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Abstract

A new family of conditional dependence measures based on Spearman’s rho is introduced. The
corresponding multidimensional versions are established. Asymptotic distributional results are
derived for related estimators which are based on the empirical copula. Particular emphasis is
placed on a new type of multidimensional tail-dependence measure and its relationship to other
measures of tail dependence is shown. Multivariate tail dependence describes the limiting amount
of dependence in the vertices of the copula’s domain.
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1 Introduction

Conditional versions of dependence measures are of interest both in theory and practice. For
example, a common conditional version of Pearson’s correlation coefficient r of a bivariate random
vector X = (X1, X2)′ is defined via rA(X1, X2) := r(X1, X2 | X ∈ A) for some (measurable) set
A ⊂ R2, i.e., Pearson’s correlation coefficient is derived from the conditional distribution function
P (X ≤ x | X ∈ A). In particular in financial engineering, this conditional dependence measure
is frequently used in order to investigate the effects of contagion between financial markets, see
Campbell, Koedijk, and Kofman (2002) or Forbes and Rigobon (2002). Unfortunately, Pearson’s
correlation coefficient is often an unsuitable dependence measure since, firstly, it measures linear
dependence, secondly, it is not invariant to a change of the univariate margins, and thirdly, it is very
sensitive to outliers. The related pitfalls have been pointed out by a large number of authors, we
mention Embrechts, McNeil, and Straumann (2002). Further, this dependence measure cannot be
expressed via the copula. However, it is precisely the copula of a random vector which captures those
properties of the joint distribution which are invariant under (strictly increasing) transformations
of the univariate margins - so-called scale invariance - see Schweizer and Wolff (1981). It is, thus,
natural to consider versions of alternative dependence measures which are based on the distribution’s
copula. Possible alternatives are Spearman’s rho, Kendall’s tau or Blomqvist’s beta. In this paper
we will concentrate on Spearman’s rho which is best-known in economic and social statistics. We
think that conditional versions of Kendall’s tau and Blomqvist’s beta are similarly interesting to
consider. They will be the focus of subsequent work.
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We can think of various conditional versions of Spearman’s rho. One possible version, which is
motivated by the conditional version of Pearson’s correlation coefficient, is defined as

ρS,A(X1, X2) := ρS(X1, X2 | X ∈ A), A ⊂ R2, (1)

where ρS corresponds to Spearman’s rho. The multidimensional generalization of this conditional
dependence measure, however, is not straightforward and its analytical and statistical tractability
is rather limited, as we will see. Another class of conditional versions of Spearman’s rho utilizes
weighting functions which weight the different parts of the copula. This approach is quite common
in probability and statistics, e.g., in goodness-of-fit statistics which emphasize the tail region of
the distribution. The conditional dependence measures considered in this paper will be of this
particular type. The corresponding family of weighting functions is quite general, thus providing
us with a large variety of dependence measures. The multidimensional extension of Spearman’s
rho we use has also been considered by Ruymgaart and van Zuijlen (1978), Wolff (1980), Joe
(1990), and Nelsen (1996). Special emphasis is placed on conditional dependence measures which
measure the amount of dependence in the lower tail of multivariate distributions. In particular the
limiting behavior of these dependence measures, if we tend to the lower end point of each univariate
marginal distribution function, will be of interest. In the bivariate setting this limiting dependence
is commonly measured via the so-called tail-dependence coefficient (Sibuya 1960). We propose a
new multivariate measure of tail dependence and establish its relationship to the tail-dependence
coefficient.

For the statistical inference, two cases may be distinguished. In the first case, the marginal distribu-
tion functions are assumed to be known which is, however, a nonrelevant case for most applications.
We therefore concentrate on the second case assuming unknown marginal distribution functions.
This leads to a consideration of the empirical copula. By means of a weak convergence result for mul-
tivariate empirical copulae - given in Rüschendorf (1976), Stute (1984), Fermanian, Radulović, and
Wegkamp (2004) or Tsukahara (2005) - we establish weak convergence of the respective estimators
which is uniform with respect to the weighting function. Further, we provide a bootstrap method
for estimating the limiting covariance structure. The asymptotic behavior of the tail-dependence
measure is derived from so-called empirical tail copulae.

Section 2 provides the necessary notation and definitions. Thereafter, Section 3 introduces the
family of multivariate conditional versions of Spearman’s rho. We start with two generalizations of
Spearman’s rho to d dimensions in Section 3.1. Afterwards, we define the conditional dependence
measures by weighting different parts of the copula via suitable weighting functions. Section 3.3
presents a new type of tail-dependence measure and investigates its relationship with the well-known
tail-dependence coefficient. The statistical estimation of these dependence measures is addressed
in Section 4.

2 Notation and Definitions

Throughout the paper we write bold letters for vectors, e.g., x := (x1, . . . , xd)′. Inequalities x ≤
y are understood componentwise, i.e, xi ≤ yi for all i = 1, . . . , d. The indicator function on a
set A is denoted by 1A. The set [a, b]d, a < b, refers to the d-dimensional cartesian product
[a, b]× · · · × [a, b] ⊂ Rd and Rd

+ = [0,∞)d. The positive part of x is written as x+ = max(x, 0). Let
`∞(T ) denote the space of all uniformly bounded real-valued functions on some set T.

Let X1, X2, . . . , Xd be d ≥ 2 random variables with joint distribution function

F (x) = P (X1 ≤ x1, . . . , Xd ≤ xd) , x = (x1, . . . , xd)′ ∈ Rd,

and marginal distribution functions FXi (xi) = P (Xi ≤ xi) for xi ∈ R and i = 1, . . . , d. We assume
that the FXi are continuous functions. Thus, according to Sklar’s theorem (Sklar 1959), there exists

a unique copula C : [0, 1]d → [0, 1] such that

F (x) = C (FX1 (x1) , . . . , FXd
(xd)) , for all x ∈ Rd.
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The copula C is the joint distribution function of the random variables Ui = FXi(Xi), i = 1, . . . , d.
Moreover, C(u) = F (F−1

X1
(u1), . . . , F−1

Xd
(ud)) for all u ∈ [0, 1]d. The generalized inverse function

G−1 is defined via G−1(u) := inf{x ∈ R∪{∞} | G(x) ≥ u} for all u ∈ (0, 1] and G−1(0) := sup{x ∈
R ∪ {−∞} | G(x) = 0}. A detailed treatment of copulae is given in Nelsen (1999) and Joe (1997).

Every copula C is bounded in the following sense:

W (u) := max {u1 + . . . + ud − (d− 1), 0}
≤ C (u) ≤ min {u1, . . . , ud} =: M (u) for all u ∈ [0, 1]d,

where M and W are called the upper and lower Fréchet-Hoeffding bounds, respectively. The upper
bound M is a copula itself and is also known as the comonotonic copula. It represents the copula of
X1, . . . , Xd if FX1 (X1) = · · · = FXd

(Xd) with probability one, thus, if there exists an almost surely
strictly increasing functional relationship between Xi and Xj (i 6= j). By contrast, the lower bound
W is a copula only for dimension d = 2. Another important copula is the independence copula

Π (u) :=
d∏

i=1

ui, u ∈ [0, 1]d ,

describing the dependence structure of stochastically independent random variables X1, . . . , Xd.

3 Multivariate Conditional Versions of Spearman’s Rho

The present section introduces multivariate conditional versions of Spearman’s rho. Various exam-
ples are given. A new measure of multivariate tail dependence is presented and its relationship to
a well-known bivariate measure of tail dependence is examined.

3.1 Generalization of Spearman’s Rho to d Dimensions

In order to motivate the multivariate conditional versions of Spearman’s rho, we first focus on
possible generalizations of Spearman’s rho to higher dimensions. Recall that Spearman’s rho ρS

(Spearman 1904) of a two-dimensional random vector X = (X1, X2)′ with distribution function F,
univariate marginal distribution functions FX1 , FX2 , and copula C is defined by

ρS =
cov (FX1 (X1) , FX2 (X2))√

var (FX1 (X1))
√

var (FX2 (X2))
=

cov (U1, U2)√
var (U1)

√
var (U2)

=

1∫
0

1∫
0

uvdC (u, v)− (
1
2

)2

√
1
12

√
1
12

= 12

1∫

0

1∫

0

C (u, v) dudv − 3,

where (U1, U2)′ are distributed with copula C. The following alternative representation is readily
verified and plays a central role in the forthcoming definitions of conditional versions of Spearman’s
rho

ρS =

1∫
0

1∫
0

C (u, v) dudv −
1∫
0

1∫
0

uv dudv

1∫
0

1∫
0

min {u, v} dudv −
1∫
0

1∫
0

uv dudv

=

1∫
0

1∫
0

C (u, v) dudv −
1∫
0

1∫
0

Π(u, v) dudv

1∫
0

1∫
0

M(u, v) dudv −
1∫
0

1∫
0

Π(u, v) dudv

. (2)

Thus, ρS can be interpreted as the normalized average distance between the copula C and the
independence copula Π (u, v) = uv.

Several multidimensional extensions of Spearman’s rho have been discussed in the literature, we
mention Ruymgaart and van Zuijlen (1978), Wolff (1980), Joe (1990), and Nelsen (1996). For
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example, Wolff (1980) introduces the following straightforward generalization of Spearman’s rho ρS

as given by representation (2),

ρd =

∫
[0,1]d

C(u) du− ∫
[0,1]d

Π(u) du

∫
[0,1]d

M(u) du− ∫
[0,1]d

Π(u) du
=

d + 1
2d − (d + 1)

{
2d

∫

[0,1]d

C(u) du− 1
}

. (3)

Further, Ruymgaart and van Zuijlen (1978) address the estimation of the alternative measure

ρ̃d =

∫
[0,1]d

Π(u) dC(u)− ∫
[0,1]d

Π(u) du

∫
[0,1]d

M(u) du− ∫
[0,1]d

Π(u) du
=

d + 1
2d − (d + 1)

{
2d

∫

[0,1]d

Π(u) dC(u)− 1
}

.

Both generalizations ρd and ρ̃d coincide with Spearman’s rho if d = 2. In particular, Nelsen (1996)
shows that ρd can be derived from the concept of average lower orthant dependence, whereas ρ̃d

represents a measure calculated from the concept of average upper orthant dependence. In general,
ρd 6= ρ̃d for dimension d ≥ 3, except for the case where the copula C is radially symmetric, i.e.,
C(u) = P (U ≤ u) = P (U > 1− u) = C̄(1− u). Both types of multivariate generalizations of
Spearman’s rho are interesting. However, we elaborate only on the better known measure ρd,
though most of the analytical results of the next section can be immediately transferred to ρ̃d. The
asymptotical behavior of the estimators for ρ̃d, which are based on the empirical copula, are harder
to analyze. We will drop the index d for notational convenience.

3.2 Conditional Versions of Spearman’s Rho

The following definition of the multivariate conditional version of Spearman’s rho is motivated by
Formula (3):

ρ(g) :=

∫
[0,1]d

C(u)g(u) du− ∫
[0,1]d

Π(u)g(u) du

∫
[0,1]d

M(u)g(u) du− ∫
[0,1]d

Π(u)g(u) du
(4)

for some measurable function g ≥ 0 such that the integrals exist. The function g will be called
weighting function because it weights specific parts of the copula which are of interest, e.g, the
lower or upper tails of the copula. Later, we will impose further conditions on g in order to derive
interesting asymptotic results for related statistics.

In order to obtain concrete examples and to define a new multivariate concept of tail dependence,
we will consider weighting functions g of the form g(u) = 1[0,p]d(u), 0 < p ≤ 1, in more detail. Note
that these weighting functions refer to the lower part of the copula C. The resulting d-dimensional
conditional version of Spearman’s rho for 0 < p ≤ 1 is defined by

ρ(p) :=

∫
[0,p]d

C(u)du− ∫
[0,p]d

Π(u)du∫
[0,p]d

M(u)du− ∫
[0,p]d

Π(u)du
=

∫
[0,p]d

C(u)du− (p2

2 )d

pd+1

d+1 − (p2

2 )d
. (5)

The dependence measure ρ(p) preserves the ordering of concordance, i.e., if C(u) ≤ C ′(u) and
C̄(u) ≤ C̄ ′(u) for all u ∈ [0, 1]d, then ρC(p) ≤ ρC′(p) for all 0 < p ≤ 1. This preservation of the
concordance order holds also for ρ(g). In other words, ρ(g) is a measure of concordance.

For p = 1, ρ(p) coincides with the (unconditional) multivariate version of Spearman’s rho, as given
in Formula (3). Note that

M(u) ≥ C(u) ≥ W (u) implies 1 ≥ ρ(p) ≥ −
(p2

2

)d/{ pd+1

d + 1
−

(p2

2

)d}
.

It becomes clear that the lower bound for ρ(p) tends quickly to zero with increasing dimension.
Below, we illustrate ρ(p) with some examples. We remark that the limit of ρ(p) may not exist if
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p tends to zero. This issue will be addressed later when we discuss tail dependence. If the limit
exists, we include p = 0 in the domain of ρ(p).

Before we proceed, let us discuss the alternative conditional measure of Spearman’s rho given in
the Introduction. A multivariate version of Formula (1) can be obtained via the generalization (3)
of Spearman’s rho. This conditional version of Spearman’s rho would involve the copula of the
conditional joint distribution function P (X ≤ x | X ∈ A). Even for A = (−∞, F−1

X1
(p)] × · · · ×

(−∞, F−1
Xd

(p)], this copula takes the rather complicated form:

C(h−1
1p (u1), . . . , h−1

dp (ud))
C(p)

with functions hip(xi) =
C(p, . . . , p, xi, p, . . . , p)

C(p)
, i = 1, . . . , d,

and p = (p, . . . , p)′ ∈ [0, 1]d. Certainly, this version would be interesting to investigate, too, although
its analytics and the nonparametrical statistical inference, as discussed in Section 4 later, are
difficult. By contrast, the analytical structure and the nonparametric estimation of the conditional
measures in Formula (4) are more convenient and intuitive, as we will see.

Examples. i) The bivariate Farlie-Morgenstern copula C (u, v; θ) = uv + θuv (1− u) (1− v) , θ ∈
[−1, 1] yields

ρ (p) = θ · p3/9− p2/3 + p/4
1/3− p/4

, 0 ≤ p ≤ 1.

ii) For the family of Fréchet copulae

C(u, v; θ1, θ2) = θ1W (u, v) + (1− θ1 − θ2)Π(u, v) + θ2M(u, v)

with 0 ≤ θ1, θ2 ≤ 1 and θ1 + θ2 ≤ 1 we obtain

ρ(p) =





θ2 − θ1 · 3p4/(4p3 − 3p4), 0 ≤ p ≤ 1
2 ,

θ2 − θ1 · 3p4 − 16p3 + 24p2 − 12p + 2
4p3 − 3p4

, 1
2 < p ≤ 1.

For p = 1, we obtain the (unconditional) Spearman’s ρ = ρ(1) = θ2 − θ1.

iii) For the 3-dimensional Cuadras-Augé copula

C(u, v, w; θ) = [min(u, v, w)]θ(uvw)1−θ, 0 ≤ θ ≤ 1,

we have

ρ (p) =
{ 3p6−2θ

2(4− θ)(3− θ)
− p6/8

}/(
p4/4− p6/8

)
→

{
1 if θ = 1,
0 if θ ≤ 0 < 1,

as p → 0.

The explicit computation of the integral
∫

C(u)du is usually difficult for high-dimensional copulae.
Hence, the next proposition establishes a useful result regarding the simulation of ρ(p) for a given
joint distribution or copula. The proof utilizes representation (5).

Proposition 1 Let X be a d-dimensional random vector with copula C and univariate marginal
distribution functions FXi , i = 1, . . . , d. Let Z1, . . . , Zd be independent and uniformly distributed
random variables on the interval [0, p]. Then

ρ(p) ·
{ pd+1

d + 1
−

(p2

2

)d}
+

(p2

2

)d

= P{X1 ≤ F−1
X1

(Z1), . . . , Xd ≤ F−1
Xd

(Zd)} = E{C(Z1, . . . , Zd)}.

The corresponding pseudo-simulation algorithm is given by:

(1) Generate n · d random numbers zij , i = 1, . . . , d and j = 1, . . . , n, which are independent and
uniformly distributed on the interval [0, p].

(2) Generate n random numbers (x1j , x2j , . . . , xdj)′ with distribution function FX.

(3) Count the number k of j = 1, . . . , n, where xij ≤ F−1
Xi

(zij) for all i = 1, . . . , d.

(4) Set ρn(p) =
{

k
n − (p2

2 )d
}/{

pd+1

d+1 − (p2

2 )d
}
.
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3.3 A new Measure of Multivariate Tail Dependence

The concept of tail dependence helps to analyze and to model dependencies between extreme events.
For example in finance, tail dependent distributions or copulae are frequently used in order to model
the possible dependencies between large negative asset-returns or portfolio losses. More precisely,
the (lower) tail-dependence coefficient λL between two random variables X1 and X2 with copula C
is defined as

λL := lim
p↓0

P{X1 ≤ F−1
X1

(p) | X2 ≤ F−1
X2

(p)} = lim
p↓0

C(p, p)
p

, (6)

in case the limit exists. If λL > 0, we say that X = (X1, X2)′ is tail dependent, otherwise X
is tail independent. This dependence measure was introduced by Sibuya (1960) and plays a role
in bivariate extreme value theory. For the independence copula Π(u, v) we have λL = 0 (tail
independence) and for the comonotonic copula M(u, v) we have λL = 1 (tail dependence). Note
that the tail-dependence coefficient λL is a copula-based dependence measure.

Unfortunately, the tail-dependence coefficient λL has some drawbacks. For example, it evaluates
the copula C solely on its diagonal section, i.e., C(p, p), p ∈ [0, 1]. In other words, the limiting
behavior, as defined in Formula (6), may be very different if we tend to the copula’s lower left corner
on a different route than on the main diagonal, e.g., if we consider limp↓0 C(p, p/2)/p. Regarding
this drawback and other pitfalls, the reader may consult Schlather (2001), Abdous, Fougères, and
Ghoudi (2005), and Frahm, Junker, and Schmidt (2005).

This motivates us to introduce the following multivariate measure of (lower) tail dependence which
arises from the multivariate conditional version of Spearman’s rho, as defined in Formula (5). As
already mentioned in the introduction, similar measures can be derived from Kendall’s tau or
Blomqvist’s beta. We define:

ρL := lim
p↓0

ρ(p) = lim
p↓0

d + 1
pd+1

∫

[0,p]d

C(u)du, (7)

in case the limit exists. Obviously 0 ≤ ρL ≤ 1. Further, the comonotonic copula M implies ρL = 1
and the independence copula Π yields ρL = 0. Moreover, ρL preserves the concordance ordering.

The tail-dependence measure ρL can be written as the average of so-called tail copulae. A d-
dimensional (lower) tail copula (Schmidt and Stadtmüller 2006) is defined by

ΛL(x) := lim
p↓0

C(p · x)/p for x ∈ [0,∞]d\{∞} (8)

if the limit exists. The appropriate extension of the copula to this domain should be obvious.
Hence, ρL = limp↓0(d + 1)

∫
[0,1]d

C(p · u)/p du = (d + 1)
∫
[0,1]d

ΛL(u) du.

Examples. i) The Farlie-Morgenstern copula yields ρL = 0.

ii) For the family of Fréchet copulae we obtain

ρL = lim
p↓0

θ2 − θ1 · 3p4/(4p3 − 3p4) = θ2.

An interesting feature of Fréchet copulae is that in case θ1 = θ2 we have Spearman’s ρS = ρ(1) = 0,
but ρL = θ2. Thus, the dependence in the lower tail of the copula might be large although
Spearman’s rho is zero. If θ1 = θ2 = 1/2, then ρL = 0.5, which is the maximal value of ρL for
Fréchet copulae. The next proposition states the existence of copulae with a tail-dependence value
ρL = 1, but with Spearman’s ρS = ρ(1) close to zero.

Proposition 2 For any ε > 0, there exists a bivariate copula Cε such that

ρL = λL = 1 and |ρ(p)| < ε for all p ∈ (ε, 1].

In particular, the inequality holds also for Spearman’s ρS .
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Proof. According to Theorem 3.2.1 in Nelsen (1999), for any ε′ > 0 there exists a copula Cε′ which
is a shuffle of the comonotonic copula M such that supu,v∈[0,1] |Cε′(u, v)−Π(u, v)| < ε′. A shuffle is
a copula whose support is a collection of line segments with slope +1 and −1. In particular, we may
construct the shuffle Cε′ in such a way that Cε′ puts probability mass 1/n > 0 on the sub-square
[0, 1/n]2 for each n ∈ N and n ≥ (4/ε′)2. Thus, λL = limn→∞ n · Cε′(1/n, 1/n) = 1 for any ε′ > 0.
The fact that λL = 1 is equivalent to ρL = 1 is proven in Proposition 3. Set ε′ = ε/9 > 0. Then

|ρ(p)| ≤
(p3

3
− p4

4

) ∫

[0,p]2
|Cε′(u, v)−Π(u, v)| dudv ≤

(p3

3
− p4

4

)
ε′ ≤ ε. ¤

The copula Cε in Proposition 2, as constructed in the proof, shows that the tail-dependence mea-
sures λL and ρL can yield awkward results. In fact, we constructed a copula which is very close
to the independence copula Π, but has λL = ρL = 1. By contrast, the dependence measure ρ(p)
is very small for nearly all p ∈ (0, 1], as one would expect. This illustrates an advantage of the
tail-dependence measure ρ(p) for small p in this situation.

The next proposition establishes some results on how the tail-dependence measures ρL and λL

interrelate with each other in the bivariate setting.

Proposition 3 Let C be a bivariate copula with tail copula ΛL. Then the following inequalities
hold

λL ≤ ρL ≤ min{1, 2λL}. (9)

Further, ρL = 1 ⇔ λL = 1 and ρL = 0 ⇔ λL = 0. Moreover,

2λL − ρL ≥ lim
p↓0

1
p

{ ∫ p

0

u dCU |V (u | p) +
∫ p

0

v dCV |U (v | p)
}

, (10)

where CU |V and CV |U are the conditional copulae. If, in addition, C possesses continuous partial
derivatives and the following limit exists, then

ρL − λL =
1
2

lim
p↓0

∫ 1

0

{ ∂

∂y
C(pu, y) |y=p +

∂

∂x
C(x, pu) |x=p

}
du (11)

Proof. According to Theorem 2.2.4 in Nelsen (1999), each copula C is uniformly continuous on its
domain. Thus, if the limit ρL exists, l’Hospital’s and the monotonicity of C imply

ρL = lim
p↓0

3
p3

∫

[0,p]2
C(u, v) dudv = lim

p↓0

∫ 1

0

C(pu, p)
p

du + lim
p↓0

∫ 1

0

C(p, pv)
p

dv ≤ 2λL. (12)

Inequality (10) follows now via partial integration,
∫ p

0
C(u, p) du = p · C(p, p) − ∫ p

0
u dC(u, p),

and the fact that each copula has uniformly distributed margins. Assume now that the copula C
has continuous partial derivatives and the limit in Equation (11) exists. Another application of
l’Hospital’s rule to this equation yields Equation (11). In this case, the inequality λL ≤ ρL follows
from the fact that the above partial derivatives are greater than zero, since C is a distribution
function. However, the partial derivatives only exist almost surely for arbitrary C. For general
copulae C, we utilize Fatou’s lemma to show that

ρL ≥
∫

[0,1]2
lim inf

p↓0
C(pu, pv)/p dudv ≥ lim inf

p↓0
C(p, p)

p

∫

[0,1]2
min(u, v) dudv = λL.

The latter inequality follows from the homogeneity of u 7→ lim infp↓0 C(pu, pu)/p and the mono-
tonicity of C. Further, the equivalence ρL = 0 ⇔ λL = 0 and λL = 1 ⇒ ρL = 1 is immediately given
by Inequality (9). It remains to show that ρL = 1 implies λL = 1. Let ΛL be the bivariate (lower)
tail copula, as defined in Formula (8). For notational convenience, we drop the subscript L. Domi-
nated convergence implies that ρL = 1 = 3

∫
[0,1]2

Λ(u, v) duv. Assume that λL = Λ(1, 1) ≤ 1−ε < 1

for some ε > 0. Then according to the homogeneity property of Λ : Λ(v, v) ≤ (1 − ε)v for all
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v ∈ [0, 1]. Thus, utilizing the monotonicity of Λ in each argument, Λ(u, v) ≤ Λ(v, v) ≤ (1 − ε/2)u
for all u ∈ [c(ε)v, v] with c(ε) = (1 − ε)/(1 − ε/2) < 1. Hence, using the fact Λ(u, v) ≤ min(u, v),
we have

∫

[0,1]2
Λ(u, v) duv =

∫ 1

0

{∫ c(εv)

0

Λ(u, v) du +
∫ v

c(εv)

Λ(u, v) du +
∫ 1

v

Λ(u, v) du

}
dv

≤
∫ 1

0

{∫ c(εv)

0

u du +
∫ v

c(εv)

(
1− ε

2

)
u du +

∫ 1

v

v du

}
dv <

1
3
.

Thus, ρL = 3
∫
[0,1]2

Λ(u, v) duv < 1 which contradicts the assumption ρL = 1. ¤

The two best-known families of copulae in theory and practice are the family of Archimedean
copulae and the family of elliptical copulae. Thus, we will characterize the tail-dependence measure
ρL for these two families of copulae via the following two propositions.

Archimedean copulae are described by a continuous, strictly decreasing and convex generator func-
tion φ : [0, 1] → [0, ∞] with φ(1) = 0. The copula C is then given by

C(u, v) = φ[−1] (φ (u) + φ (v)) . (13)

Here φ[−1] : [0, ∞] → [0, 1] denotes the pseudo-inverse of φ. The generator φ is called strict if
φ(0) = ∞ and in this case φ[−1] = φ−1, see Genest and MacKay (1986), Joe (1997), or Nelsen
(1999).

With the exception of ρL = λL = 0 and ρL = λL = 1, the two measures of tail dependence may
well differ. This is, e.g., the case for Archimedean copulae. The following proposition shows that
for a large class of Archimedean copulae the tail-dependence coefficients λL and ρL do not coincide.

Proposition 4 Let C be a member of the family of bivariate Archimedean copulae with continuously
differentiable generator. If the limits ρL and λL = limp↓0 C(p, p)/p = limp↓0 2φ′(p)/φ′(C(p, p)) exist,
then

ρL = lim
p↓0

ρ(p) = λL ⇐⇒ λL = 0 or λL = 1.

Proof. Consider first the case of an Archimedean copula with non-strict generator φ, i.e. φ(0) < ∞.
Then according to a remark in Nelsen (1999), p.98, the zero set {(u, v) ∈ [0, 1]2 | C(u, v) = 0} has
a positive area with boundary curve φ(u) + φ(v) = φ(0) < ∞, which is convex. Thus, C(u, v) = 0
for all u, v ∈ [0, p] for p small enough, which implies λL = ρL = 0. Further, the equality of λL and
ρL, if either of both is 1 or 0, has been proven in Proposition 3.

Let us now consider an Archimedean copula C with strict generator function φ, i.e. φ(0) = ∞.
Further, assume 0 < λL < 1. The partial derivatives of C exist and are continuous according to the
continuous differentiability of the generator function. Then we have

∫ p

0

∂

∂p
C(u, p) du =

∫ p

0

φ′(p)
φ′{C(u, p)} du ≥

∫ p

cp

φ′(p)
φ′{C(u, p)} du ≥ φ′(p)(1− c)p

φ′{C(cp, cp)}
for any 0 < c < 1 since φ′ < 0 and nondecreasing, and C is nondecreasing in each compo-
nent. The proof is complete - see Equation (11) - if we find sequences pn ↓ 0 and cn → c ∈
(0, 1) such that φ′(pn)/φ′(cnpn) ≥ ε > 0. This follows from the fact that limp↓0 C(p, p)/p =
limp↓0 2φ′(p)/φ′(C(p, p)) = λL. Set cn := C(pn, pn)/pn → λL ∈ (0, 1). Then φ′(pn)/φ′(cnpn) →
λL ∈ (0, 1), which proves the proposition. ¤

Elliptical copulae are the copulae of elliptically contoured distributions such as the multivariate
normal distributions, t-distributions, symmetric generalized hyperbolic distributions, or α-stable
distributions. In particular, a distribution function F with density function f is elliptically con-
toured (and non-degenerated) if f possesses the following representation

f(x) = |Σ|−1/2h{(x− µ)′Σ−1(x− µ)}, x, µ ∈ Rd,

8



where h : R+ 7→ R+ is the generator, and Σ ∈ Rd×d is a positive definite matrix.

Proposition 5 Let C be the copula of a d-dimensional elliptically contoured distribution with gen-
erator h. If the generator is regularly varying (at infinity) with index −(α + d)/2, α > 0, i.e.,
limt→∞ h(ts)/h(t) = s−(α+d)/2, then

ρL =
2αd(d + 1)

E(Bα)

∫

[1,∞]d
H(x)

d∏

i=1

x−α−1
i dx

with function H(x) =
∫
Sd−1 mini∈Ia

{
(
√

Σa)i/xi

}α
S(da) with Ia = {i | (

√
Σa)i > 0} and B2 is

Beta(1/2, (d − 1)/2) distributed. The space Sd−1
:= Sd−1\(−∞, 0]d, where Sd−1 := {x ∈ Rd :

||x|| = 1} denotes the (d − 1)-dimensional unit sphere (regarding the Euclidean norm) and S(·) is
the uniform measure on it.

Proof. Without loss of generality we set µ = 0 and the diagonal elements of Σ equal to 1, since
elliptical copulae are invariant with respect to these parameters. Then the univariate distributions
of the corresponding elliptically-contoured distribution function F coincide and we will denote them
with G. We have

ρL = lim
p↓0

d + 1
pd+1

∫

[0,p]d
C(u) du = lim

p↓0
d + 1
pd+1

∫

(−∞,G−1(p)]d
F (x) d

{
d∏

i=1

G(xi)

}
= (∗).

Note that the left endpoint of G equals −∞, because the generator h is regularly varying at infinity.
Further, G is continuous and possesses a density if d ≥ 2 according to Fang, Kotz, and Ng (1990),
pp.36. Set Ḡ = 1−G. Then,

(∗) = lim
t→∞

d + 1
Ḡ(t)d+1

∫

(−∞,−t]d
F (x) d

{
d∏

i=1

G(xi)

}
= lim

t→∞
(d + 1)

∫

[1,∞)d

F̄ (tx)
Ḡ(t)

d∏

i=1

tg(txi)
Ḡ(t)

dx

with F̄ (x) = P (X > x) = F (−x) and g is the density function of G which is symmetric. Utilizing
Propositions 3.4 and 3.7 in Schmidt (2002), the tail function Ḡ is regularly varying at infinity with
index −α, α > 0. Further, the corresponding density function g is regularly varying at infinity with
index −α − 1 because g is monotone on (0,∞) by a result in Fang, Kotz, and Ng (1990), p.37,
and Theorem 1.7.2 in Bingham, Goldie, and Teugels (1987). Moreover, by Theorem 1.5.2 in the
latter reference, the convergence g(tx)/g(t) → x−α−1 is uniform in x ∈ [1,∞). This implies that
tg(tx)/Ḡ(t) → α · x−α−1 uniformly in x ∈ [1,∞).

It remains to be shown that
F̄ (tx)/Ḡ(t) → 2 ·H(x)/E(Bα)

uniformly in x ∈ [1,∞)d with function H(x) =
∫
Sd−1 mini∈Ia

{
(
√

Σa)i/xi

}α
S(da) and Ia = {i |

(
√

Σa)i > 0} The random variable B2 is Beta(1/2, (d− 1)/2) distributed. We utilize the following
stochastic representation of elliptically contoured distributions with location µ = 0 :

X d= Rd

√
ΣU(d)

with
√

Σ
√

Σ
′
= Σ. The random variable Rd ≥ 0 is stochastically independent of the d-dimensional

random vector U(d) which is uniformly distributed on the unit sphere Sd−1. Further, G is the
distribution function of a random variable R1U, where R1 ≥ 0 is stochastically independent of the
Bernoulli random variable U. Additionally, Proposition 3.1 in Schmidt (2002) and the related proof
imply that P (R1 > t)/P (Rd > t) → E(Bα) as t →∞. For t ≥ 0 we have

F̄ (tx)
Ḡ(t)

=
P (Rd

√
ΣU(d) > tx)

P (R1U > t)
= 2 · P (Rd > t)

P (R1 > t)

∫

Sd−1

P (Rd

√
Σa > tx)

P (Rd > t)
S(da). (14)
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Due to the uniform convergence of P (Rd > tx)/P (Rd > t) → x−α in x ∈ [ε,∞) for any fixed ε > 0
by Proposition 3.1 of the last reference and Theorem 1.5.2 in Bingham, Goldie, and Teugels (1987),
we obtain

P (Rd

√
Σa > tx)

P (Rd > t)
=

P
[
Rd > t ·maxi∈Ia

{
xi/(

√
Σa)i

}]

P (Rd > t)
→ min

i∈Ia

{
(
√

Σa)i/xi

}α
,

which converges uniformly in a ∈ Sd−1
and x ∈ [1,∞)d. Combining this with Formula (14) yields

the desired result. ¤

Examples. i) Consider the copulae of d-dimensional symmetric Pearson-type VII distributions.
These distributions are elliptically contoured and its generator has the form

h(t) = cd

(
1 +

t

α

)−N

, N > d/2, α > 0, (15)

where cd denotes a normalizing constant. Obviously the generator given in (15) is regularly varying
with index −N , and Proposition 5 is applicable. Setting N = (d + α)/2 in (15) yields the copulae
of d-dimensional t-distributions, which include the copulae of multivariate Cauchy distributions for
α = 1.

ii) The copulae of d-dimensional normal distributions do not possess a regularly varying generator.
It is well-known that for dimension d = 2 these copulae are tail independent, i.e. λL = 0. Thus,
the tail copula ΛL ≡ 0 by Theorem 1.iv in Schmidt and Stadtmüller (2006). Hence, the formulae
after Equation (8) imply that ρL = 0, see also Proposition 3. For arbitrary dimension d, one can
similarly show that ρL = 0.

Another choice of the weighting function g, which takes the form g(u) = 1[1−p,1]d(u), 0 < p ≤ 1,
provides us with a multivariate measure of upper tail dependence, defined by ρU := limp↓0 ρ?(p)
with ρ?(p) := ρ{1[1−p,1]d(u)}. For dimension d = 2, this measure ρU is an alternative of the so-

called upper tail-dependence coefficient which is defined by λU := limp↓0 P{X1 > F−1
X1

(1−p) | X2 >

F−1
X2

(1 − p)}, if existent, and thus represents an analogue to λL. The properties and relationship
between λU and ρU can be derived in a similar manner as the previous results. We mention that
for radially symmetric bivariate copulae such as bivariate elliptical copulae, i.e. where C(u, v) =
u + v − 1 + C(1− u, 1− v), the measures ρU and ρL coincide.

4 Statistical Inference

Statistical inference for the dependence measures introduced in Section 3 can be developed under the
assumption of known or unknown marginal distributions. The case of known marginal distributions
is given for the sake of completeness since - as we have already mentioned - this case is usually not
of practical relevance.

4.1 Estimation under known marginal distributions

Consider a random sample (Xj)j=1,...,n from a d-dimensional random vector X with joint distri-
bution function F and copula C. In the present section, we assume that the univariate marginal
distribution functions Fi of F are continuous and known. We set Uij = Fi(Xij), i = 1, . . . , d, j =
1, . . . , n. Thus, the random vectors Uj = (U1j , . . . , Udj), j = 1, . . . , n, are distributed according to
the copula C. The assumption of known marginal distributions is dropped in the next section. The
reason for making this assumption here lies in the following theorem. It shows that under fairly
general assumptions on the weighting function g the natural estimator of ρ(g) converges weakly to
a Gaussian field. Moreover, the convergence is uniform in g. The estimator we utilize is of the form

ρ̂?(g) :=

{
1
n

n∑

j=1

∫

Uj≤u

g(u) du− c̄(g)

}
/
c(g), (16)
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where c̄(g) :=
∫
[0,1]d

Π(u)g(u) du and c(g) :=
∫
[0,1]d

M(u)g(u) du − c̄(g). From (16), we obtain

below an estimator for ρ(p) as a special case:

ρ̂?(p) :=





1
n

n∑

j=1

d∏

i=1

(
p− Uij

)+ −
(p2

2

)d





/{ pd+1

d + 1
−

(p2

2

)d}
. (17)

Theorem 6 (Asymptotic normality under known marginal distributions) Suppose F is a
d-dimensional distribution function with continuous marginal distribution functions and copula C.
Let ρ̂?(g) be the estimator defined in (16), where g ∈ FK and FK is the set of all integrable func-
tions h : [0, 1]d 7→ R+ with

∫
[0,1]d

h(u)/c(h) du being bounded by K > 0. Then, the empirical process

converges weakly, √
n(ρ̂?(g)− ρ(g)) w→ G?(g),

where G?(g) is a centered tight continuous Gaussian random field. Weak convergence takes place
in `∞(FK). The covariance structure of G? is given by

IE
{
G?(g) ·G?(g′)

}
=

1
c(g) · c(g′)

∫

[0,1]2d

[
C{min(u,v)} − C(u)C(v)

]
g(u)g′(v) duv.

Proof. Consider the collection F of measurable functions f : Rd 7→ R+ given by

f(x) =
∫

x≤u

g(u)/c(g) du with g ∈ FK .

Using the notation µf =
∫

f dµ for a signed measure µ and an integrable function f, we rewrite
the F-indexed empirical process of the estimator (16) as

√
n(Pn − P )f =

∑n
j=1{f(Uj)− Pf}/√n,

where P is the distribution of U and Pn denotes the empirical measure. Note that the prerequisites
imply that supf∈F |f(x)−pf | < ∞ for every x. Thus, the empirical process {√n(Pn−P )f : f ∈ F}
can be viewed as a map into `∞(F). We may identify `∞(F) with the space `∞(FK). Thus, we
have to show weak convergence of

√
n(Pn − P )f to the limit G? in `∞(FK), where G? is a tight

Borel measurable element in `∞(FK). In this case, FK is called a Donsker class.

It is well known that the set of indicator functions on cells [x,∞) is a Vapnik-Cervonenkis class of
functions and, thus, a Donsker class (see, for instance, Example 2.6.1 in Van der Vaart and Wellner
(1996)). Further, the convex hull of this set of functions coincides with the set of discrete distribution
functions with finitely many atoms and is, thus, also a Donsker class according to Theorem 2.10.3
in Van der Vaart and Wellner (1996). Utilizing the Glivenko-Cantelli theorem, we conclude that
the set of distribution functions is a Donsker class since the modulus of continuity does not increase
for this class. By rescaling, we may assume without loss of generality that x 7→ ∫

x≤u
g(u)/c(g) du

is uniformly bounded by 1. Thus, FK is a subset of the convex hull of all distribution functions
and, hence, it is a Donsker class by the last mentioned theorem.

As usual, the assertion that the process G? is Gaussian follows from the multivariate central limit
theorem as does the fact that the functions f ∈ F are square integrable. ¤

Theorem 6 immediately yields a useful result for ρ̂?(p).

Corollary 7 Let ρ̂?(p) be the estimator, as defined in (17). Then
√

n(ρ̂?(p)− ρ(p)) w→ G?(p),

where G?(p) is a centered tight continuous Gaussian process. Weak convergence takes place in
`∞((ε, 1]) for any fixed ε > 0. The covariance structure of G? is given by

IE
{
G?(p) ·G?(q)

}
=

1
c(p) · c(q)

∫

[0,p]×[0,q]

C{min(u,v)} − C(u)C(v) duv

with c(p) := pd+1

d+1 −
(

p2

2

)d and c(q) = qd+1

d+1 −
(

q2

2

)d
.
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Remark. Weak convergence in Theorem 6 can be extended to the set of all functions in F̃ =⋃∞
K=1 FK by utilizing the metric d(f, f ′) =

∑∞
K=1

(||f −f ′||FK
∧1

)
2−K . In this context, weak con-

vergence in Corollary 7 takes place in `∞(
⋃∞

n=1(1/n, 1]). However, weak convergence of
√

n(ρ̂?(p)−
ρ(p)) in `∞([0, 1]) is not straightforward. This problem is addressed in Section 4.3 in more detail.

4.2 Estimation under unknown marginal distributions

We now assume that the univariate marginal distribution functions FXi of F are continuous but
unknown. The marginal distribution functions FXi

are estimated by their empirical counterparts

F̂i,n(x) =
1
n

n∑

j=1

1{Xij≤x}, for i = 1, . . . , d and x ∈ R.

Further, set Ûij,n := F̂i,n(Xij) for i = 1, . . . , d, j = 1, . . . , n, and Ûj,n = (Û1j,n, . . . , Ûdj,n). Note
that

Ûij,n =
1
n

(rank of Xij in Xi1, . . . , Xin).

The estimation of ρ(g) will therefore be based on ranks (and not on the observations itself). In
other words, we consider rank order statistics. The copula C is estimated by the empirical copula
which is defined as

Ĉn(u) =
1
n

n∑

j=1

d∏

i=1

1{Ûij,n≤ui} for u = (u1, . . . , ud)′ ∈ [0, 1]d.

We define the following nonparametric estimator for ρ(g) :

ρ̂(g) :=

{
1
n

n∑

j=1

∫

Ûj,n≤u

g(u) du− c̄(g)

}
/
c(g), (18)

where c̄(g) :=
∫
[0,1]d

Π(u)g(u) du and c(g) :=
∫
[0,1]d

M(u)g(u) du − c̄(g). In order to derive the

asymptotic behavior of the above estimator, we use the following theorem. For a proof and further
discussion see Rüschendorf (1976), Stute (1984), Gänßler and Stute (1987), Fermanian, Radulović,
and Wegkamp (2004), and Tsukahara (2005).

Theorem 8 Let F be a continuous d-dimensional distribution function with copula C. Under the
additional assumption that the partial derivatives DiC(u) exist and are continuous for i = 1, . . . , d,
we have √

n(Ĉn(u)− C(u)) w→ GC(u).

Weak convergence takes place in `∞([0, 1]d) and GC(u) = BC(u)−∑d
i=1 DiC(u)BC(u(i)) with Di

denoting the i-th partial derivative. The process BC is a tight centered Gaussian process on [0, 1]d

with covariance function E{BC(u)BC(v)} = C(u ∧ v) − C(u)C(v), i.e., BC is a d-dimensional
Brownian sheet. The vector u(i) denotes the vector where all coordinates, except the i-th coordinate
of u, are replaced by 1.

We can now prove asymptotic normality of the above estimator.

Theorem 9 (Asymptotic normality) Let ρ̂(g) be the estimator defined in (18), where g ∈ FM

and FM is the set of all integrable functions h : [0, 1]d 7→ R+ with h(u)/c(h) being uniformly bounded
by M > 0. Then, under the assumptions of Theorem 8, the process

√
n(ρ̂(g)− ρ(g)) w→ G(g),
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where G(g) is a centered tight continuous Gaussian random field. Weak convergence takes place in
`∞(FM ). With GC as in Theorem 8 we have

G(g) =
1

c(g)

∫

[0,1]d
GC(u)g(u) du.

Proof. Weak convergence in `∞(FM ) to a tight limit is equivalent to marginal convergence plus
asymptotic tightness, see Theorem 1.5.4 in Van der Vaart and Wellner (1996). The estimator ρ̂(g)
and ρ(g) are obviously invariant with respect to any scaling of the weighting function g by some
constant c 6= 0. Thus, we restrict ourselves to the space FM which consists of scaling-invariant
weighting functions, e.g., where

∫
g(u) du = 1. We equip this space FM with the metric d(g, g′) =

||g/c(g)−g′/c(g′)||[0,1]d with ||h||[0,1]d := sup[0,1]d |h(u)|. Define Xn(g) :=
√

n(ρ̂(g)−ρ(g)). Marginal
convergence is given if (Xn(g1), . . . , Xn(gk)) converges weakly for every finite subset of functions
g1, . . . , gk in FM . This follows from Theorem 8 and the continuous mapping theorem, because
the integral operator is a continuous linear map on `∞([0, 1]d) into R and GC is a tight Gaussian
process. The resulting limiting vector is normally distributed. This proposition is verified by writing
the integration as the limit of projection maps Φm which are multivariate normal, since GC is a
Gaussian process. An application of the uniqueness theorem of characteristic functions proves the
assertion.

Asymptotic tightness still remains to be shown. We choose a version of the limiting Gaussian
process G(g) which is a tight map in FM . Then, it remains to be shown that Xn(g) is asymptotically
uniformly equicontinuous in probability. For every ε, η > 0 there exists a δ > 0 such that

P
(

sup
d(g,g′)<δ

|Xn(g)−Xn(g′)| > ε
)

≤ P

(
sup

d(g,g′)<δ

∫

[0,1]d

∣∣√n
{
Ĉn(u)− C(u)

}∣∣ ·
∣∣∣g(u)
c(g)

− g′(u)
c(g′)

∣∣∣ du > ε

)

≤ P

(∫

[0,1]d

∣∣√n
{
Ĉn(u)− C(u)

}∣∣ du >
ε

δ

)
< η,

due to the weak convergence of
√

n
{
Ĉn(u) − C(u) towards a tight centered Gaussian process in

`∞([0, 1]d) (Theorem 8) and an application of the continuous mapping theorem. ¤

Corollary 10 Consider the following estimator for ρ(p) :

ρ̂n(p) =





1
n

n∑

j=1

d∏

i=1

(p− Ûij,n)+ −
(p2

2

)d





/{ pd+1

d + 1
−

(p2

2

)d}
. (19)

Under the assumptions of Theorem 9 we have

√
n{ρ̂n(p)− ρ(p)} w→ G(p) =

∫

[0,p]d

GC(u) du
/{ pd+1

d + 1
−

(p2

2

)d}
,

where G(p) is a centered Gaussian process and GC is given in Theorem 8. Weak convergence takes
place in `∞([ε, 1]) for arbitrary but fixed 0 < ε < 1. The covariance structure of G(p) is given by

E{G(p)G(q)} =
1

c(p) · c(q)
∫

[0,p]d×[0,q]d

E{GC(u) ·GC(v)} duv, 0 < p, q ≤ 1, (20)

with c(p) = pd+1

d+1 −
(

p2

2

)d
.
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It is interesting to look at the special case p = 1 and d = 2. Here, we obtain

ρ̂n(1) = 12
( 1

n

n∑

j=1

Û1j,nÛ2j,n − 1
n

)
− 3

which is an alternative estimator for Spearman’s ρS for d = 2. Note that ρ̂n(1) is slightly different
from the traditional rank order statistics of Spearman’s rho

ρ̂′n = 1− 6n

n2 − 1

n∑

j=1

(Û1j,n − Û2j,n)2,

which is used if no ties are present in the sample. It can be shown that ρ̂n(1) ≤ ρ̂′n for n ∈ N
and limn→∞

√
n{ρ̂n(1) − ρ̂′n} = 0 with probability one. Therefore ρ̂n(1) and ρ̂′n have the same

asymptotic distribution. The asymptotic variance of
√

n{ρ̂n(1)− ρS} is given by

asyV ar
{
ρ̂n(1)

}
= 144

∫

[0,1]2

∫

[0,1]2

E
{
GC(u)GC(v)

}
dudv, (21)

which is also established in, e.g., Rüschendorf (1976) and Genest and Rémillard (2004). Explicit
formulas for the asymptotic variance (21) for different families of copulae are calculated in Schmid
and Schmidt (2006). It turns out that for most copulae it is difficult to estimate the asymptotic
covariance structure (20) or the asymptotic variance (21). Fortunately, the following bootstrap
result holds. Here, (XB

j )j=1,...,n denotes the bootstrap sample which is obtained by sampling from

(Xj)j=1,...,n with replacement. The empirical copula of (XB
j )j=1,...,n is denoted by ĈB

n .

Theorem 11 (The bootstrap) Let FM be the set of all integrable functions h : [0, 1]d 7→ R+ with
h(u)/c(h) being uniformly bounded by M > 0. Suppose ρ̂n(g) is the estimator defined in (18) and
ρ̂B

n (g) denotes the corresponding estimator for the bootstrap sample (XB
j )j=1,...,n. Then, under the

assumptions of Theorem 8, the process
√

n{ρ̂B
n (g)− ρ̂n(g)}, g ∈ FM , converges weakly to the same

Gaussian process as
√

n{ρ̂n(g)−ρ(g)}, g ∈ FM , with probability one. Weak convergence takes place
in `∞(FM ).

Proof. Set Xn(g) :=
√

n(ρ̂n(g) − ρ(g)) and Yn(g) :=
√

n(ρ̂B
n (g) − ρ̂n(g)). The multidimensional

extension of Theorem 5 in Fermanian, Radulović, and Wegkamp (2004) implies that the process√
n{ĈB

n − Ĉn} converges weakly to the same Gaussian process as
√

n{Ĉn − C} with probability
1. Weak convergence takes place in `∞([0, 1]2). Thus, for every finite subset of functions g1, . . . , gk

in FM , (Yn(g1), . . . , Yn(gk)) converges weakly to the same limit as (Xn(g1), . . . , Xn(gk)) by the
continuous mapping theorem. Asymptotic tightness of Yn(·) follows by the same arguments as
given in the proof of Theorem 9. ¤

4.3 Nonparametric Estimation of ρL

The present section discusses the asymptotic behavior of ρ̂n(p), as defined in (19), if p tends to
zero. In particular, we consider the following estimator for the multivariate measure of (lower) tail
dependence ρL defined in (7):

ρ̂L,n := ρ̂n(k/n)

with some parameter k ∈ {1, . . . , n} to be chosen by the statistician. For the asymptotic results we
assume throughout this section that k = k(n) →∞ and k/n → 0 as n →∞.

Condition 12 (Second order condition) Let C be a copula. Assume the lower tail copula
ΛL(u) := limp↓0 C(p · u)/p 6≡ 0 exists everywhere on [0, 1]d. Then ΛL(u) is said to satisfy a second
order condition if a function A : R+ → R+ exists such that A(1/p) → 0 as p ↓ 0 and

lim
p↓0

ΛL(u)− C(p · u)/p

A(1/p)
= g(u) < ∞, u ∈ [0, 1]d,

14



where the convergence is locally uniformly and the function g is nonconstant.

Note that A(·) is regularly varying at infinity so this is just a second order condition on regular
variation, see de Haan and Stadtmüller (1996).

Theorem 13 (Asymptotic normality of ρ̂L,n) Let F be a d-dimensional distribution function
with continuous marginal distribution functions. If the Second order Condition 12 holds and the
therein mentioned tail copula ΛL possesses continuous partial derivatives, then for

√
kA(n/k) → 0 and

√
k(k/n)d−1 → 0 as n →∞ (22)

we have √
k
(
ρ̂L,n − ρL

) d→ N(0, σΛL
) as n →∞,

with asymptotic variance σΛL
= (d + 1)

∫
[0,1]d

GΛL
(u) du. The process GΛL

is a centered tight

continuous Gaussian random field (a detailed specification is given in the proof).

Proof. Dominated convergence yields

ρL = lim
p↓0

(d + 1)
∫

[0,1]d

C(p · u)
p

du = (d + 1)
∫

[0,1]d
ΛL(u) du,

where ΛL is the (lower) tail copula. Thus, we may write

√
k
(
ρ̂L,n − ρL

)
= (d + 1)

∫

[0,1]d

√
k
{n

k
Ĉn

(k

n
· u

)
− ΛL(u)

}
du +

√
kO(1)

(k

n

)d−1

,

with empirical copula Ĉn. Because of (22), the last term in the above equation vanishes and it
suffices to prove that

√
k
{n

k
Ĉn

(k

n
· u

)
− ΛL(u)

}
w→ GΛL(u) as n →∞

with k = k(n) → ∞ and k/n → 0 as n → ∞, and some centered tight Gaussian process GΛL .
Precisely this has been shown in Schmidt and Stadtmüller (2006), Theorem 5, where n/k·Ĉn(k/n·u)
is called the empirical tail copula which they denote Λ̂L,n(u). The derivations in this reference are
based on a slight modification of the notion of an empirical copula. The asymptotic results, however,
are equivalent, see Section 4 in this reference. The limiting process GΛL(u) can be expressed by

GΛL(u) = G∗ΛL
(u)−

d∑

i=1

DiΛL(u)G∗ΛL
(u{i})

with Di denoting the i-th partial derivative and G∗ΛL
being a centered tight continuous Gaussian

process. The vector u{i} corresponds to a vector where all coordinates, except the i-th coordinate
of u, are replaced by ∞. Weak convergence takes place in `∞([0, 1]d). The covariance structure of
G∗ΛL

is given by

IE
{
G∗ΛL

(u) ·G∗ΛL
(v)

}
= ΛL(u ∧ v)

for u,v ∈ [0, 1]d. The proof is finished by an application of the continuous mapping theorem. ¤
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