptotic variance for general (u,v) ∈ Dε, ε > 0, is

σ2
u,v = hd(u,v)

(
ū + v̄ − (ū + v̄)2 − 2

d∑

i=1

[
ūi{ū(1− ui)− v̄ui} − v̄i{ū(1− vi)− v̄vi}

])
(19)

with ū :=
∏d

i=1 ui, v̄ :=
∏d

i=1(1− vi), ūj :=
∏

i 6=j ui, and v̄j :=
∏

i 6=j(1− vi).

Proof. The asymptotic variances are directly calculated utilizing the facts that DiC(u1, ..., ud) =∏
j 6=i uj and that the independence copula is radially symmetric, i.e. C̄(u) = C(1− u). ¤

5.2 Elliptical copulas

Elliptical copulas are the copulas of elliptically contoured distributions such as the multivariate
normal distributions, Student’s t-distributions, symmetric generalized hyperbolic distributions, or
α-stable distributions. A d-dimensional random vector X possesses an elliptically contoured distri-
bution with parameters µ ∈ Rd and Σ ∈ Rd×d if

X d= µ + A′Y, (20)

where A ∈ Rm×d with A′A = Σ, rank(Σ)=m, and Y is an m-dimensional (m ∈ N) spherically

distributed random vector, i.e., OY d= Y for every orthogonal matrix O ∈ Rm×m. It can be
shown that Y belongs to the class of spherical distributions if and only if its characteristic function
φ(t), t ∈ Rd, takes the form φ(t) = Υ(t′t) for some function Υ : R → R. Thus, the family of
d-dimensional elliptically distributed random vectors is characterized by a location vector µ, a
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dispersion matrix Σ, and a characteristic generator Υ. We say X and its copula, respectively, are
non-degenerated if the dispersion matrix Σ is positive definite. For a review of elliptically contoured
distribution see Fang et al. (1990).

The next proposition justifies the usage of the results in Section 4.3 for the family of elliptical
copulas.

Proposition 7 Every non-degenerated d-dimensional elliptical copula is radially symmetric.

Proof. Let C be a non-degenerated d-dimensional elliptical copula C. An easy extension of Theorem
2.4.3 in Nelsen (2006) implies that every copula is invariant with respect to strictly increasing
transformations of the one-dimensional margins. Thus, we may associate with C a d-dimensional
standardized elliptically distributed random vector X, i.e. µ = 0 and Σii = 1 for all i = 1, . . . , d.
In particular, each one-dimensional marginal random variable Xi is symmetric about 0. Combining
Proposition 5 and the fact that X has the same distribution as −X, we conclude that C is radially
symmetric. ¤

The following proposition comprises formulas for Blomqvist’s multivariate β = β(1/2,1/2) for the
family of elliptical copulas.

Proposition 8 Let F be the family of d-dimensional distributions having a non-degenerated el-
liptical copula which is characterized by the dispersion matrix Σ = (Σij) and the characteristic
generator Υ. Then, Blomqvist’s β = β(1/2,1/2) is invariant with respect to the characteristic gen-
erator Υ within this family F. Further, (bivariate) Blomqvist’s β between the i-th and j-th marginal
distribution of some F ∈ F - denoted by βij - takes the form

βij = 2arcsin(%ij)/π, (21)

where %ij = Σij/
√

ΣiiΣjj . For every trivariate (d = 3) distribution function F ∈ F we have

β =
2
3π

{
arcsin(%12) + arcsin(%13) + arcsin(%23)

}
.

In the equi-correlated case % = %ij = Σij/
√

ΣiiΣjj , i 6= j, we have

for d = 4 : β =
12
7π

arcsin(%) +
24
7π2

∫ %

0

arcsin
( t

1 + 2t

) dt√
1− t2

,

for d = 5 : β =
4
3π

arcsin(%) +
24
3π2

∫ %

0

arcsin
( t

1 + 2t

) dt√
1− t2

.

For a more general correlation structure %ij = δiδj , |δi| ≤ 1 and general dimension d, we have

β =
{

2d

∫ ∞

−∞

d∏

i=1

Φ
(
− δit√

1− δ2
i

)
ϕ(t) dt− 1

}/
(2d−1 − 1)

with standard normal distribution function Φ and corresponding density ϕ.

Proof. Let C be a non-degenerated elliptical copula which is associated to some random vector X.
According to the multivariate version of Theorem 2.4.3 in Nelsen (2006), we may assume that X
has a centered elliptically contoured distribution with stochastic representation as given in formula

(20). The corresponding spherical random vector Y has the representation Y d= RU - see Theorem
2.2 in Fang et al. (1990) - where the random variable R ≥ 0 is independent of the d-dimensional
random vector U which is uniformly distributed on the unit sphere Sd−1

2 in Rd. Then, P (X ≤ 0) =∫∞
0

P (rA′U ≤ 0) dFR(r) = P (A′U ≤ 0) which is invariant with respect to the random variable
R. This invariance holds also with respect to the characteristic generator Υ. Combining this fact
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with Proposition 7 and C(1/2) = P (X ≤ 0), yields the first assertion of the proposition. The
explicit formulas of β are now calculated by using the orthant probabilities of multivariate normal
distributions, as given in Steck (1962) and Kotz et al. (2000). ¤

Remark. Theorem 3.1 in Fang et al. (2002) and formula (21) imply that the population version
of Kendall’s τ coincides with Blomqvist’s β within the family of bivariate distributions having an
elliptical copula - so called meta-elliptical distributions.

Next we derive an explicit form for the asymptotic variance of Blomqvist’s beta for the family of
elliptical copulas and provide a variance stabilizing transformation.

Proposition 9 Let X be a d-dimensional random vector with non-degenerated elliptical copula

which fulfills the prerequisites in Corollary 3. Denote by β̂
(ij)
n = β̂

(ij)
n (1/2,1/2) the estimator of

Blomqvist’s βij between the i-th and j-th margin of X. The corresponding asymptotic variance
σ2(%ij) can be expressed by

σ2(%ij) =
π2 − 4{arcsin(%ij)}2

π2
= 1− β2

ij

with %ij = Σij/
√

ΣiiΣjj . This yields a variance stabilizing transformation g(t) = arcsin(t) which
implies

√
n

{
g(β̂(ij)

n )− g(βij)
}

d−→ N(0, 1).

For the proof calculate the asymptotic variance, as given in Corollary 3, and utilize the radial symme-
try stated in Proposition 7. Note that for any bivariate elliptical copula C we have DiC(u)|u=1/2 =
1/2. The variance stabilizing transformation is useful for the construction of confidence bands for
Blomqvist’s β. In particular, the asymptotic confidence interval for Blomqvist’s βij in Proposition
9 is given by

(sin{arcsin(βij)− z1−α/
√

n}, sin{arcsin(βij) + z1−α/
√

n}),
where z1−α is such that Φ(z1−α) = 1 − α with standard normal distribution Φ. Note that beside
stabilization of the variance, the above transformation also symmetrizes the distribution of the
sample version of Blomqvist’s β. This may be compared with Fisher’s z-transformation of Pearson’s
sample correlation-coefficient which has the form g(t) = arctanh(t).

5.3 Archimedean copulas

A d-dimensional Archimedean copula is of the form

C(u) = C(u1, . . . , ud) = ϕ−1{ϕ(u1) + · · ·+ ϕ(ud)}

with continuous, strictly decreasing generator ϕ : [0, 1] → [0,∞] such that ϕ(1) = 0, ϕ(0) = ∞,
and the inverse function ϕ−1 is completely monotonic on [0,∞). For more details we refer to Joe
(1997), Chapter 4.

Table 1 provides the asymptotic variance of the estimator β̂n = β̂n(1/2,1/2), as given in Corollary
3, for a number of bivariate Archimedean copulas. Similar results are obtained for the general
estimator β̂n(u,v) but are omitted for presentational reasons. Figure 2 illustrates the range of the
asympotic variance σ2(θ) depending on the copula parameter θ. For the bivariate Frank copula -
No. (5) in Table 1 - we may utilize the findings of Section 4.3 since this copula is radially symmetric.
However, the next theorem shows that, for d ≥ 3, there exists no radially symmetric Archimedean
copula.

Theorem 10 There exists no radially symmetric d-dimensional Archimedean copula for d ≥ 3.
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Table 1: Asymptotic variance σ2(θ), as given in Corollary 3, for selected Archimedean copulas.
No. (1) is the Clayton copula, (3) corresponds to the Ali-Mikhail-Haq copula, (4) is the Gumbel-
Hougaard copula, (5) denotes the Frank copula, and (6) is the Gumbel-Barnett copula. We restrict
the domain of the parameter θ such that the copula is well defined and the asymptotic variance
σ2(θ) > 0.

No. C(u1, u2) Parameters σ2(θ)

(1)
{

max(u−θ
1 + u−θ

2 − 1, 0)
}−1/θ

θ ∈ (−1,∞)\{0} 8hθ{1− 2hθ + (4hθ+1
θ 2θ − 1)2}

hθ = (2θ+1 − 1)−1/θ

(2) max
[
1−

{
(1− u1)

θ + (1− u2)
θ
}1/θ

, 0
]

θ ∈ [1,∞)
24hθ − 16h2

θ − 20gθ + 16g2
θ − 4g3

θ

hθ = 2(1−θ)/θ, gθ = 21/θ

(3)
u1u2

1− θ(1− u1)(1− u2)
θ ∈ [−1, 1) 16

θ4 − 7θ3 + 36θ2 − 80θ + 64

(4− θ)5

(4) exp
[
− {

(− ln u1)
θ + (− ln u2)

θ
}1/θ

]
θ ∈ [1,∞)

8hθ{1− 2hθ + (21/θ+1hθ − 1)2}
hθ = exp(−21/θ ln 2)

(5) −1

θ
ln

{
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}
θ ∈ R\{0} 16

θ2
ln

( 2

1 + eθ/2

)
ln

(1 + e−θ/2

2

)

(6) u1u2 exp(−θ ln u1 ln u2) θ ∈ (0, 1]
hθ{2− hθ + 2(hθ + θhθ ln 2− 1)2}

hθ = exp{−θ(ln 2)2}

(7)
[
1 +

{
(u−1

1 − 1)θ + (u−1
2 − 1)θ

}1/θ]−1

θ ∈ [1,∞)
8

hθ

{
1− 2

hθ
+

(22+1/θ

h2
θ

− 1
)}

hθ = 1 + 21/θ

(8) θ/ ln
(
eθ/u1 + eθ/u2 − eθ

)
θ ∈ (0,∞)

8θ

ln hθ

{
1− 16θ

ln hθ
+

( 8θ2e2θ

(ln hθ)2hθ
− 1

)2}

hθ = 2 exp(2θ)− exp(θ)

Proof. Suppose C is a d-dimensional radially symmetric copula (d ≥ 3) which is of Archimedean
type. Then, the bivariate marginal copula C2(u1, u2) = C(u1, u2, 1, . . . , 1) must also be radially
symmetric due to the fact that C is radially symmetric if and only if

C(1− u) = C̄(u) =
d∑

k=0

(−1)k
∑

I⊂{1,...,d}
|I|=k

C
(
uI

)
,

where the components of uI are such that uI
i = ui if i ∈ I and uI

i = 1 if i /∈ I. Further, if
C is Archimedean than C2 is also an Archimedean copula with the same generator function ϕ.
According to Frank (1979), the only bivariate Archimedean copula which is radially symmetric
is the Frank copula. Consequently, the only d-dimensional Archimedean copula which might be
radially symmetric must be the Frank copula (see the example below for the explicit form). For
d = 3, this copula yields

C(1/2)− C̄(1/2) =
1
2

+
3
θ

ln
{

1 +
(e−θ/2 − 1)2

(e−θ − 1)

}
− 2

θ
ln

{
1 +

(e−θ/2 − 1)3

(e−θ − 1)2

}
, θ > 0.

This expression is zero if and only if θ is zero (in limit). Since θ > 0, we conclude that C(1/2) 6=
C̄(1/2) and, thus, the three-dimensional Frank copula is not radially symmetric. This implies that
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Figure 2: Asymptotic variance σ2(θ) of Blomqvist’s β̂n as given in Corollary 3, for various copulas
numbered as in Table 1.

every d-dimensional Frank copula for d ≥ 3 is not radially symmetric, because otherwise every lower
dimensional copula would also be radially symmetric. ¤

Examples. The family of d-dimensional Frank copulas (d ≥ 2) is given by

Cθ(u) = −1
θ

ln
{

1 +
(e−θu1 − 1)(e−θu2 − 1) · · · (e−θud − 1)

(e−θ − 1)d−1

}
with θ > 0

and the family of d-dimensional Gumbel-Hougaard copulas (d ≥ 2) is given by

Cθ(u) = exp
[
−

{
(− ln u1)θ + (− ln u2)θ + · · ·+ (− ln ud)θ

}1/θ]
, with θ ≥ 1.

Figure 3 shows the asymptotic standard deviation of
√

n{β̂n(1/2,1) − β(1/2,1)} for various di-
mensions d for the above copulas. The independence copula Π corresponds to the parameter θ = 0
(Frank copula) and θ = 1 (Gumbel-Hougaard copula). Figure 3 illustrates that, in the indepen-
dence case, the asymptotic standard deviation of the estimator decreases with increasing dimension
d. It can be shown that this property does not hold for any fixed θ > 0 (Frank copula) and θ > 1
(Gumbel-Hougaard copula).

Figure 3: Asymptotic standard deviation of
√

n{β̂n(1/2,1)−β(1/2,1)} for the d-dimensional Frank
copula (left plot) and Gumbel-Hougaard copula (right plot) for dimensions d = 2, . . . , 8.
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5.4 Simulation Study

In the following we examine the finite sample behavior of the sample version of Blomqvist’s multi-
variate β. In particular, we are interested in the performance of the nonparametric bootstrap for the
estimation of the asymptotic variance. We confine ourselves to the estimation of β = β(1/2,1/2)
due to limited space.

Two copulas are considered in various dimensions d, namely, the Gaussian copula and the Student’s
t-copula. These copulas are the most popular copulas for applications in financial engineering, see
Cherubini et al. (2004) for an overview. The d-dimensional equi-correlated Gaussian copula -
considered in Table 2 - is given by

C(u1, ..., ud; %) =
∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(ud)

−∞
(2π)−

d
2 det{Σ(%)}− 1

2 exp
(
− 1

2
x′Σ(%)−1x

)
dxd . . . dx1

where Σ(%) = %11′ + (1− %)Id with identity matrix Id and − 1
d−1 < % < 1. The Student’s t-copula

represents the copula of the multivariate Student’s t-distribution and is defined similarly.

Tables 2 and 3 summarize the simulation results for the above copulas for dimensions d = 2, 5,
and 10. Two three-dimensional Student’s t-copulas, which are not equi-correlated, are considered
in Table 4. The first and second column in every table contain values of the parameters and sample
sizes, respectively. The third column contains the true value of Blomqvist’s β in the two- and three-
dimensional cases, whereas it contains an approximation of Blomqvist’s β for dimensions d = 5, 10,
cf. Proposition 8. The latter values of Blomqvist’s multivariate β have been derived by computing
β̂ - the index n will be suppressed for notational convenience - from samples of length 500,000. The
first two digits behind the decimal point are accurate. The fourth and sixth columns contain the
means m(β̂) and the standard deviations σ̂(β̂) of β̂ over 300 Monte Carlo replications.

Comparing the third and fourth column in every table (β and m(β̂)), we observe a minor bias for
small sample sizes, such as n = 100, in every dimension under study. There is good agreement
between the fourth and fifth column, i.e., between m(β̂) and m(β̂B). The sixth column shows the
standard error σ̂(β̂) of β̂ which is decreasing with increasing sample size n. The amount of σ̂(β̂)
depends on the copula, its parameters, and the dimension d. The seventh column contains the
empirical mean m(σ̂B) of the bootstrap estimates. The good agreement between the sixth and
seventh column indicates that the nonparametric bootstrap works well for every dimension under
study, although a bias is present for small sample sizes. Column 8 shows that the standard deviation
of σ̂B over 300 Monte Carlo replications is low, especially for n = 500 and 1000. For comparison,
the last column provides the estimates of the asymptotic standard deviation given in Corollary 3.
It can be seen that the asymptotic standard deviation is well estimated by σ̂B

√
n for both copulas

and every parameter constellation under study, even for the small sample size n = 100.

6 Tail dependence

The concept of tail dependence helps to analyze and to model dependencies between extreme
events. For example in finance (see Poon et al. (2004) for an overview) tail dependent distributions
or copulas are frequently used in order to model the possible dependencies between large negative
asset-returns or portfolio losses. The lower tail-dependence coefficient λL between two random
variables X1 and X2 with copula C is defined by

λL := lim
p↓0

P (X1 ≤ F−1
1 (p) | X2 ≤ F−1

2 (p)) = lim
p↓0

C(p, p)
p

, (22)

if the limit exists. If λL > 0, we say that X = (X1, X2)′ is tail dependent, otherwise X is tail inde-
pendent. This dependence measure was introduced by Sibuya (1960) and plays a role in bivariate
extreme value theory. For the independence copula Π(u, v) we have λL = 0 (tail independence)
and for the comonotonic copula M(u, v) we have λL = 1 (tail dependence). Note that the tail-
dependence coefficient λL is a copula-based dependence measure. Furthermore, it is related to the
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Table 2: Gaussian copula. Simulation results for bootstrapping Blomqvist’s multivariate β̂n (the
index n is suppressed). Results are based on 300 samples with sample size n generated from a
d-variate Gaussian copula with equi-correlation parameter %. The columns provide the empirical
means - denoted by m() - and the empirical standard deviations - denoted by σ̂() - based on the
simulated data and the respective bootstrap samples. The statistics with superscript B refer to
the bootstrap sample. 250 bootstrap replications were drawn from each sample. The empirical
standard deviation of the bootstrapped statistics is abbreviated by σ̂B = σ̂(β̂B).

% n β m(β̂) m(β̂B) σ̂(β̂) m(σ̂B) σ̂(σ̂B) σ̂(β̂)
√

n

Dimension d = 2
0 100 0 .002 .005 .102 .110 .006 1.019

500 0 .000 .000 .046 .047 .002 1.021
1000 0 -.001 -.002 .032 .033 .001 1.016

0.3 100 .194 .194 .191 .092 .109 .006 .920
500 .194 .193 .193 .047 .046 .002 1.041

1000 .194 .194 .194 .032 .032 .002 1.002
0.7 100 .494 .486 .485 .083 .099 .007 .828

500 .494 .494 .494 .037 .041 .003 .834
1000 .494 .494 .493 .027 .029 .001 .841

Dimension d = 5
0 100 0 .001 .001 .026 .029 .005 .257

500 0 .000 .000 .012 .012 .001 .264
1000 0 .000 .000 .008 .009 .001 .249

0.3 100 .156 .155 .154 .042 .048 .004 .421
500 .156 .156 .156 .020 .020 .001 .441

1000 .156 .156 .156 .012 .014 .001 .393
0.7 100 .452 .449 .445 .052 .059 .004 .524

500 .452 .452 .452 .025 .025 .001 .555
1000 .452 .452 .451 .017 .017 .001 .540

Dimension d = 10
0 100 0 .000 .000 .005 .004 .004 .046

500 0 .000 .000 .002 .002 .001 .046
1000 0 .000 .000 .001 .001 .001 .043

0.3 100 .071 .069 .068 .025 .028 .004 .254
500 .071 .071 .071 .012 .012 .001 .264

1000 .071 .071 .071 .007 .009 .001 .236
0.7 100 .346 .341 .338 .047 .052 .003 .470

500 .346 .344 .344 .022 .022 .001 .481
1000 .346 .346 .345 .015 .015 .001 .469

definition of the multivariate version of Blomqvist’s β(u,v) given in formula (3). More precisely,
for d = 2 we have

λL = lim
p↓0

β{(p, p),1}(1− p) + p = lim
p↓0

β{(p, p),1} (23)

if the limit exists. The latter limit exists if and only if the limit in equation (22) exists. Formula
(23) motivates the following definition of a lower multivariate tail-dependence coefficient:

λL := lim
p↓0

β{(p, . . . , p),1},

if the limit exists. This measure of tail dependence describes the amount of dependence in the
lower tail of the copula function, e.g. it may measure the degree of comovement between extremely
negative stock returns.

Let us consider the family of elliptical copulas. Note that the density function f of an elliptically
contoured distribution, if it exists, can be represented by

f(x) = |Σ|−1/2h{(x− µ)′Σ−1(x− µ)}, x ∈ Rd, (24)
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Table 3: Student’s t-copula. Simulation results for bootstrapping Blomqvist’s multivariate β̂n

(the index n is suppressed). Results are based on 300 samples with sample size n generated from
a d-variate Student’s t-copula with 1 degree of freedom and equi-correlation parameter %. The
columns provide the empirical means - denoted by m() - and the empirical standard deviations -
denoted by σ̂() - based on the simulated data and the respective bootstrap samples. The statistics
with superscript B refer to the bootstrap sample. 250 bootstrap replications were drawn from
each sample. The empirical standard deviation of the bootstrapped statistics is abbreviated by
σ̂B = σ̂(β̂B).

% n β m(β̂) m(β̂B) σ̂(β̂) m(σ̂B) σ̂(σ̂B) σ̂(β̂)
√

n

Dimension d = 2
0 100 0 -.005 -.006 .100 .111 .006 1.000

500 0 .000 .000 .043 .047 .002 .960
1000 0 -.001 -.002 .033 .033 .002 1.031

0.3 100 .194 .189 .190 .102 .109 .007 1.025
500 .194 .188 .188 .044 .046 .002 .991

1000 .194 .195 .195 .030 .032 .002 .935
0.7 100 .494 .479 .476 .089 .100 .007 .886

500 .494 .490 .490 .036 .041 .002 .811
1000 .494 .494 .493 .026 .029 .002 .829

Dimension d = 5
0 100 0 -.001 -.001 .026 .029 .005 .255

500 0 .001 .000 .011 .012 .001 .254
1000 0 .000 .000 .008 .008 .001 .249

0.3 100 .156 .156 .155 .045 .047 .004 .448
500 .156 .156 .156 .020 .020 .001 .443

1000 .156 .156 .156 .013 .014 .001 .421
0.7 100 .452 .450 .447 .053 .058 .003 .532

500 .452 .450 .449 .026 .025 .001 .573
1000 .452 .452 .452 .016 .017 .001 .519

Dimension d = 10
0 100 0 .000 .000 .004 .004 .004 .044

500 0 .000 .000 .002 .002 .001 .043
1000 0 .000 .000 .002 .001 .001 .050

0.3 100 .071 .067 .067 .025 .028 .004 .249
500 .071 .070 .069 .011 .012 .001 .238

1000 .071 .070 .070 .008 .008 .001 .266
0.7 100 .346 .336 .332 .049 .051 .003 .487

500 .346 .344 .343 .021 .022 .001 .479
1000 .346 .345 .344 .015 .015 .001 .470

where h : R+ 7→ R+ is called the density generator. Thus every elliptical copula is determined by
the density generator. If the density generator h is regularly varying, Schmidt (2002) proved the
following relationship:

λL = lim
p↓0

β{(p, p),1} =
∫ f(%)

0

uα

√
1− u2

du
/∫ 1

0

uα

√
1− u2

du,

where % denotes the correlation coefficient, f(%) :=
{

1 + (1−%)2

1−%2

}−1/2

, and α is the tail index of the

density generator h. The next theorem gives a representation of the d-dimensional λL for elliptical
copulas.

Theorem 11 Let X be a d-dimensional random vector with copula C which is the copula of an
elliptically contoured distribution with density generator h. If the density generator is regularly
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Table 4: Skewed copulas. Simulation results for bootstrapping Blomqvist’s multivariate β̂n (the
index n is suppressed). Results are based on 300 samples with sample size n generated from two
types of three-dimensional copulas. The first type corresponds to a three-dimensional Gaussian
copula and the second type to a three-dimensional Student’s t-copula with 1 degree of freedom. We
consider two different constellations of the correlation parameters: I) %12 = 0.9, %13 = 0, %23 = 0 and
II) %12 = 0.9, %13 = 0.3, %23 = 0. The columns provide the empirical means - denoted by m() - and
the empirical standard deviations - denoted by σ̂() - based on the simulated data and the respective
bootstrap samples. The statistics with superscript B refer to the bootstrap sample. 250 bootstrap
replications were drawn from each sample. The empirical standard deviation of the bootstrapped
statistics is abbreviated by σ̂B = σ̂(β̂B).

Parameter
constellation

n β m(β̂) m(β̂B) σ̂(β̂) m(σ̂B) σ̂(σ̂B) σ̂(β̂)
√

n

Multivariate Gaussian-copula with dimension d = 3
I) 100 .238 .239 .237 .060 .073 .004 .601

500 .238 .235 .235 .028 .031 .002 .615
1000 .238 .237 .237 .021 .022 .001 .665

II) 100 .302 .294 .293 .065 .074 .004 .650
500 .302 .303 .302 .029 .031 .002 .644

1000 .302 .304 .304 .022 .022 .001 .680

Multivariate Student’s t-copula with dimension d = 3
I) 100 .238 .229 .228 .065 .073 .005 .650

500 .238 .235 .235 .030 .031 .001 .660
1000 .238 .238 .238 .021 .022 .001 .658

II) 100 .302 .295 .293 .067 .074 .004 .667
500 .302 .301 .301 .028 .031 .002 .633

1000 .302 .302 .301 .022 .022 .001 .686

varying (at infinity) with index −(α + d)/2, α > 0, i.e., limt→∞ h(ts)/h(t) = s−(α+d)/2, then

λL =
2

E(Bα)

∫

Sd−1
min

i

{
(
√

Σa)i

}α
S(da)

with B2 is Beta(1/2, (d− 1)/2) distributed. The space Sd−1
:= Sd−1\{a | (√Σa)i < 0 for some i},

where Sd−1 := {x ∈ Rd : ||x|| = 1} denotes the (d − 1)-dimensional unit sphere (regarding the
Euclidean norm) and S(·) is the uniform measure on it.

Proof. Without loss of generality we set µ = 0 and the diagonal elements of Σ equal to 1, since
elliptical copulas are invariant with respect to these parameters. Then the univariate distributions
of the corresponding elliptically contoured distribution function F coincide and we will denote them
by G. Let Y be the random vector associated with F. Note that the left endpoint of G equals −∞
because the density generator h is regularly varying at infinity. We have

λL = lim
p↓0

β{(p, . . . , p),1} = lim
p↓0

C(p)− pd

p + pd
= lim

p↓0
P{Yi ≤ G−1(p), i = 1, . . . , d}

p
= lim

t→∞
P (Y > t1)

Ḡ(t)

with Ḡ = 1−G, due to the radial symmetry of Y. Further, G is continuous and possesses a density
if d ≥ 2 according to Fang et al. (1990), pp.36.

It remains to be shown that

F̄ (t1)
Ḡ(t)

→ 2
E(Bα)

∫

Sd−1
min

i

{
(
√

Σa)i

}α
S(da), as t →∞.
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The random variable B2 is Beta(1/2, (d − 1)/2) distributed. We utilize the following stochastic
representation of elliptically contoured distributions with location µ = 0 :

Y d= Rd

√
ΣU(d) (25)

with
√

Σ
√

Σ
′
= Σ. The random variable Rd ≥ 0 is stochastically independent of the d-dimensional

random vector U(d) which is uniformly distributed on the unit sphere Sd−1. Further, G is the
distribution function of a random variable R1U, where R1 ≥ 0 is stochastically independent of the
Bernoulli random variable U. Proposition 3.1 in Schmidt (2002) and the related proof imply that
P (R1 > t)/P (Rd > t) → E(Bα) as t →∞. For t ≥ 0 we have

F̄ (t1)
Ḡ(t)

=
P (Rd

√
ΣU(d) > t1)

P (R1U > t)
= 2 · P (Rd > t)

P (R1 > t)

∫

Sd−1

P (Rd

√
Σa > t1)

P (Rd > t)
S(da). (26)

Due to the uniform convergence of P (Rd > tx)/P (Rd > t) → x−α in x ∈ [ε,∞) for any fixed ε > 0
by Proposition 3.1 of the last reference and Theorem 1.5.2 in Bingham, Goldie, and Teugels (1987),
we obtain

P (Rd

√
Σa > t1)

P (Rd > t)
=

P
[
Rd > t ·maxi

{
1/(
√

Σa)i

}]

P (Rd > t)
→ min

i

{
(
√

Σa)i

}α
,

which converges uniformly in a ∈ Sd−1
. Combining this with formula (26) finishes the proof. ¤

Remarks. i) The family of Student’s t-copulas with ν = α degrees of freedom, which are the
copulas of multivariate Student’s t-distributions, fulfill the prerequisites in Theorem 11.

ii) Theorem 11 can be generalized to elliptical copulas without an existing density function. More
precisely, the theorem holds if the (tail-) distribution function of the generating random variable
Rd, as given in the stochastic representation (25), is regularly varying with tail index α. Note that
symmetric α-stable distributions with α < 2 do not possess a density function but their generating
random variable is regularly varying.

7 Asymptotic efficiency

We analyze asymptotic efficiencies of Blomqvist’s multivariate β̂n(u,v) with respect to multivariate
sample versions of Spearman’s ρ. We choose Spearman’s ρ since it is the best-known bivariate
rank based dependence measure in social and economic statistics. Various multivariate versions of
Spearman’s ρ are e.g. discussed in Wolff (1980), Joe (1990), Nelsen (1996), and Schmid and Schmidt
(2006a). The following two sample versions are for instance considered in the latter reference:

ρ̂n = h(d) ·
{2d

n

n∑

j=1

d∏

i=1

(1−Ûij,n)− 1
}

and ρ̂′n =
12
n

(
d

2

)−1 ∑

k<l

n∑

j=1

(1− Ûkj,n)(1− Ûlj,n)− 3

with Ûij,n defined in formula (8) and h(d) = (d + 1)/{2d − (d + 1)}. Both estimators coincide for
d = 2.

7.1 Relative efficiency

The (asymptotic) relative efficiency compares the concentration of the limiting distribution of two

sequences of estimators (T (1)
n ) and (T (2)

n ), n ∈ N. If the estimators are asymptotically normal with
√

n{T (i)
n − µi(θ)} d→ N(0, σ2

i (θ)) as n → ∞, the relative efficiency of (T (1)
n ) with respect to (T (2)

n )
takes the form

RE(θ) =
σ2

2(θ)
σ2

1(θ)
= lim

ν→∞
nν,2

nν,1
, (27)
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where nν,i, i = 1, 2, denote the number of observations needed such that
√

ν{T (i)
nν,i − µi(θ)} d→

N(0, 1) as ν → ∞. Thus, the quotient in (27) indicates the proportion of observations the second

sequence of estimators (T (2)
n ) needs in order to achieve the same (asymptotic) precision as (T (1)

n ).

Examples. The following copula is called Kotz-Johnson copula, see Nelsen (2006), p.82:

C(u, v) = uv + θ2uv(1− u)(1− v)(1 + θ1uv) for all − 1 ≤ θ1, θ2 ≤ 1. (28)

It forms a generalization of the well-known family of Farlie-Gumbel-Morgenstern copulas which arise
for θ1 = 0. The relative efficiency of Blomqvist’s β̂n = β̂n(1/2,1/2) with respect to Spearman’s ρ̂n

is shown in the left plot of Figure 4. The asymptotic variance of the latter has been calculated in
Schmid and Schmidt (2006a). Further, the right plot in Figure 4 illustrates the logarithm of the
relative efficiency of Blomqvist’s β̂n with respect to Spearman’s ρ̂n and ρ̂′n for the d-dimensional
independence copula. It shows that for dimension d = 2 the relative efficiencies equal one, whereas
for dimensions 3 ≤ d ≤ 8 Blomqvist’s β̂n outperforms both Spearman’s ρ̂n and ρ̂′n. For d ≥ 9,

Blomqvist’s β̂n is better than Spearman’s ρ̂′n, whereas it is worse than Spearman’s ρ̂n.

Figure 4: Left plot. Relative efficiency of Blomqvist’s β̂n with respect to Spearman’s ρ̂n for the
family of Kotz-Johnson copulas with parameter θ = (θ1, θ2). Right plot. Logarithm of the relative
efficiency of Blomqvist’s β̂n with respect to Spearman’s ρ̂n (solid line) and of Blomqvist’s β̂n with
respect to the average Spearman’s ρ̂′n (dashed line) for the d-dimensional independence copula Π.
The x-axis displays the dimension d.

7.2 Pitman efficiency

The (asymptotic) Pitman efficiency is derived under the assumption that the copula of a random
sample takes the form

C(u; θ) =
d∏

i=1

ui + θΨ(u) (29)

for some suitable function Ψ : [0, 1]d 7→ [0,∞) which has continuous partial derivatives. If the
density exists, we denote it by c(u; θ) = 1 + θψ(u). For dimension d = 2, this copula has been
considered by a number of authors starting with Farlie (1960). The Farlie-Gumbel-Morgenstern
copula, as given in equation (28) for λ = 0, is of that particular form.

Suppose T
(1)
n equals Blomqvist’s β̂n(u,v), T

(2)
n is Spearman’s ρ̂n and T

(3)
n = ρ̂′n. Efficiency con-

siderations of Blomqvist’s multivariate β̂n(u,v) for general u and v are interesting if emphasis is
put on the analysis of the tail region of a copula. Under the copula model (29), the statistics
√

n{T (i)
n −µi(θ)}, i = 1, 2, 3, are asymptotically normal with standard deviation σi(θ). We test the

hypothesis of independence
H0 : θ = 0 (30)
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against the one-sided alternative
H1 : θ > 0.

The test rejects H0 if
√

n{T (i)
n −µi(0)}/σi(0) exceeds z1−α, α > 0. Here, z1−α is such that Φ(z1−α) =

1−α with standard normal distribution Φ. For a finite sample size n, it is difficult to calculate the
power function of the tests. Thus, we investigate the asymptotic behavior of the power functions.

Let L
(i)
n (θ) be the power function of test T

(i)
n . Since the asymptotic power function limn→∞ L

(i)
n (θ)

is trivial for fixed θ, we consider the (local) asymptotic power function limn→∞ L
(i)
n (θn) with local

parameter θn = c/
√

n, c ≥ 0, if the limit exists. The next proposition establishes this limit for the
test based on Blomqvist’s β̂n(u,v).

Proposition 12 Let (Xi)i=1,...,n be a sample from a d-dimensional distribution F with radially
symmetric copula C specified in formula (29). Suppose the function ψ appearing in the density of
C is bounded. Then, the (local) asymptotic power function of testing hypothesis (30) via β̂n(u,v)
takes the form

lim
n→∞

L(1)
n (θn) = 1− Φ[z1−α − c hd(u,v){ψ(u) + ψ(1− v)}/σu,v]

where θn = c/
√

n for arbitrary but fixed c ≥ 0 and σu,v is given in formula (19).

Proof. Let Pn denote the probability measure under the null hypothesis (θ = 0) and Qn be the
probability measure under the alternative (θn = c/

√
n). The statistics β̂n(u,v; θ) will be indexed

by θ. First, we show that the sequence (β̂n(u,v; θn)) is locally uniformly asymptotically normal,
i.e.

Sn(θn) :=
√

n
β̂n(u,v; θn)− µ1(θn)

σ1(θn)
d−→ N(0, 1).

In order to verify this, we utilize Le Cam’s third lemma. We show that the vector (Sn(0), ln Qn/Pn)
is asymptotically normally distributed, where the second component denotes the logarithm of the
likelihood ratio. In the following we derive a Taylor expansion of the logarithm of the likelihood
ratio. The Fisher information for θ is given by

Iθ =
∫

Rd

{
ḟθ(x)
fθ(x)

}2

fθ(x) dx =
∫

Rd

{
ψ(F1(x1), . . . , Fd(xd))

1 + θψ(F1(x1), . . . , Fd(xd))

}2

dF (x)

=
∫

[0,1]d

{
ψ(u)

1 + θψ(u)

}2

dC(u) (31)

where fθ and ψ, respectively, are the densities of F and Ψ, and ḟθ is the derivative with respect to
θ. Moreover, Fi denotes the i-th marginal distribution function of F. According to the prerequisites,
the Fisher information Iθ is well defined and continuous in θ ∈ (−ε, ε) for some ε > 0. Furthermore,
ε can be chosen such that the map θ 7→

√
1 + θψ(u) is differentiable at every u. Thus, by Lemma

7.6 in Van der Vaart (1998), p.95, the map is differentiable in quadratic mean - see the last reference
for the definition - which is a sufficient condition for the following expansion:

ln
Qn

Pn
= ln

n∏

j=1

fθn

fθ

(
Xj

)∣∣∣∣
θ=0

=
c√
n

n∑

j=1

ḟθ

fθ

(
Xj

)∣∣∣∣∣
θ=0

− 1
2
c2Iθ

∣∣∣∣
θ=0

+ oPn(1).

Hence, utilizing the empirical distribution function Fn of F, the vector
[√

n{Fn(u)− F (u)},√n{F̄n(v)− F̄ (v)}, ln Qn/Pn

]
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is jointly asymptotically normal by the multivariate central limit theorem and Slutsky’s lemma.
Mimicking the delta method utilized in the proof of Theorem 2, the vector (Sn(0), ln Qn/Pn) is
asymptotically bivariate normal. Thus, by Le Cam’s third lemma, the sequence Sn(θn) converges
- under the alternative θn = c/

√
n - to a standard normal distribution.

Further, µ(θ) = β(u,v; θ) is differentiable with respect to θ and the variance σ2
u,v(θ) is continuous

at θ = 0. The first assertion follows by the definition of Blomqvist’s β and the specific form of the
copula C defined in (29). The second assertion follows by formula (10) in Theorem 2 which implies
that σ2

u,v(θ) is polynomial in θ. Under the null hypothesis,
√

n β̂n(u,v) is asymptotically normal
with mean zero and variance σ2

u,v = σ2
u,v(0) given in formula (19). Thus, the power function of the

test that rejects the null hypothesis if
√

n β̂n(u,v)/σu,v exceeds z1−α takes the form

L(1)
n (θn) = 1− Φ

[σu,vz1−α −
√

n{β(u,v; θn)− 0}
σu,v(θn)

]
+ o(1).

Finally, observe that
√

nβ(u,v; θn) = cdβ(u,v;θ)
dθ

∣∣∣
θ=0

+ o(n) = c hd(u,v){ψ(u) + ψ(1− v)} + o(n)

for θn = c/
√

n, c ≥ 0. ¤

The following measure PE - called Pitman efficiency - is a recognized measure of comparison

between two tests T
(k)
n and T

(l)
n . We define

PEk,l :=
(

µ′k(0)/σk(0)
µ′l(0)/σl(0)

)2

.

Under the conditions of Theorem 14.19 in Van der Vaart (1998), the measure PEk,l equals

PEk,l = lim
ν→∞

nν,l

nν,k

if the limit exists, where nν,i is the minimal number of observations such that L
(i)
nν,i(0) ≤ α and

L
(i)
nν,i(θν) ≥ γ for fixed γ ∈ (α, 1). Note that the above limit is independent of the choice of α > 0

and γ ∈ (α, 1). Similarly to (27), this quotient indicates the proportion of observations the sequence

of estimators (T (l)
n ) needs in order to achieve the same (asymptotic) precision as (T (k)

n ) for the above
hypothesis test. In our setting we derive

PE1,2 =


 hd(u,v){ψ(u) + ψ(1− v)}

12
(
d
2

)−1/2
σu,v

∫
[0,1]d

∑
k<j wkwjψ(w) dw




2

and

PE1,3 =


 hd(u,v){ψ(u) + ψ(1− v)}

2d
{(

4
3

)d

− d
3 − 1

}−1/2

σu,v

∫
[0,1]d

∏d
i=1 wiψ(w) dw




2

.

The (local) asymptotic power functions of the sample versions of Spearman’s ρ, given by ρ̂n and
ρ̂′n, are derived in Lemmas 2 and 3 in Stepanova (2003).

Under the conditions of Proposition 12, we derive the following upper bound of the (local) asymp-
totic power function (cf. Theorem 15.4 in Van der Vaart (1998)) for testing H0 : θ = 0 versus
H1 : θ > 0 using the above described testing procedure:

lim sup
n→∞

L(1)
n (θn) ≤ 1− Φ(z1−α − c

√
I0), c ≥ 0,

where I0 =
∫
[0,1]d

{ψ(w)}2 dw is the Fisher information at θ = 0 - see formula (31). Thus, the

Pitman efficiency of Blomqvist’s β̂n(u,v) with respect to the best test is given by

PE = h2
d(u,v){ψ(u) + ψ(1− v)}2

/[
σ2
u,v

∫

[0,1]d
{ψ(w)}2 dw

]
.
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Obviously, this Pitman efficiency is higher if the probability mass of the copula C is concentrated
around the points u or v, which is also illustrated by the next example.

Example. Consider a bivariate copula C, as defined in (29), with a suitable function Ψ(u1, u2) =
g(u1)h(u2). Conditions such that C is a copula are given in Rodŕıguez-Lallena and Úbeda-Flores
(2004). Then Blomqvist’s β = β(1/2,1/2) = 4θg(1/2)h(1/2) and Spearman’s ρ is

ρ = 12θ

∫ 1

0

g(u) du

∫ 1

0

h(u) du.

The asymptotic variance at θ = 0 is equal to one for both statistics. Thus, the Pitman efficiency of
Blomqvist’s β with respect to Spearman’s ρ is given by

PE =
[
3

∫ 1

0

g(u)/g(1/2) du

∫ 1

0

h(u)/h(1/2) du
]−2

.

For the Farlie-Gumbel-Morgenstern copula - cf. equation (28) - the PE = 3/4. However, for suitable
functions g and h, the PE may become arbitrarily large.
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Appendix

We give some alternative representations of Blomqvist’s multivariate β = β(1/2,1/2) as defined in
formula (4). Representations for general Blomqvist’s multivariate β(u,v) can be derived similarly.
First, β can be expressed (cf. Úbeda-Flores 2005, Theorem 3.1) via

β = hd

{
P (X < x̃ or X > x̃)− 21−d

}
= hd

{
C (1/2) + CS (1/2)− 21−d

}
,

where x̃ denotes the vector of medians corresponding to the univariate marginal distributions and
CS refers to the survival copula, which was defined by CS(u) = P (1−U ≤ u).

For some subset I ⊂ {1, ..., d} we define BI = {u ∈ [0, 1]d | ui ≤ 1
2 for i ∈ I and ui > 1

2 for i /∈ I}.
Then another representation of β is given by

β = hd

[ d−1∑

k=1

∑

|I|=k

{
2−d − PC(BI)

}− 21−d
]
, since

d∑

k=0

∑

|I|=k

PC (BI) = 1,

where PC denotes the probability measure induced by the copula C.

Assume C is radially symmetric at 1/2, i.e. C (1/2) = C̄ (1/2) , which is equivalent to P{Xi ≤
F−1

i (1/2) for all i = 1, ..., d} = P{Xi ≥ F−1
i (1/2) for all i = 1, ..., d}. This symmetry holds if C is

radially symmetric, i.e. C ≡ CS , but is much weaker. Then obviously

β = hd

{
2C (1/2)− 21−d

}
.

In this case there is an interesting relationship between Blomqvist’s β in d dimensions and those
of lower dimensions d′ ≤ d. We use the notation βI for Blomqvist’s β of those variables Xi where
i ∈ I ⊂ {1, ..., d}. If d is odd, we have

β{1,...,d} =
d−1∑

k=2

(−1)k 1/2− 2−k

1− 21−d

∑

I⊂{1,...,d}
|I|=k

βI =
d−1∑

k=2

∑

I⊂{1,...,d}
|I|=k

bd,kβI
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with weights bd,k = (−1)k(1/2 − 2−k)/(1 − 21−d). Thus, the d-dimensional β can be written as a

weighted sum of the d′-dimensional β’s with 2 ≤ d′ ≤ d− 1 since
∑d−1

k=2

(
d
k

)
bd,k = 1. This follows by

the inclusion-exclusion principle which implies

C (1/2) =
d∑

k=0

(−1)k
∑

I⊂{1,...,d}
|I|=k

C
(
(1/2)I

)
with (1/2)I

i =
{

1
2 , i ∈ I,
1 , i /∈ I.

Hence, if d is odd, we have

2

(
1
2
−

(
1
2

)d
)

β{1,...,d} =
d−1∑

k=2

(−1)k
∑

I⊂{1,...,d}
|I|=k

(
1
2
−

(
1
2

)k
)

βI +
(

1
2

)k

=
d∑

k=0

(
d

k

)
(−1)k

(
1
2

)k

︸ ︷︷ ︸
=( 1

2 )d

+
d∑

k=2

(−1)k
∑

I⊂{1,...,d}
|I|=k

(
1
2
−

(
1
2

)k
)

βI .

Exemplarily, for d = 3 we have

β{1,2,3} =
1
3
β{1,2} +

1
3
β{1,3} +

1
3
β{2,3}.

If d is even, β{1,...,d} cannot be expressed as a linear combination of βI for 2 ≤ |I| ≤ d− 1. This is
the case as the inclusion-exclusion principle implies

d−1∑

k=2

(−1)k
∑

I⊂{1,...,d}
|I|=k

(
1
2
−

(
1
2

)k
)

βI = 0.
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