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Bootstrapping Spearman’s Multivariate Rho

Friedrich Schmid1 and Rafael Schmidt12

Summary. Spearman’s rho can be generalized to the multivariate, i.e. d-dimensio-
nal case. Nonparametric estimation of Spearman’s multivariate rho has recently been
considered and the asymptotic normality for the estimator has been established.
Though a closed and compact formula for the asymptotic variance exists, it is not
suitable for practical application. Therefore a bootstrap procedure was suggested.
This note investigates the performance of the bootstrap in finite samples by Monte
Carlo simulation.
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1 Introduction

Spearman’s rho is a widely used measure for the amount of association be-
tween two random variables X and Y . It does not depend on the marginal dis-
tributions of X and Y but can be written as a function of their copula, which
represents their dependence structure. Spearman’s rho can be generalized to
a (multivariate) measure of association or measures of dependence between d
random variables X1, ...,Xd in various ways (see [Ken70] §6, [Wol80], [Joe90],
[Nel96], [SS05]). This is of interest in many fields of application, e.g. in the
multivariate analysis of financial asset returns where one wants to express the
amount of dependence in a portfolio by a single number.

Nonparametric estimation of Spearman’s multivariate rho has been con-
sidered in [Joe90], [Ste03], [SS05]. Using empirical process theory, the latter
authors derived the asymptotic normality for various types of nonparametric
estimators and established compact expressions for the asymptotic variances
which are determined by the copula and its partial derivatives. They are,
however, of limited use for practical application since the copula is not known
in general, but has to be estimated. Therefore a bootstrap algorithm was
suggested and it was proven that the bootstrap works well asymptotically.

1 Department of Economic and Social Statistics, University of Cologne, Germany
2 Department of Statistics, London School of Economics, UK. The author gratefully

acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG).



2

The aim of this note is to investigate the performance of the bootstrap
for one particular estimator of Spearman’s multivariate rho in finite samples.
The investigation is carried out via a Monte Carlo simulation utilizing special
copulas.

The structure of the paper is as follows. Section 2 introduces some nota-
tion. Section 3 defines Spearman’s multivariate rho and presents some asymp-
totic theory regarding its nonparametric estimation. Section 4 investigates the
performance of the corresponding bootstrap for special copulas.

2 Preliminary

Throughout the paper we write bold letters for vectors, e.g., x := (x1, ..., xd) ∈
R

d . Inequalities x ≤ y are understood componentwise, i.e, xi ≤ yi for all i =
1, ..., d. The indicator function on a set A is denoted by 1A . Let X1,X2, ...,Xd

be d ≥ 2 random variables with joint distribution function

F (x) = P (X1 ≤ x1, ...,Xd ≤ xd), x = (x1, ..., xd) ∈ R
d,

and marginal distribution functions Fi(x) = P (Xi ≤ x) for x ∈ R and i =
1, ..., d . We will always assume that the Fi are continuous functions. Thus,
according to Sklar’s theorem [Skl59], there exists a unique copula C: [0, 1]

d −→
[0, 1] such that

F (x) = C(F1(x1), ..., Fd(xd)) for all x ∈ R
d.

The copula C is the joint distribution function of the random variables
Ui = Fi(Xi), i = 1, ..., d. Moreover, C(u) = F (F−1

1 (u1), ..., F
−1
d (ud)) for all

u ∈ [0, 1]
d

where the generalized inverse function F−1 is defined via F−1(u) :=
inf {x ∈ R∪{∞} |F (x) ≥ u} for all u ∈ [0, 1]. A detailed treatment of copulas
is given in [Nel99] and [Joe97].

It is well known that every copula C is bounded in the following sense:

W (u) := max {u1 + ... + ud − (d − 1), 0}
≤ C(u) ≤ min {u1, ..., ud} =: M(u) for all u ∈ [0, 1]

d
,

where M and W are called the upper and lower Fréchet-Hoeffding bounds,
respectively. The upper bound M is a copula itself and is also known as
the comonotonic copula. It represents the copula of X1, ...,Xd if F1(X1) =
... = Fd(Xd) with probability one, i.e., where there is (with probability one) a
strictly increasing functional relationship between Xi and Xj (i 6= j) . Another
important copula is the independence copula

Π(u) :=
d

∏

i=1

ui, u ∈ [0, 1]
d
,

describing the dependence structure of stochastically independent random
variables X1, ...,Xd .
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3 Spearman’s Multivariate Rho and its Estimation

Spearman’s rho for a two dimensional random vector X = (X1,X2) with
copula C can be written as

ρ =
cov(U1, U2)

√

var(U1)
√

var(U2)
=

1
∫

0

1
∫

0

uv dC(u, v) − ( 1
2 )2

1/12

=

1
∫

0

1
∫

0

C(u, v) dudv − 1/4

1/3 − 1/4
=

1
∫

0

1
∫

0

C(u, v) dudv −
1
∫

0

1
∫

0

Π(u, v) dudv

1
∫

0

1
∫

0

M(u, v) dudv −
1
∫

0

1
∫

0

Π(u, v) dudv

,

because of
1
∫

0

1
∫

0

M(u, v) dudv = 1/3 and
1
∫

0

1
∫

0

Π(u, v) dudv = 1/4. Thus, ρ

can be interpreted as the normalized average distance between the copula
C and the independence copula Π(u, v) = uv . The following d-dimensional
extension of ρ is now straightforward

ρ =

∫

[0,1]d
C(u) du −

∫

[0,1]d
Π(u) du

∫

[0,1]d
M(u) du−

∫

[0,1]d
Π(u) du

=
d + 1

2d − (d + 1)











2d

∫

[0,1]d

C(u) du − 1











.

Consider a random sample (Xj)j=1,...,n from a d -dimensional random
vector X with joint distribution function F and copula C which are completely
unknown. It is further assumed, that the marginal distribution functions Fi

are unknown. They are estimated by their empirical counterparts

F̂i,n(x) =
1

n

n
∑

j=1

1{Xij≤x}, for i = 1, ..., d and x ∈ R.

Further, set Ûij,n := F̂i,n(Xij) for i = 1, ..., d, j = 1, ..., n, and Ûj,n =

(Û1j,n, ..., Ûdj,n) . Note that Ûij,n = (rank of Xij in Xi1, ...,Xin)/n. The es-
timation of ρ will therefore be based on ranks (and not on the observations
itself). In other words, we consider rank order statistics. The copula C is
estimated by the empirical copula which is defined as

Ĉn(u) =
1

n

n
∑

j=1

d
∏

i=1

1{Ûij,n≤ui} for u = (u1, ..., ud) ∈ [0, 1]
d
.

A nonparametric estimator of ρ is now given by

ρ̂n = h(d)

{

2d

∫

[0,1]d
Ĉn(u)du − 1

}

= h(d)







2d

n

n
∑

j=1

d
∏

i=1

(1 − Ûij,n) − 1







,
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where h(d) = (d+1)/(2d −d−1) . Asymptotic normality of ρ̂n is stated next.

Proposition 1. Let F be a d-dimensional distribution function with copula

C and continuous marginal distribution functions Fi . Further assume that

the partial derivatives DiC(u) exist and are continuous for i = 1, ..., d. Then

√
n(ρ̂n − ρ)

d−→ Z ∼ N(0, σ2)

where

σ2 = 22dh(d)2
∫

[0,1]d

∫

[0,1]d

E {GC(u)GC(v)} dudv

and

GC(u) = BC(u) −
d

∑

i=1

DiC(u)BC(u(i))

with Di denoting the i-th partial derivative. The vector u(i) denotes the vector

where all coordinates, except the i-th coordinate of u, are replaced by 1. The

process BC is a tight centered Gaussian process on [0, 1]
d

with covariance

function

E {BC(u)BC(v)} = C(u ∧ v) − C(u)C(v),

i.e., BC is a d-dimensional Brownian Bridge.

Even if the copula C is known, computation of σ2 is nearly impossible as
it involves 2d-dimensional integration over (d + 1)2 terms (see however [SS05]
for special cases such as independence). The next proposition justifies that σ2

can be determined asymptotically by the following bootstrap.

Proposition 2. Let (XB
j )j=1,...,n denote a bootstrap sample which is obtain by

sampling from (Xj) with replacement and denote the corresponding bootstrap

estimator for ρ by ρ̂B
n . Then, under the assumptions of Proposition 1,

√
n(ρ̂B

n −
ρ̂n) converges weakly to the same Gaussian random variable as

√
n(ρ̂n − ρ)

with probability one.

4 Performance of the Bootstrap in Finite Samples

Since the bootstrap for ρ̂n is justified asymptotically only, its performance in
finite samples should be investigated. This is done in the present section for
selected copulas in various dimensions d.

The d-dimensional Cook-Johnson copula (also called Clayton copula) is
defined by

C(u1, ..., ud;α) =

(

d
∑

i=1

u
− 1

α

i − d + 1

)−α
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where α > 0 is a shape parameter. Random number generation from the
Cook-Johnson copula is described in [Dev86].

The d-dimensional equi-correlated Gaussian copula is defined by

C(u1, ..., ud; %) =

=

∫ Φ−1(u1)

−∞

. . .

∫ Φ−1(ud)

−∞

(2π)−
d
2 det{Σ(%)}− 1

2 exp
(

− 1

2
x′Σ(%)−1x

)

dxd . . . dx1

where Σ(%) = %11′ + (1 − %)Id with identity matrix Id and 1
d−1 < % < 1.

Tables 1 and 2 summarize simulation results for these two copulas for
d = 2, 5, and 10. The first and second column in every table contain the
values of the parameter and the sample sizes, respectively. The third column
contains approximation to the true value of Spearman’s multivariate rho. This
approximation has been derived by computing ρ̂ - the index n will be sup-
pressed for notational convenience - from samples of length 500,000. The first
two digits behind the decimal point are accurate. Note that for the Gaussian
copula and d = 2, Spearman’s rho can be exactly computed by utilizing the
relationship

ρ =
6

π
arcsin

(%

2

)

.

The fourth and sixth columns contain the empirical means m (ρ̂) and the
standard deviations σ̂ (ρ̂) of ρ̂ over 300 Monte Carlo replications.

Comparing the third and fourth column in every table, we observe a con-
siderable bias for small sample sizes, such as n = 100, in every dimension
under study. This bias is lower for d = 5 and 10 than it is for d = 2. There
is a good agreement between the fourth and fifth column, i.e. between m (ρ̂)
and m

(

ρ̂B
)

.
The sixth column shows that the standard error σ̂ (ρ̂) of ρ̂ decreases with

sample size n in a reasonable way. The amount of σ̂ (ρ̂) , however, heavily
depends on the copula, its parameters, and the dimension d.

The seventh column contains the empirical means of the bootstrap esti-
mations for the standard error of ρ̂. The good agreement between the sixth
and seventh column indicates that the bootstrap for the determination of the
standard error of ρ̂ works well under every parameter constellation, for both
copulas and for every dimension under study.

Column 8 shows that the standard deviation of σ̂B over 300 Monte Carlo
replications is small, especially for n = 500 and 1000.

Finally, Column 9 provides bootstrap estimates for the asymptotic stan-
dard deviation σ, as given in Proposition 1. It can be seen that σ is well
estimated by σ̂B

√
n for both copulas and every parameter constellation un-

der study, even for small sample size n = 100.
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Table 1. Cook-Johnson copula. Simulation results for bootstrapping Spearman’s
multivariate rho ρ̂n (the index n is suppressed). Results are based on 300 samples
with sample sizes n generated from a d-variate Cook-Johnson copula with parameter
α. The columns provide the empirical means - denoted by m() - and the empirical
standard deviations - denoted by σ̂ - based on the simulated data and the respective
bootstrap samples. The statistics with superscript B refer to the bootstrap sample.
250 bootstrap replications were drawn from each sample. The empirical standard
deviation of the bootstrapped statistics is abbreviated by σ̂B = σ̂(ρ̂B).

α n ρ m(ρ̂) m(ρ̂B) σ̂(ρ̂) m(σ̂B) σ̂(σ̂B) m(σ̂B)
√

n

Dimension d = 2
0.5 100 .681 .622 .616 .065 .063 .011 .633

500 .681 .671 .669 .026 .028 .002 .622
1000 .681 .677 .677 .020 .020 .001 .626

1 100 .479 .424 .419 .077 .084 .009 .838
500 .479 .466 .465 .038 .038 .002 .839

1000 .479 .472 .471 .025 .026 .001 .838
5 100 .135 .072 .071 .101 .100 .007 1.003

500 .135 .121 .121 .044 .045 .002 .995
1000 .135 .129 .128 .032 .031 .001 .993

Dimension d = 5
0.5 100 .736 .698 .690 .054 .051 .008 .514

500 .736 .729 .727 .023 .023 .002 .517
1000 .736 .732 .731 .017 .016 .001 .519

1 100 .499 .475 .469 .067 .067 .007 .665
500 .499 .496 .495 .030 .031 .002 .684

1000 .499 .497 .496 .022 .022 .001 .689
5 100 .118 .106 .105 .045 .047 .009 .467

500 .118 .116 .115 .020 .021 .002 .481
1000 .118 .119 .118 .015 .015 .001 .487

Dimension d = 10
0.5 100 .715 .656 .642 .065 .066 .011 .656

500 .715 .701 .698 .029 .030 .003 .680
1000 .715 .708 .706 .021 .022 .002 .683

1 100 .417 .386 .376 .082 .079 .013 .786
500 .417 .414 .412 .039 .039 .003 .863

1000 .417 .413 .411 .028 .028 .002 .876
5 100 .048 .045 .044 .027 .022 .014 .216

500 .048 .048 .048 .012 .012 .004 .264
1000 .048 .047 .047 .008 .008 .002 .269
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Table 2. Gaussian copula. Simulation results for bootstrapping Spearman’s mul-
tivariate rho ρ̂n (the index n is suppressed). Results are based on 300 samples with
sample sizes n generated from a d-variate Gaussian copula with equi-correlation
parameter %. The columns provide the empirical means - denoted by m() - and
the empirical standard deviations - denoted by σ̂ - based on the simulated data
and the respective bootstrap samples. The statistics with superscript B refer to
the bootstrap sample. 250 bootstrap replications were drawn from each sample.
The empirical standard deviation of the bootstrapped statistics is abbreviated by
σ̂B = σ̂(ρ̂B).

% n ρ m(ρ̂) m(ρ̂B) σ̂(ρ̂) m(σ̂B) σ̂(σ̂B) m(σ̂B)
√

n

Dimension d = 2
0.5 100 .483 .418 .414 .076 .081 .009 .809

500 .483 .472 .471 .032 .035 .002 .789
1000 .483 .475 .475 .025 .025 .001 .791

0.2 100 .191 .129 .127 .097 .098 .007 .976
500 .191 .174 .174 .043 .043 .002 .968

1000 .191 .184 .183 .030 .031 .001 .968
-0.1 100 -.096 -.147 -.147 .097 .101 .006 1.006

500 -.096 -.109 -.108 .045 .044 .002 .991
1000 -.096 -.103 -.103 .030 .031 .001 .996

Dimension d = 5
0.5 100 .439 .407 .403 .057 .056 .005 .556

500 .439 .433 .432 .025 .025 .001 .566
1000 .439 .437 .437 .019 .018 .001 .572

0.2 100 .158 .138 .137 .045 .044 .007 .437
500 .158 .158 .158 .021 .021 .002 .463

1000 .158 .158 .158 .014 .015 .001 .462
-0.1 100 -.069 -.080 -.079 .017 .017 .004 .170

500 -.069 -.071 -.071 .008 .008 .001 .181
1000 -.069 -.070 -.070 .006 .006 .001 .180

Dimension d = 10
0.5 100 .285 .261 .256 .062 .054 .012 .539

500 .285 .281 .280 .027 .027 .003 .599
1000 .285 .282 .281 .019 .019 .002 .601

0.2 100 .063 .057 .056 .023 .021 .009 .209
500 .063 .061 .061 .011 .011 .003 .239

1000 .063 .062 .062 .008 .008 .001 .247
-0.1 100 -.009 -.010 -.009 .000 .000 .000 .002

500 -.009 -.009 -.009 .000 .000 .000 .002
1000 -.009 -.009 -.009 .000 .000 .000 .003
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