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Abstract. Dependence modelling plays a crucial role within internal credit

risk models. The theory of copulae, which describes the dependence struc-

ture between a multi-dimensional distribution function and the corresponding
marginal distributions, provides useful tools for dependence modelling. The

difficulty in employing copulae for internal credit risk models arises from the

appropriate choice of a copula function. From the practical point of view the

dependence modelling of extremal credit default events turns out to be a de-

sired copula property. This property can be modelled by the so-called tail
dependence concept, which describes the amount of dependence in the upper-

right-quadrant tail or lower-left-quadrant tail of a bivariate distribution. We
will give a characterization of tail dependence via a tail dependence coefficient

for the class of elliptical copulae. This copula class inherits the multivariate
normal, t, logistic, and symmetric general hyperbolic copula. Further we em-
bed the concepts of tail dependence and elliptical copulae into the framework

of extreme value theory. Finally we provide a parametric and non-parametric
estimator for the tail dependence coefficient.
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Introduction

The New Basel Capital Accord [16] will be the next stepping-stone for regula-
tory treatment of credit risk. Within the Internal Ratings-Based approach (IRB)
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distribution, regular variation, non-parametric estimator, multivariate extreme value theory.
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[15] the dependence structure, specifically the default correlation, of credit risky
exposure represents a primary input for regulatory capital requirements. The IRB
approach utilizes a single factor model for credit risk modelling. In particular, the
asset portfolio is modelled by a multivariate normal distribution. However, mul-
tivariate normal distributions encounter two major insufficiencies leading to short
comings in multivariate asset return modelling: On the one hand, their normal dis-
tributed margins are not flexible enough, and on the other hand, the copula related
to the normal distribution (normal copula) does not possess the tail dependence
property. This property enables the modelling of dependencies of extremal credit
default events. To be more precise: The tail dependence concept describes the
amount of dependence in the upper-right-quadrant tail or lower-left-quadrant tail
of a bivariate distribution. In this paper we propose substituting the normal copula
by an elliptical copula which possesses the tail dependence property. Further we
show that this property remains valid after a change of margins of the corresponding
asset return random vector, i.e. the tail dependence concept is a copula property.

This paper is organized as follows: After an outline of the dependence structure
modelling within The New Basel Capital Accord we present the theory of copulae
as a general framework for modelling dependence. In section 3 we introduce the
tail dependence concept as a copula property and give a characterization of tail
dependence for elliptical copulae in section 4. Section 5 embeds the concepts of tail
dependence and elliptical copulae into the framework of extreme value theory. In
the last section we provide a parametric and non-parametric estimator for the tail
dependence coefficient.

1. Credit risk modelling within The New Basel Capital Accord

The 1988 Basel Capital Accord is a current benchmark for many national regu-
latory laws related to ”economic capital” on commercial bank lending businesses.
This Accord requires banks to keep an 8% capital charge of the loan face value for
any commercial loan in order to cushion losses from an eventual credit default. An
increasing problem arises from the overall 8% capital charge which does not include
the financial strength of the borrower and the value of the collateral. This led to an
off-balance-sheet movement of low-risk credits and a retainment of high-risk credits.
To overcome the insufficiency of credit-risk differentiation and other inadequacies,
the Basel Committee launched the New Basel Capital Accord - Basel II which is
expected to become national law in 2006. Basel II is divided into the Standard
approach and the Internal Ratings-Based approach (IRB). Despite the Standard
approach, which basically reflects the 1988 Basel Accord, the IRB approach calcu-
lates the ”economic capital” by using a credit risk portfolio model. By credit-risk
portfolio model we understand a function which maps a set of instrument-level and
market-level parameters (cf. Gordy, [9], p. 1) to a distribution for portfolio credit
losses over a specified horizon. In this context ”economic capital” denotes the Value
at Risk (VaR) of the portfolio loss distribution. Following the IRB-approach banks
are now required to derive probabilities of default per loan (or exposure) via estima-
tion or mapping. Together with other parameters the required regulatory capital
increases with increasing probability of default and decreasing credit quality, re-
spectively. Furthermore banks have an incentive to raise the ”economic capital” in
order to improve their own credit rating.
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The IRB approach utilizes a single-factor model as credit-risk model which de-
scribes credit defaults by a two-state Merton model. This model can be compared
to a simplified framework of CreditMetrics c©. In particular, borrower i is linked to
a random variable Xi which represents the normalized return of its assets, i.e.

(1.1) Xi = ωiZ +
√

1 − ω2
i εi, i = 1, . . . , n,

where Z is a single common systematic risk factor related to all n borrowers and
εi, i = 1, . . . , n, denotes the borrower-specific risk. The random variables Z and
εi, i = 1, . . . , n, are assumed to be standard normally distributed and mutually in-
dependent. The parameters ωi, i = 1, . . . , n, are called factor loadings and regulate
the sensitivity towards the systematic risk factor Z.

The simplicity of the above single factor model has a significant advantage: It
provides portfolio-invariant capital charges, i.e. the charges depend only on the
loan’s own properties and not on the corresponding portfolio properties. According
to Gordy and Heitfeld [8], p. 5, this is essential for an IRB capital regime.

Observe that the IRB credit risk portfolio model (1.1) makes use of a multi-
dimensional normal distribution, and thus the dependence structure of the portfo-
lio’s asset returns is that of a multi-dimensional normal distribution. Many empir-
ical investigations ([10], [19], [6] and others) reject the normal distribution because
of its inability to model dependence of extremal events. For instance, in the bivari-
ate normal setting the probability that one component is large given that the other
component is large tends to zero. In other words, the probability that the VaR in
one component is exceeded given that the other component exceeds the VaR tends
to zero. The concept of tail dependence, which we define soon, describes this kind
of dependence for extremal events.

In the following we substitute the dependence structure of the above multivariate
normal distribution by the dependence structure of elliptically contoured distribu-
tions, which contains the multi-dimensional normal distribution as a special case.
This class, to be defined later, inherits most of the properties established in the IRB
credit risk portfolio model. As additional advantage we can characterize depen-
dence structures of elliptically contoured distributions which model dependencies
of extremal default events.

Before continuing we clarify the general dependence concept of multivariate ran-
dom vectors in the next section. Therefore the theory of copulae is needed.

2. The theory of copulae

The theory of copulae investigates the dependence structure of multi-dimensional
random vectors. On the one hand, copulae are functions that join or ”couple” mul-
tivariate distribution functions to their corresponding marginal distribution func-
tions. On the other hand, a copula function itself is a multivariate distribution
function with uniform margins on the interval [0, 1]. Copulae are of interest in
credit-risk management for two reasons: First, as a way of studying the dependence
structure of an asset portfolio irrespective of its marginal asset-return distributions;
and second, as a starting point for constructing multi-dimensional distributions for
asset portfolios, with a view to simulation. First we define the copula function in a
common way (Joe [12], p. 12).



4 RAFAEL SCHMIDT

Definition 2.1. Let C : [0, 1]n → [0, 1] be an n-dimensional distribution function
on [0, 1]n. Then C is called a copula if it has uniformly distributed margins on the
interval [0, 1].

The following theorem gives the foundation for a copula to inherit the dependence
structure of a multi-dimensional distribution.

Theorem 2.2 (Sklar’s theorem). Let F be an n-dimensional distribution function
with margins F1, . . . , Fn. Then there exists a copula C, such that for all x ∈ IRn

(2.1) F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

If F1, . . . , Fn are all continuous, then C is unique; otherwise C is uniquely deter-
mined on RanF1 × · · · × RanFn. Conversely, if C is a copula and F1, . . . , Fn are
distribution functions, then the function F defined by (2.1) is an n-dimensional
distribution function with margins F1, . . . , Fn.

We refer the reader to Sklar [22] or Nelsen [14] for the proof.

An immediate Corollary shows how one can obtain the copula of a multi-dimensional
distribution function.

Corollary 2.3. Let F be an n-dimensional continuous distribution function with
margins F1, . . . , Fn. Then the corresponding copula C has representation

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F

−1
n (un)), 0 ≤ u1, . . . , un ≤ 1,

where F−1
1 , . . . , F−1

n denote the generalized inverse distribution functions of F1, . . . ,
Fn, i.e. for all ui ∈ (0, 1) : F−1

i (ui) := inf{x ∈ IR | Fi(x) ≥ ui}, i = 1, . . . , n.

According to Schweizer and Wolff [21]: ”... the copula is invariant while the
margins may be changed at will, it follows that it is precisely the copula which
captures those properties of the joint distribution which are invariant under a.s.
strictly increasing transformations” and thus the copula function represents the
dependence structure of a multivariate random vector. We add some more copula
properties needed later.
Remarks.

(1) A copula is increasing in each component. In particular the partial deriva-
tives ∂C(u)/∂ui, i = 1 . . . n, exist almost everywhere.

(2) Consequently, the conditional distributions of the form

(2.2) C(u1, . . . , uj−1, uj+1, . . . , un | uj), j = 1, . . . , n,

exist.
(3) A copula C is uniformly continuous on [0, 1]n.

For more details regarding the theory of copulae we refer the reader to the
monographs of Nelsen [14] and Joe [12].

3. Tail dependence: A copula property

Now we introduce the concepts of tail dependence and regularly varying (multi-
variate) functions. We will embed the tail dependence concept within the copula
framework. Recall that multivariate distributions possessing the tail dependence
property are of special practical interest within credit portfolio modelling, since they
are able to incorporate dependencies of extremal credit default events. According
to Hauksson et al. [10], Resnick [19], and Embrechts et al. [6] tail dependence plays
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an important role in extreme value theory, finance, and insurance models. Tail de-
pendence models for multivariate distributions are mostly related to their bivariate
marginal distributions. They reflect the limiting proportion of exceedence of one
margin over a certain threshold given that the other margin has already exceeded
that threshold. The following approach represents one of many possible definitions
of tail dependence.

Definition 3.1 (Tail dependence, Joe [12], p. 33). Let X = (X1,X2)
′ be a 2-

dimensional random vector. We say that X is tail dependent if

(3.1) λ := lim
v→1−

IP(X1 > F−1
1 (v) | X2 > F−1

2 (v)) > 0;

where the limit exists and F−1
1 , F−1

2 denote the generalized inverse distribution
functions of X1, X2. Consequently, we say X = (X1,X2)

′ is tail independent if λ
equals 0. Further, we call λ the (upper) tail dependence coefficient.

Remark. Similarly, one may define the lower tail dependence coefficient by

ω := lim
v→0+

IP(X1 ≤ F−1
1 (v) | X2 ≤ F−1

2 (v)).

The following Proposition shows that tail dependence is a copula property. Thus
many copula features translate to the tail dependence coefficient, for example the
invariance under strictly increasing transformations of the margins.

Proposition 3.2. Let X be a continuous bivariate random vector, then

(3.2) λ = lim
u→1−

1 − 2u+ C(u, u)

1 − u
,

where C denotes the copula of X. Analogous ω = limu→0+
C(u,u)

u holds for the lower
tail dependence coefficient.

Proof. Let F1 and F2 be the marginal distribution functions of X. Then

λ = lim
u→1−

IP(X1 > F−1
1 (u) | X2 > F−1

2 (u))

= lim
u→1−

IP(X1 > F−1
1 (u),X2 > F−1

2 (u))

IP(X2 > F−1
2 (u))

= lim
u→1−

1 − F2(F
−1
2 (u)) − F1(F

−1
1 (u)) + C(F1(F

−1
1 (u)), F2(F

−1
2 (u)))

1 − F2(F
−1
2 (u))

= lim
u→1−

1 − 2u+ C(u, u)

1 − u
.

�

Although we provided a simple characterization for upper and lower tail depen-
dence by the last proposition, it will be still difficult and tedious to verify certain
tail dependencies if the copula is not a closed-form expression, as in the case for
most well-known elliptically contoured distributions. Therefore, the following The-
orem gives another approach calculating tail dependence. We restrict ourselves to
the upper tail.

Proposition 3.3. Let X be a bivariate random vector with differentiable copula C.
Then the (upper) tail dependence coefficient λ can be expressed using conditional
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probabilities if the following limit exists:

(3.3) λ = lim
v→1−

(

IP(U1 > v|U2 = v) + IP(U2 > v|U1 = v)
)

,

where (U1, U2) are distributed according to the copula C of X.

Proof. Let C denote the copula of X which is assumed to be differentiable on
the interval (0, 1)2. Therefore we may write IP(U1 ≤ v|U2 = u) = ∂C(u, v)/∂u and
IP(U1 > v|U2 = u) = 1 − ∂C(u, v)/∂u, respectively. The rule of L’Hospital implies
that

λ = lim
u→1−

1 − 2u+ C(u, u)

1 − u
= lim

u→1−

(

−
(

− 2 +
dC(u, u)

du

))

= lim
u→1−

(

2 − ∂C(x, u)

∂x

∣

∣

∣

x=u
− ∂C(u, y)

∂y

∣

∣

∣

y=u

)

= lim
u→1−

(

IP(U1 > u|U2 = u) + IP(U2 > u|U1 = u)
)

.

�

Some of the following results for copulae of elliptically contoured distributions are
characterized by regularly varying or O-regularly varying functions and multivariate
regularly varying random vectors, which are defined as follows.

Definition 3.4. (Regular and O-regular variation of real valued functions)

1. A measurable function f : IR+ → IR+ is called regularly varying (at ∞)
with index α ∈ IR if for any t > 0

lim
x→∞

f(tx)

f(x)
= tα.

2. A measurable function f : IR+ → IR+ is called O-regularly varying (at ∞)
if for any t ≥ 1

0 < lim inf
x→∞

f(tx)

f(x)
≤ lim sup

x→∞

f(tx)

f(x)
<∞.

Thus, regularly varying functions behave asymptotically like power functions.

Definition 3.5 (Multivariate regular variation of random vectors). An n-dimen-
sional random vector X = (X1, . . . ,Xn)T and its distribution are said to be regu-
larly varying with limit measure ν if there exists a function b(t) ↗ ∞ as t → ∞
and a non-negative Radon measure ν 6= 0 such that

(3.4) tIP
(( X1

b(t)
, . . . ,

Xn

b(t)

)

∈ ·
)

v→ ν(·)

on the space E = [−∞,∞]n\{0}.

Notice that convergence
v→ stands for vague convergence of measures, in the

sense of Resnick [18], p. 140. It can be shown that (3.4) requires the existence of
a constant α ≥ 0 such that for relatively compact sets B ⊂ E (i.e. the closure B is
compact in E)

(3.5) ν(tB) = t−αν(B), t > 0.

Thus we say X is regularly varying with limit measure ν and index α ≥ 0, if (3.4)
holds. Moreover, the function b(·) is necessarily regular varying with index 1/α. In
the following we always assume α > 0.
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Later, when we consider elliptically contoured distributions, it turns out that
polar coordinate transformations are a convenient way to deal with multivariate
regular variation. Denote by S

n−1 := {x ∈ IRn : ||x|| = 1} the (n− 1)-dimensional
unit sphere for some arbitrary norm || · || in IRn. Then the polar coordinate trans-
formation T : IRn\{0} → (0,∞) × S

n−1 is defined by

T (x) =
(

||x||, x

||x||
)

=: (r, a).

Observe, the point x can be seen as being distance r from the origin 0 away with
direction a ∈ S

n−1. It is well-known that T is a bijection with inverse transform
T−1 : (0,∞)×S

n−1 → IRn\{0} given by T−1(r, a) = ra. For notational convenience
we denote the euclidian-norm by ||·||2 and the related unit sphere by S

n−1
2 . The next

proposition, stated essentially in Resnick [19], Proposition 2, characterizes multi-
variate regularly varying random vectors under polar-coordinate transformation.

Proposition 3.6. The multivariate regular variation condition (3.4) is equivalent
to the existence of a random vector Θ with values in the unit sphere S

n−1 such that
for all x > 0

(3.6) tIP
(( ||X||

b(t)
,
X

||X||
)

∈ ·) v→ cναIP(Θ ∈ ·), as t→ ∞,

where c > 0, να is a measure on Borel subsets of (0,∞] with να((x,∞]) = x−α, x >
0, α > 0, and || · || denotes an arbitrary norm in IRn. We call S(·) := IP(Θ ∈ ·) the
spectral measure of X.

Remark. According to Stărică [23], p. 519, multivariate regular variation
condition (3.4) is also equivalent to

(3.7)
IP(||X|| > tx,X/||X|| ∈ ·)

IP(||X|| > t)

v→ x−αIP(Θ ∈ ·), as t→ ∞,

where || · || denotes an arbitrary norm in IRn and S(·) := IP(Θ ∈ ·) is the spectral

measure of X. Observe that regular variation of random variables is equivalent to
regular variation of its distribution’s tail function.

Notice that the latter proposition also implies that the multivariate regular vari-
ation property (3.6) does not depend on the choice of the norm. For more details
regarding regular variation, O-regular variation, and multivariate regular variation
we refer the reader to Bingham, Goldie, and Teugels [1], pp. 16, pp. 61, and pp.
193 and Resnick [18], pp. 12, pp. 250.

4. Tail dependence of elliptical copulae

Elliptically contoured distributions (in short: elliptical distributions) play a sig-
nificant role in risk management due to many properties which fit very well in
the Value at Risk and Markowitz framework. The best known elliptical distribu-
tions are the multivariate normal distribution, the multivariate t-distribution, the
multivariate logistic distribution, and multivariate symmetric general hyperbolic
distribution.

Definition 4.1 (Elliptical distribution). Let X be an n-dimensional random vector
and Σ ∈ IRn×n be a symmetric positive semi-definite matrix. If X − µ, for some
µ ∈ IRn, has a characteristic function of the form φX−µ(t) = Φ(tT Σt), then X
is said to be elliptically distributed with parameters µ, Σ, and Φ. Let En(µ,Σ,Φ)
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denote the class of elliptically contoured distributions with the latter parameters.
We call Φ the characteristic generator.

Definition 4.2 (Elliptical copulae). We say C is an elliptical copula, if it is the
copula of an elliptically contoured distribution.

Remark. The density function, if it exists, of an elliptically contoured distribution
has the following form:

(4.1) f(x) = |Σ|−1/2g((x− µ)T Σ−1(x− µ)), x ∈ IRn,

for some function g : IR → IR+, which we call the density generator. Observe that
the name ”elliptically contoured” distribution is related to the elliptical contours
of the latter density.

Examples. In the following we give some examples of density generators for
n-dimensional elliptical distributions. Here Cn denotes a normalizing constant de-
pending only on the dimension n.

(1) Normal distribution: g(u) = Cn exp(−u/2).
(2) t-distribution: g(u) = Cn(1 + t

m )−(n+m)/2,m ∈ IN.

(3) logistic distribution: g(u) = Cn exp(−u)/(1 + exp(−u))2.
(4) Symmetric generalized hyperbolic distribution:

g(u) = CnKλ−n
2
(
√

ψ(χ+ u))/(
√
χ+ u)

n
2 −λ, u > 0, where ψ, χ > 0, λ ∈

IR, and Kν denotes the modified Bessel function of the third kind (or Mac-
donald function).

A characteristic property of elliptical distributions is that all margins are el-
liptically distributed with the same characteristic generator or density generator,
respectively. However, in most risk models one encounters the problem that the
margins of the multivariate asset-return random vector are empirically not of the
same distribution type. As a solution we propose joining appropriate marginal
distributions with an elliptical copula, because of its well-known and statistically
tractable properties. One important issue is of course the estimation of the copula
or the copula parameters, respectively. According to Theorem 2.15 in Fang, Kotz,
and Ng [7], elliptical copulae C corresponding to elliptically distributed random
vectors X ∈ En(µ,Σ,Φ) with positive-definite matrix Σ, are uniquely determined
up to a positive constant by the matrix Rij = Σij/

√

ΣiiΣjj , 1 ≤ i, j ≤ n and
the characteristic generator Φ or the density generator g, respectively. Uniqueness
is obtained by setting |Σ| = 1 without loss of generality. Observe that R corre-
sponds to the linear correlation matrix, if it exists. Embrechts et al. [6] propose
the following robust estimator for R via Kendall’s Tau τ. This estimator is based
on the relationship τ(Xi,Xj) = 2

π arcsin(Rij), 1 ≤ i, j ≤ n, for Xi and Xj having
continuous distributions:

(4.2) R̂ = sin(πτ̂/2) with τ̂ =
c− d
(

n
2

) ,

where c and d denote the number of concordant and discordant tuples of a bivariate
random sample. The characteristic generator Φ or the density generator g can be
estimated via non-parametric estimators as they are discussed in Bingham and
Kiesel [2].

An immediate question arises: Which elliptical copula should one choose? The
previous discussion showed that tail dependence represents a desired copula prop-
erty in the context of credit-risk management. It is well-known that the Gaussian
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copula with correlation coefficient ρ < 1 does not inherit tail dependence (see
Schmidt [20] for more details). Therefore we seek a characterization of ellipti-
cal copulae possessing the latter property. The following stochastic representation
turns out to be very useful.

Let X be an n-dimensional elliptically distributed random vector, i.e. X ∈
En(µ,Σ,Φ), with parameters µ and symmetric positive semi-definite matrix Σ,
rank(Σ) = m, m ≤ n. Then

(4.3) X
d
= µ+RmA

′U (m),

where A′A = Σ and the univariate random variableRm ≥ 0 is independent of them-
dimensional random vector U (m). The random vector U (m) is uniformly distributed
on the unit sphere S

n−1
2 in IRm. In detail, Rm represents a radial part and U (m)

represents an angle of the corresponding elliptical random vector X. We call Rm

the generating variate of X. The above representation is also applicable for fast
simulation of multi-dimensional elliptical distributions and copulae. Especially in
risk-management practice, where large exposure portfolios imply high-dimensional
distributions, one is interested in fast simulation technics.

Although tail dependence is a copula feature we will state, for the purpose of
generality, the next characterization of tail dependence for elliptical distributions.
For this we need the following condition, which is easy to check in the context of
density generators.

Condition 4.3. Let h : IR+ → IR+ be a measurable function eventually decreasing
such that for some ε > 0

lim sup
x→∞

h(tx)

h(x)
≤ 1 − ε uniformly ∀ t > 1.

Theorem 4.4. Let X ∈ En(µ,Σ,Φ), n ≥ 2, with positive-definite matrix Σ. If X
possesses a density generator g then
α) all bivariate margins of X possess the tail dependence property if g is regularly
varying, and
β) if X possesses a tail dependent bivariate margin and g satisfies Condition 4.3,
then g must be O-regularly varying.

The Proof and examples are given in Schmidt [20].

Remark. Although we cannot show the equivalence of tail dependence and regu-
larly varying density generator, most well-known elliptical distributions and ellip-
tical copulae are given either by a regularly varying or a not O-regularly varying
density generator. That justifies a restriction to the class of elliptical copulae with
regularly varying density generator if one wants to incorporate tail dependence.

Additionally we can state a closed form expression for the tail dependence co-
efficient of an elliptically contoured random vector (X1,X2)

′ ∈ E2(µ,Σ,Φ) with
positive-definite matrix Σ, and the corresponding elliptical copula, having a regu-
lar varying density generator g with index −α/2 − 1 < 0 :

(4.4) λ = λ(α, ρ) =

∫ h(ρ)

0

uα

√
1 − u2

du

∫ 1

0

uα

√
1 − u2

du

,
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with ρ := σ12√
σ11σ22

and h(ρ) :=
(

1 + (1−ρ)2

1−ρ2

)−1/2

(see also Figure 1). This formula

has been developed in the proof of Theorem 5.2 in Schmidt [20], p. 20. Note, that
ρ corresponds to the correlation coefficient when this exists (see Fang, Kotz, and
Ng [7], p. 44, for the covariance formula of elliptically contoured distributions). We
remark that the (upper) tail dependence coefficient λ coincides with the lower tail
dependence coefficient and depends only on the ”correlation” coefficient ρ and the
regular variation index α.

Figure 1. Tail dependence coefficient λ versus regular variation
index α for ρ = 0.5, 0.3, 0.1

For completeness we state the following generalization of Theorem 4.4. The
proof can also be found in Schmidt [20].

Theorem 4.5. Let X ∈ En(µ,Σ,Φ), n ≥ 2, with positive-definite matrix Σ and

stochastic representation X
d
= µ+RnA

′U (n). Denote by Hn the distribution function
of Rn.
α) If X has a tail dependent bivariate margin, then the tail function 1−Hn of Rn

must be O-regularly varying.
β) If X has a tail dependent bivariate margin, then the tail function 1 − Fi must
be O-regularly varying, where Fi denote the distribution functions of the univariate
margins of Xi, i = 1, . . . , n.
γ) Suppose the distribution function Hn of Rn has a regularly varying tail. Then
all bivariate margins are tail dependent.

5. Tail dependence: A tool of multivariate extreme value theory

In this section we embed the concepts of tail dependence and elliptical cop-
ulae, introduced in section 3 and 4, into the framework of multivariate extreme
value theory. Extreme value theory is the natural choice for inferences on extremal
events of random vectors or the tail behavior of probability distributions. Usually
one approximates the tail of a probability distribution by an appropriate extreme
value distribution. In the one-dimensional setting the class of extreme value dis-
tributions has a solely parametric representation, so it suffices to apply parametric
estimation methods. By contrast, multi-dimensional extreme value distributions
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are characterized by a parametric and a non-parametric component. This leads to
more complicated estimation methods. First we provide the necessary background
for our purpose. Let X, X(1), X(2), . . . ,X(m), m ∈ IN be independent multivari-
ate random vectors with common continuous distribution function F. We say X or
its distribution is in the domain of attraction of a multivariate extreme value dis-
tribution G if there exists a sequence of normalizing constants (ami)

∞
m=1, (bmi)

∞
m=1

with ami > 0 and bmi ∈ IR, i = 1, . . . , n such that

(5.1) IP
(max1≤i≤mX

(m)
1 − bm1

am1
≤ x1, . . . ,

max1≤i≤mX
(m)
n − bmn

amn
≤ xn

)

converges to the limit distribution function G with non-degenerate margins as m→
∞. In particular, the latter is equivalent to

lim
m→∞

Fm(am1x1 + bm1, . . . , amnxn + bmn) = G(x1, . . . , xn).

Before turning to elliptical copulae we prove the following theorem for elliptical
distributions.

Theorem 5.1. Let X ∈ En(µ,Σ,Φ) with stochastic representation X
d
= µ +

RnA
′U (n) and positive-definite matrix Σ. If the generating variate Rn possesses

a regularly varying tail function, then X lies in the domain of attraction of an
extreme value distribution.

Proof. Suppose X ∈ En(µ,Σ,Φ) with stochastic representation X
d
= µ+RnA

′U (n)

and positive-definite matrix Σ. We start by showing that a regularly varying Rn

requires X to be in the class of multivariate regularly varying random vectors, intro-

duced in Definition 3.5. Consider first the case µ = 0 and Σ = I, i.e. X
d
= RnU

(n).
We need the following characterization of vague convergence stated in Resnick [18],
Proposition 3.12, p. 142: A sequence of Radon measures νm on some space E con-
verges vaguely to a Radon measure ν on E if and only if limm→∞ νm(B) = ν(B)
for all relatively compact Borel sets B ∈ E (i.e. the closure B is compact in E) with
ν(∂B) = 0. Note that the Borel sets (x,∞]×C, x > 0, of (0,∞]×S

n−1
2 represent a

generating Π-system of the class of relatively compact sets of (0,∞] × S
n−1
2 . Thus

it suffices to consider for x > 0 and 0 < b(t) ↗ ∞

tIP
(

T
( X

b(t)

)

∈ (x,∞] × C
)

= tIP
(( ||X||2

b(t)
,

X

||X||2

)

∈ (x,∞] × C
)

= tIP
( Rn

b(t)
> x

)

IP(U (n) ∈ C) → x−αIP(U (n) ∈ C) as t→ ∞,

since Rn and U (n) are stochastically independent and Rn is regularly varying. Fur-
ther the latter convergence is locally uniformly due to locally uniform convergence
of regularly varying functions (see Resnick [18], Proposition 0.5, p. 17) and the ab-
solute continuity of U (n). Applying Proposition 3.6 yields the existence of b(t) ↗ ∞
with

(5.2) tIP
( X

b(t)
∈ ·

)

v→ ν(·)

for a Radon measure ν on E = [−∞,∞]n\{0}and locally uniform convergence
transfers, because T and its inverse are continuous functions on E.
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Let now µ ∈ IRn and Σ ∈ IRn×n, positive-definite, be arbitrary. Set A ∈ IRn×n

such that Σ = A′A and A is a regular matrix. Define the Radon measure ρ(·) :=
ν(A′·) on E. Then

(5.3) tIP
( X

b(t)
∈ ·

)

= tIP
(A′RnU

(n)

b(t)
+

µ

b(t)
∈ ·

)

v→ ρ(·)

holds because of the locally uniform convergence property. Further the sets A′B :=
{A′x | x ∈ B relatively compact in E} are relatively compact on E and ν(∂(A′B)) =
0 if ρ(∂B) = ν(A′∂B) = 0, since ∂(A′B) ⊂ A′(∂B) holds for regular matrixes A′

((A′)−1x is a continuous function on E). Again Proposition 3.6 yields

(5.4) tIP
( ||X||
b(t)

> x,X/||X|| ∈ ·
)

v→ cx−αIP(Θ ∈ ·), c > 0,

for some spectral measure S(·) = IP(Θ ∈ ·) on the unit sphere S
n−1
2 . We refer the

reader to Hult and Lindskog [11] for explicit calculations of the spectral measure
with respect to the euclidian and the max-norm. Finally (5.4) and Corollary 5.18
in Resnick [18], p. 281, require X to be in the domain of attraction of an extreme
value distribution �

Typically, elliptically contoured distributions are given by their density function
or their density generator, respectively. Thus, the next Corollary turns out to be
helpful.

Corollary 5.2. Let X ∈ En(µ,Σ,Φ) be an elliptically contoured distribution with
regularly varying density generator g introduced in (4.1). Then X is in the domain
of attraction of an extreme value distribution.

Proof. According to Proposition 3.7 in Schmidt [20], p. 10, a regularly varying
density generator implies a regularly varying density function of the generating
variate Rn. In particular the latter proposition yields the existence of a density
function of Rn. By Karamata’s Theorem (see Bingham, Goldie, and Teugels [1], p.
26) regular variation is transferred to the tail function of Rn. The corollary follows
by Theorem 5.1. �

The following calculation clarifies the relationship between the spectral measure
arising from multivariate regular variation of random vectors (see (3.6)) and extreme
value distributions. According to Corollary 5.18 in Resnick [18], p. 281, every
multivariate regularly varying random vector with associated spectral measure S(·)
is in the domain of attraction of an extreme value distributionG with representation

(5.5) G(x) = exp
(

− ν([−∞, x]c)
)

, x ∈ IRn
+,

where ν({x ∈ IRn\{0} : ||x|| > t, x/||x|| ∈ ·}) = t−αS(·) and [−∞, x]c := {y ∈
E | yi > x for some i = 1, . . . , n}. In the literature ν is referred to as the exponent

measure and νT is the corresponding measure under polar coordinate transfor-
mation T (x) = (||x||, x/||x||). In particular νT represents a product measure and
S(·) = ν({x ∈ IRn\{0} : ||x|| > 1, x/||x|| ∈ ·}). Recall that T is a bijection on E
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and T−1(r, a) = ra holds. Set S
n−1

:= S
n−1\(−∞, 0]n. Then for x ∈ IRn

+

ν([−∞, x]c) = νT (T ([−∞, x]c))

= νT ({(r, a) ∈ IR+ × S
n−1 | rai > xi for some i = 1, . . . , n})

= νT ((r, a) ∈ IR+ × S
n−1 | a ∈ S

n−1
, r > min{xi

ai
, i ∈ Ia} =: g(a))

=

∫

S
n−1

∫ ∞

g(a)

1

α+ 1

1

rα+1
dr S(da) =

∫

S
n−1

1

g(a)α
S(da)

=

∫

S
n−1

1
[

min
{

xi

ai
, i ∈ Ia

}]α S(da)

=

∫

S
n−1

[

max
{ai

xi
, i ∈ Ia

}]α
S(da),

where Ia = {j ∈ {1, . . . , n} | aj > 0}. We summarize the above results in the
following proposition.

Proposition 5.3. Let X be a multivariate regularly varying random vector accord-
ing to Definition 3.5. Then X is in the domain of attraction of a multi-dimensional
extreme value distribution

(5.6) G(x) = exp
(

−
∫

S
n−1

[

max
{ai

xi
, i ∈ Ia

}]α
S(da)

)

, x ∈ IRn
+,

with spectral measure S(·) living on the unit sphere S
n−1.

In general, multi-dimensional extreme value distributions are characterized by
an extreme value index and a finite measure, which is commonly referred to as the
spectral or angular measure. According to the latter proposition, a multivariate
regularly varying random vector is in the domain of attraction of an extreme value
distribution with spectral measure coinciding with that of Definition 3.5.

For the family of elliptically contoured distributions the spectral measure is given
in closed form. Especially for an elliptical random vector X ∈ En(0, I,Φ) with sto-

chastic representation X
d
= RnU

(n) and Rn having a regularly varying tail function
with index α we obtain

(5.7) G(x) = exp
(

−
∫

S
n−1
2

[

max
{ai

xi
, i ∈ Ia

}]α
da

)

, x ∈ IRn
+,

with S
n−1
2 denoting the unit sphere with respect to the euclidian norm || · ||2. Recall

that the spectral measure S(·) is uniformly distributed on the unit sphere S
n−1
2 .

Moreover, in the bivariate setup straightforward calculation yields

G(x1, x2) = exp
(

− 1

2π

(

√
π

2

Γ((1 + α)/2)

Γ(1 + α/2)

( 1

xα
1

+
1

xα
2

)

(5.8)

+
1

xα
1

∫ tan−1(x2/x1)

0

cosα θ dθ +
1

xα
2

∫ π/2

tan−1(x2/x1)

sinα θ dθ
))

.

Having established the connection among elliptically contoured distributions and
multivariate extreme value theory, we now turn towards the relationship between
the tail dependence coefficient, elliptical copulae, and bivariate extreme value the-
ory. In the following we will always assume that the bivariate random vector X
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is in the domain of attraction of an extreme value distribution. Recall, for a bi-
variate random vector X with distribution function F in the domain of attrac-
tion of an extreme value distribution G there must exist constants ami > 0 and
bmi ∈ IR, i = 1, 2, such that

lim
m→∞

Fm(am1x1 + bm1, am2xn + bm2) = G(x1, x2).

Transformation of the margins of G to so-called standard Frechét margins yields

(5.9) lim
m→∞

Fm
∗ (mx1,mx2) = G∗(x1, x2),

where F∗ and G∗ are the standardized distributions of F and G, respectively, i.e.
G∗i(xi) = exp(−1/xi), xi > 0, i = 1, 2, and

F∗(x1, x2) = F
(( 1

1 − F1

)−1

(x1),
( 1

1 − F2

)−1

(x2)
)

.

This standardization does not introduce difficulties as shown in Resnick [18], Propo-
sition 5.10, p. 265. Moreover the following continuous version of (5.9) can be shown:

(5.10) lim
t→∞

F t
∗(tx1, tx2) = G∗(x1, x2),

or equivalently

(5.11) lim
t→∞

t(1 − F∗(tx1, tx2)) = − log(G∗(x1, x2)).

Summarizing the above facts, we obtain

lim
t→∞

t
(

1 − F
(( 1

1 − F1

)−1

(tx1),
( 1

1 − F2

)−1

(tx2)
))

= − logG
(( 1

− logG1

)−1

(x1),
( 1

− logG2

)−1

(x2)
)

= − logG∗(x1, x2).(5.12)

Thus the tail dependence coefficient, if it exists, can be expressed as

λ = lim
v→1−

IP(X1 > F−1
1 (v) | X2 > F−1

2 (v))

= lim
v→1−

IP(X1 > F−1
1 (v),X2 > F−1

2 (v))/(1 − v)

= lim
t→∞

tIP
(

X1 > F−1
1

(

1 − 1

t

)

,X2 > F−1
2

(

1 − 1

t

))

.

Further, easy calculation shows that

− logG∗(x1, x2) = lim
t→∞

t
(

1 − IP
(

X1 ≤
( 1

1 − F1

)−1

(tx1),X2 ≤
( 1

1 − F2

)−1

(tx2)
))

=
1

x1
+

1

x2
− lim

t→∞
IP

(

X1 > F−1
1

(

1 − 1

tx1

)

,X2 > F−1
2

(

1 − 1

tx2

))

and hence

(5.13) λ = 2 + logG
(( 1

− logG1

)−1

(1),
( 1

− logG2

)−1

(1)
)

.

The latter equation shows how one could model the tail dependence coefficient by
choosing an appropriate bivariate extreme value distribution.
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Using the above results, for an elliptical random vector X ∈ En(0, I,Φ) with sto-

chastic representation X
d
= RnU

(n) and Rn having a regularly varying tail function
with index α, we derive

(5.14) λ =

∫ π/2

π/4
cosα θ dθ

∫ π/2

0
cosα θ dθ

.

Observe that for X ∈ En(0, I,Φ) this formula coincides with formula (4.4) after a
standard substitution.

Within the framework of copulae we can rewrite (3.2) and (5.13) to obtain

λ = 2 − lim
t→∞

t
(

1 − C
(

1 − 1

t
, 1 − 1

t

))

(5.15)

= 2 + log
(

CG

(1

e
,
1

e

))

,

where C and CG denote the copula of F and G, respectively. Using the notation
of co-copulae (see Nelsen [14], p. 29) (5.15) implies

(5.16) λ = 2 − lim
t→∞

t Cco

(1

t
,
1

t

)

= 2 + log
(

CG

(1

e
,
1

e

))

.

The above results lead to the observation that a bivariate random vector inherits
the tail dependence property if the standardized distribution F∗ or the related
copula function C (equals the copula of F ) lies in the domain of attraction of an
extreme value distribution which does not have independent margins. Consequently
it is not necessary that the bivariate distribution function F itself is in the domain
of attraction of some extreme value distribution. This is an important property for
asset portfolio modelling.

Remark. In particular every bivariate regularly varying random vector with a
spectral measure not concentrated on (c, 0)T and (0, c)T for some c > 0 possesses
the tail dependence property according to Corollary 5.25 in Resnick [18], p. 292.
This is in line with Theorem 4.4 and Theorem 4.5, since the spectral measure of a
non-degenerated elliptical distribution is not concentrated on single points.

Based on the previous results we finish this section with an important theorem
about elliptical copulae.

Theorem 5.4. Let C be an elliptical copula corresponding to an elliptical random

vector X
d
= µ+RnA

′U (n) ∈ En(µ,Σ,Φ), Σ positive-definite, with regularly varying
generating variate Rn or regularly varying density generator. Then C is in the
domain of attraction of some extreme value distribution and all bivariate margins
of C possess the tail dependence property.

Proof. SupposeX
d
= µ+RnA

′U (n) ∈ En(µ,Σ,Φ), Σ positive-definite, with regularly
varying generating variate Rn or regularly varying density generator. Then Theo-
rem 5.1 and Corollary 5.2 require X to be in the domain of attraction of some ex-
treme value distribution. According to Proposition 5.10 in Resnick [18], p. 265, all
marginsXi, i = 1, . . . , n and the standardized distribution F∗, i.e. F∗(x1, . . . , xn) =
F ((1/(1 − F1))

−1(x1), . . . , (1/(1 − Fn))−1(xn) are in the domain of attraction of
an extreme value distributions and limm→∞ Fm

∗ (mx1, . . . ,mxn) = G(x1, . . . , xn).
Since F∗(x1, . . . , xn) = C(1− 1/x1, . . . , 1− 1/xn) = C∗(x1, . . . , xn), x1, . . . , xn ≥ 1
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and uniform distributions on [0, 1] are in the domain of attraction of some extreme
value distribution, we conclude again with Proposition 5.10 in Resnick [18] that C is
in the domain of attraction of an extreme value distribution. Applying Proposition
3.1 in Schmidt [20], p.7, every bivariate margin of C is an elliptical copula with
regularly varying generating variate or regularly varying density generator. Thus
tail dependence for all bivariate margins of C follows by the results stated above
this theorem. �

6. Estimating the tail dependence coefficient for elliptical copulae

Suppose X, X(1), . . . ,X(m) are iid bivariate random vectors with distribution
function F and elliptical copula C. Further we assume continuous marginal dis-
tribution functions Fi, i = 1, 2. There are several parametric and non-parametric
estimation methodologies for the tail dependence coefficient of an elliptical copula
available. We distinguish between two kinds of bivariate random vectors possessing
an elliptical copula as dependence structure: Those which are elliptically distributed
and those which are not elliptically distributed, i.e. the margins might follow differ-
ent distributions. Statistics testing for tail dependence and tail independence are
given in Ledford and Tawn [13].
At the presence of tail dependence Theorem 4.4 and Theorem 4.5 justify to con-
sider only elliptical copulae with regularly varying generating variate or regularly
varying density generator.

i) First, we consider the case of an elliptically contoured bivariate random vector

X. In particular we consider an elliptical random vector X
d
= µ + R2A

′U (2) with
regularly varying generating variate R2, i.e. for x > 0

lim
t→∞

IP(||X||2 > tx)

IP(||X||2 > t)
= lim

t→∞
IP(R2 > tx)

IP(R2 > t)
= x−α, α > 0.

Then formula (4.4) shows that the tail dependence coefficient λ depends only on
the tail index α and the ”correlation” coefficient ρ, precisely λ = λ(α, ρ). A robust
estimator ρ̂ for ρ based on its relationship to Kendall’s Tau was given in (4.2).
Regarding the tail index α there are several well-known estimators obtainable from
extreme value literature. Among these, the Hill estimator represents a natural one
for the tail index α :

(6.1) α̂m =
(1

k

k
∑

j=1

log ||X(j,m)||2 − log ||X(k,m)||2
)−1

,

where ||X(j,m)||2 denotes the j-th order statistics of ||X(1)||2, . . . , ||X(m)||2 and k =
k(m) → ∞ is chosen in an appropriate way; for a discussion on the right choice we
refer the reader to Embrechts et al. [5], pp. 341.

ii) Now we consider the case thatX is not elliptically distributed but is still in the
domain of attraction of some extreme value distribution. Then we can estimate the
tail dependence coefficient using the homogeneity property (3.5) and the spectral
measure representation (5.6) arising from the limiting extreme value distribution.
Einmahl et al. [3] and Einmahl et al. [4] propose a non-parametric and a semi-
parametric estimator for the spectral measure of an extreme value distribution.

iii) Finally, if we have to reject that X follows an elliptical distribution and X
is in the domain of attraction of an extreme value distribution, we propose the
following estimator for λ which is based on the copula representation (5.15). Let
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Cm be the empirical copula defined by

(6.2) Cm(u1, u2) = Fm(F−1
1m(u1), F

−1
2m(u2)),

with Fm, Fim denoting the empirical distribution functions corresponding to F, Fi,

i = 1, 2. Let R
(j)
m1 and R

(j)
m2 be the rank of X

(j)
1 and X

(j)
2 , j = 1, . . . ,m, respectively.

Then

λ̂m = 2 − m

k

(

1 − Cm

(

1 − k

m
, 1 − k

m

))

(6.3)

= 2 − m

k
+

1

k

m
∑

j=1

1{R
(j)
m1≤m−k,R

(j)
m2≤m−k}

with k = k(m) → ∞ and k/m → 0 as m → ∞. The optimal choice of k is related
to the usual variance-bias problem, which we address in a forthcoming work. The

next theorem states the strong consistency property of λ̂m.

Theorem 6.1. Let X be a bivariate random vector with elliptical copula C having
a regularly varying density generator or regularly varying generating variate. Let

λ̂m be the tail dependence coefficient estimator given in (6.3). If k = k(m) → ∞,
k/m→ 0, k/ log(logm) → ∞ as m→ ∞ then

λ̂m → λ almost surely as m→ ∞.

Proof. Let X possess an elliptical copula C with regularly varying density gener-
ator or regularly varying generating variate. According to Stute [24], p. 371, the
distribution of Cm in (6.2) does not dependent on the marginal distributions F1

and F2 such that w.l.o.g we may assume that Fi, i = 1, 2, are uniform distribu-
tions on the unit interval and we are in the copula framework. Theorem 5.4 yields
that C is in the domain of attraction of an extreme value distribution. The strong
consistence is now a special case of Theorem 1.1 in Qi [17] because of the uniform
convergence of Cm(1 − 1/(mx1), . . . , 1 − 1/(mxn)) to its corresponding extreme
value distribution. �

Asymptotic normality will be addressed in a forthcoming work.
The figures below graphically summarize the tail dependence properties of four

financial data-sets. We provide the scatter plots of daily negative log-returns of
the financial securities and compare them to the corresponding tail dependence
coefficient estimate (6.3) for various k. Both plots give an intuition for the presence
of tail dependence and the order of magnitude of the tail dependence coefficient. For
modelling reasons we assume that that the daily log-returns are iid observations.
All plots related to the estimation of the tail dependence coefficient show the typical
variance-bias problem for various k. In particular, a small k comes along with a large
variance of the estimate, whereas an increasing k results in a strong bias. In the
presence of tail dependence, k is chosen such that the tail dependence coefficient

estimate λ̂ lies on a plateau between the decreasing variance and the increasing
bias. Thus in Figure 2 one takes k between 80 and 110 to obtain the estimate

λ̂ = 0.28.
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Figure 2. Scatter plot of BMW versus Dt. Bank daily stock log-returns (2325 data

points) and the corresponding tail dependence coefficient estimate λ̂ for various k.
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Figure 3. Scatter plot of DM-US$ versus FF-US$ daily exchange rate log-returns

(5000 data points) and the corresponding tail dependence coefficient estimate λ̂ for
various k.
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Figure 4. Scatter plot of DM-US$ versus Yen-US$ daily exchange rate log-returns

(3126 data points) and the corresponding tail dependence coefficient estimate λ̂ for
various k.
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Figure 5. Scatter plot of AAA.Industrial versus A1.Industrial daily log-returns

(1043 data points) and the corresponding tail dependence coefficient estimate λ̂ for
various k.

7. Conclusions

Summarizing the results, we have found that elliptical copulae provide appealing
dependence structures for asset portfolio modelling within internal credit-risk man-
agement. We characterized those elliptical copulae which incorporate dependencies
of extremal credit default events by the so-called tail dependence property. Further
we showed that most elliptical copulae having the tail dependence property are in
the domain of attraction of an extreme value distribution. Thus powerful tools of
extreme value theory can be applied. Moreover, the application of elliptical copulae
is recommended due to the existence of good estimation and simulation techniques.

Acknowledgment. The author wants to thank Prof. Dr. U. Stadtmüller and
Prof. Dr. R. Kiesel for helpful comments and discussions.

References

1. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathe-
matics and Its Applications, vol. 27, Cambridge University Press, Cambridge, 1987.

2. N. H. Bingham and R. Kiesel, Semi-parametric modelling in finance: theoretical foundation,

Quantitative Finance 2 (2002), 241–250.
3. J.H.J. Einmahl, L. de Haan, and V.I. Piterbarg, Multivariate extremes estimation, Ann.

Statistics 19 (2001), 1401–1423.

4. J.H.J. Einmahl, L. de Haan, and A. K. Sinha, Estimating the spectral measure of an extreme

value distribution, Stochastic Processes and their Applications 70 (1997), 143–171.
5. P. Embrechts, C. Klueppelberg, and T. Mikosch, Modelling extremal events, Applications of

Mathematics, Stochastic Modelling and Applied Probability 33, Springer Verlag Berlin, 1997.
6. P. Embrechts, F. Lindskog, and A. McNeil, Modelling dependence with copulas and applica-

tions to risk management, preprint (2001).

7. K.T. Fang, S. Kotz, and K.W. Ng, Symmetric multivariate and related distributions, Mono-
graphs on Statistics and Applied Probability 36, Chapman and Hall, London, 1990.

8. M. Gordy and E. Heitfield, Estimating factor loadings when rating performance data are

scarce, Technical Report, Board of Governors of the Federal Reserve System (2000).

9. M. B. Gordy, A risk-factor model foundation for ratings-based bank capital rules, Draft, Board

of Governors of the Federal Reserve System (2001).
10. H.A. Hauksson, M. Dacorogna, T. Domenig, U. Mueller, and G. Samorodnitsky, Multivariate

extremes, aggregation and risk estimation, Quantitative Finance 1 (2001), 79–95.



20 RAFAEL SCHMIDT

11. H. Hult and F. Lindskog, Multivariate extremes, aggregation and dependence in elliptical

distributions, preprint (2001).

12. H. Joe, Multivariate models and dependence concepts, Monographs on Statistics and Applied

Probabilty 73, Chapman and Hall, London, 1997.

13. A.W. Ledford and J.A. Tawn, Statistics for near independence in multivariate extreme values,

Biometrika 83 (1996), 169–187.
14. R.B. Nelsen, An introduction to copulas, Lecture Notes in Statistics 139, Springer Verlag,

1999.

15. Basel Committee on Banking Supervision, The internal ratings-based approach, Bank of In-

ternational Settlement (2001).

16. , The New Basel Capital Accord, Bank of International Settlement (2001).

17. Y. Qi, Almost sure convergence of the stable tail empirical dependence function in multivariate

extreme statistics, Acta Math. Appl. Sinica (English ser.) (1997), no. 13, 167–175.

18. S. Resnick, Extreme values, regular variation, and point processes, Springer New York, 1987.

19. , Hidden regular variation, second order regular variation and asymptotic dependence,

preprint (2002).

20. R. Schmidt, Tail dependence for elliptically contoured distributions, Math. Methods of Oper-

ations Research 55 (2002), no. 2, 301–327.
21. B. Schweizer and E.F. Wolff, On nonparametric measures of dependence for random variables,

Ann. Statist. 9 (1981), 870–885.

22. A. Sklar, Random variables, distribution functions, and copulas - a personal look backward

and forward, Distributions with Fixed Marginals and Related Topics, ed. by L. Rueschendorff,

B. Schweizer, and M.D. Taylor (1996), 1–14.
23. C. Stărică, Multivariate extremes for models with constant conditional correlation, Journal of

Empirical Finance 6 (1999), 515–553.
24. W. Stute, The oscillation behavior of empirical processes: The multivariate case, The Ann.

of Probability 12 (1984), no. 2, 361–379.

Universität Ulm
Abteilung Zahlentheorie und Wahrscheinlichkeitstheorie
Helmholtzstr. 18
89069 Ulm, Germany

email-address: Rafael.Schmidt@mathematik.uni-ulm.de


