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Abstract. The relationship between the theory of elliptically contoured dis-
tributions and the concept of tail dependence is investigated. We show that
bivariate elliptical distributions possess the so-called tail dependence property
if the tail of their generating random variable is regularly varying, and we
give a necessary condition for tail dependence which is somewhat weaker than
regular variation of the latter tail. In addition, we discuss the tail depen-
dence property for some well-known examples of elliptical distributions, such
as the multivariate normal, t, logistic, and symmetric generalized hyperbolic
distributions.
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Introduction

The concept of tail dependence plays an important role among dependence mea-
sures used within credit risk modelling. Most of the well-known credit risk models
which are used in finance are based on the multivariate normal distribution, due to
its tractability in portfolio calculation and simulation. However, many statistical
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papers show that the normal distribution is not capable of exhibiting important
properties encountered in credit risk. Some of the insufficiencies of normal distri-
butions are their light tails and the independence of extremal credit default events,
where the latter can be modelled by tail-dependence measures. To tackle these prob-
lems we focus on the larger class of elliptically contoured distributions (in short:
elliptical distributions), which include the multivariate normal and t-distributions
as representatives. Many convenient properties of the multivariate normal distribu-
tion can be extended to the class of elliptical distributions. Especially for credit risk
portfolio modelling we mention the simple way of calculating the Value at Risk of
a linear portfolio. We prove that the family of elliptically contoured distributions
with regularly varying tails of the generating variate is almost equivalent to the
class of elliptically contoured distributions possessing the dependence property for
extremal credit default events.

1. Tail dependence and regular variation

In this section we introduce the concepts of tail dependence and regularly vary-
ing functions. We will state the definitions and some well-known results used in
the sequel. Multivariate distributions having the tail dependence property are of
special practical interest within credit portfolio modelling since they are able to in-
corporate dependencies of extremal credit default events. According to Embrechts,
McNeil, and Straumann [5] tail dependence plays an important role in extreme
value theory, finance, and insurance models. Tail dependence models for multivari-
ate distributions are mostly related to their bivariate marginal distributions. The
following approach represents one of many possible definitions of tail dependence.

Definition 1.1 (Tail dependence, Joe [8], p.33). Let X = (X1,X2)′ be a 2-
dimensional random vector. We say that X is tail dependent if

(1.1) λ := lim
v→1−

IP(X1 > G−1
1 (v) | X2 > G−1

2 (v)) > 0;

where the limit exists and G−1
1 , G−1

2 denote the generalized inverse distribution
functions of X1, X2. Consequently, we say X = (X1,X2)′ is tail independent if λ
equals 0. Further, we call λ the (upper) tail dependence coefficient.

Remarks.
1. Similarly, one may define the lower tail dependence coefficient by

ω := lim
v→0+

IP(X1 ≤ G−1
1 (v) | X2 ≤ G−1

2 (v)).

2. Later we will also consider the following dependence measure:

λ̂ := lim
x→G−1

2 (1)−
IP(X1 > x | X2 > x),

which turns out to be useful for absolute asset returns.
The main results of this paper are characterized by regularly varying or O-regularly
varying functions, which are defined as follows.
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Definition 1.2. (Regular and O-regular variation)
1. A measurable function f : IR+ → IR+ is called regularly varying (at ∞)

with index α ∈ IR if for any t > 0

lim
x→∞

f(tx)
f(x)

= tα.

The class of regularly varying functions with index α is denoted by RVα.
2. A measurable function f : IR+ → IR+ is called O-regularly varying (at ∞)

if for any t ≥ 1

0 < lim inf
x→∞

f(tx)
f(x)

≤ lim sup
x→∞

f(tx)
f(x)

< ∞.

The class of O-regularly varying functions is denoted by OR.

Thus, regularly varying functions behave asymptotically like power functions.
The next well-known uniform convergence theorem (see Resnick [9], p.22) will be
used frequently in the following.

Theorem 1.3. Let f ∈ RVα, α ∈ IR.

1. Then

lim
x→∞

f(xt)
f(x)

= tα

holds locally uniformly on (0,∞). Moreover, if α < 0, then uniform conver-
gence holds on intervals of the form [b,∞), b > 0.

2. Let ε > 0. Then there exists Kε ≥ 0 such that

(1 − ε)tα−ε <
f(xt)
f(x)

< (1 + ε)tα+ε

for all x ≥ Kε and t ≥ 1.

Further, we need the following result about the derivative of regularly varying
functions.

Theorem 1.4. Suppose that the distribution function F : IR+ → [0, 1] is absolutely
continuous with density f, i.e.,

F (x) =
∫ x

0

f(t) dt, x ≥ 0.

If F = 1 − F ∈ RV−α, α > 0, and f is monotone, then f ∈ RV−α−1.

We shall also consider a Wiener-Tauberian Theorem dealing with Mellin trans-
forms and Mellin convolutions which we define now.
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Definition 1.5 (Mellin transform and convolution).
1. Given a measurable kernel k : (0,∞) → IR we define its Mellin transform

by

(1.2) ǩ(z) :=
∫ ∞

0

t−zk(t)
dt

t

for z ∈ C such that the integral converges.

2. For measurable functions f, g : (0,∞) → IR we call g
M∗ f the Mellin

convolution, where

(1.3) g
M∗ f(x) :=

∫ ∞

0

f(x/t)g(t)
dt

t

for those x > 0 for which the integral converges.

For proofs and more details regarding regular variation, O-regular variation, and
Wiener-Tauberian Theorems we refer the reader to Bingham, Goldie, and Teugels
[2], pp. 16, pp. 61, and pp. 193 and Resnick [9], pp. 12.

2. Spherical distributions

We begin this section by introducing the family of spherical distributions, which
forms a subclass of the family of elliptical distributions. After formulating the main
results for the class of spherical distributions we can easily extend them to the more
general framework of elliptical distributions. Most of the following notation is along
the lines of Fang, Kotz, and Ng [6].

Definition 2.1. Let X be an n-dimensional random vector. Then X is said to be
spherically distributed if

OX
d= X

for every orthogonal matrix O ∈ IRn×n.

One can easily show that X belongs to the class of spherical distributions if and
only if its characteristic function φ(t), t ∈ IRn has the form

φ(t) = Φ(t′t)

for some function Φ : IR → IR. Hence, we denote the n-dimensional spherical dis-
tributions induced by Φ by Sn(Φ) and call Φ the characteristic generator.

Remark. The characteristic function of a spherical distribution is real valued, due
to its symmetry.

Besides the above characterization of spherical distributions, Schoenberg [10] in-
troduced the following stochastic representation, which we frequently use in the
sequel. Denote by

Ωn = {Φ(·) : Φ(t21 + · · · + t2n) is an n-dimensional characteristic function}
the set of characteristic generators for n-dimensional spherical distributions.

Theorem 2.2. Suppose that X is spherically distributed with characteristic gener-
ator Φ ∈ Ωn. Then X has the representation

(2.1) X
d= RnU (n),
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where the random variable Rn ≥ 0 is independent of the n-dimensional random
vector U (n) which is uniformly distributed on unit sphere in IRn.

The stochastic representation (2.1) will be a central issue of this paper, and
therefore we state the proof for completeness.
Proof. We begin by proving the following equivalence. A function Φ is a charac-
teristic generator, i.e. Φ ∈ Ωn, if and only if

(2.2) Φ(x) =
∫ ∞

0

Ψn(xr2)dFn(r),

where Fn : [0,∞) → [0, 1] is a distribution function and

(2.3) Ψn(y′y) =
∫

x′x=1

eiy′xdSn(x)/Sn

with Sn(·) denoting the uniform measure on the unit sphere in IRn and Sn denoting
the area of the unit sphere in IRn. Observe that Ψn(y′y) is the characteristic function
of U (n).
i) Let Φ ∈ Ωn and x be arbitrary with x′x = ‖x‖2 = 1; then g(t1, . . . , tn) := Φ(t′t) =
Φ

(
(‖t‖x)′(‖t‖x)

)
= g(‖t‖x1, . . . , ‖t‖xn), where g(t1, . . . , tn) is the characteristic

function of some random vector Y with distribution function H. Then

Φ(t′t) =
1
Sn

∫
‖x‖=1

g(‖t‖x1, . . . , ‖t‖xn) dSn(x)

=
1
Sn

∫
‖x‖=1

[∫
IRn

eiy′(‖t‖x)dH(y)
]

dSn(x)(2.4)

=
∫

IRn

[
1
Sn

∫
‖x‖=1

ei(‖t‖y)′xdSn(x)

]
dH(y) =

∫
IRn

Ψn(‖t‖2‖y‖2) dH(y).

With Fn(u) :=
∫
‖y‖<u

dH(y) we obtain Φ(x) =
∫ ∞
0

Ψn(xu2)dFn(u).
ii) Let Φ(x) have representation (2.2) and let Rn be a random variable with distri-
bution function Fn which is independent of U (n). Then

IE(eit′RnU(n)
) =

∫ ∞

0

IE(eirt′U(n)
) dFn(r)

=
∫ ∞

0

Ψn(‖t‖2r2) dFn(r) = Φ(‖t‖2) = Φ(t′t),

using the independence property of U (n) and Rn. Hence, Φ ∈ Ωn.
iii) Combining part i) and ii), we obtain that

IE(eit′RnU(n)
) = Φ(t′t)

for some nonnegative random variable Rn independent of U (n) and some function
Φ if and only if Φ ∈ Ωn. Finally the uniqueness theorem for characteristic functions
yields the theorem. �

Definition 2.3. Let X ∈ Sn(Φ). Corresponding to the latter theorem we call
Rn the generating random variable or generating variate, and its distribution Fn

the generating distribution function. Further, we denote the univariate marginal
distribution function of X ∈ Sn(Φ) by G.
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Note that each margin of X has an identical distribution function G, due to the
symmetric form of the characteristic function of X. Before we go into details let us
first state the main results for spherical distributions.

Theorem 2.4. Let X ∈ Sn(Φ), n ≥ 2, with stochastic representation X
d= RnU (n).

α) Suppose Fn, the distribution function of Rn, has a regularly varying tail. Then
all bivariate margins have the tail dependence property.
β) If X has a tail dependent bivariate margin, then the tail function of the univariate
margins G = 1 − G is O-regularly varying.
γ) If X has a tail dependent bivariate margin, then the tail function Fn = 1 − Fn

of Rn is O-regularly varying.

Remarks.
1. Moreover, in the framework of Theorem 2.4 we prove that if G has a reg-

ularly varying tail, i.e. G = 1 − G ∈ RV−α with α > 0, and xαFn(x)
satisfies the Tauberian Condition 3.2 then all bivariate margins possess the
tail dependence property.

2. Later we will state an equivalent theorem regarding densities, where we can
prove a stronger result.

For the proof of Theorem 2.4 we need several lemmas and propositions, which
yield interesting results in themselves. First we investigate the marginal character-
istics of spherical distributions.

Lemma 2.5. Let X ∈ Sn(Φ) and (X(m),X(n−m))′ be a partition of X
d= RnU (n)

with X(m) ∈ IRm and X(n−m) ∈ IRn−m. Then
α)

X(m) ∈ Sm(Φ)
and
β)

(2.5) (X(m),X(n−m))′ d= (RnD1U
(m), RnD2U

(n−m))′

holds, where D2
1 is Beta(m

2 , n−m
2 ) distributed and D2

2 = 1 − D2
1. Further U (m),

U (n−m), and (D2
1,D

2
2) are mutually independent random vectors.

For a proof we refer the reader to Fang, Kotz, and Ng [6].
Remark. Part α) and the symmetry of the characteristic function of spherical
distributions imply that all margins of X are spherically distributed with the same
characteristic generator.
The following lemma describes the relationship between the margins of a spherically
distributed X and its characteristic variate.

Let X ∈ Sn(Φ) and X(m) ∈ Sm(Φ), 1 ≤ m ≤ n, be the corresponding marginal
random vector. Then Rm ≥ 0, 1 ≤ m ≤ n, denotes the random variable which
relates to the stochastic representation

X(m) d= RmU (m).

Lemma 2.6. If X ∈ Sn(Φ) and X(m) ∈ Sm(Φ), 1 ≤ m ≤ n, have generating
variates Rn and Rm, respectively, then

Rm
d= RnBm,
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where the random variable Bm with 0 ≤ Bm ≤ 1 is independent of Rn, and B2
m

follows a Beta(m
2 , n−m

2 ) distribution for 1 ≤ m < n and B2
n ≡ 1.

Proof. This follows immediately by Lemma 2.5 setting Bm := D1 and observing
that Rm = ‖RmU (m)‖ d= ‖RnBmU (m)‖ = RnBm. �

3. Regular variation properties for spherical distributions

An immediate consequence of Lemma 2.6 for spherical distributions is that a
generating variate Rn with regularly varying tail implies a regularly varying tail of
Rm, which is the generating variate of the corresponding m-dimensional margin.

Proposition 3.1. Let Fn and Fm be the distribution functions of the generating
variate Rn and Rm corresponding to X ∈ Sn(Φ) and X(m) ∈ Sm(Φ), 1 ≤ m ≤ n.
If Fn has a regularly varying tail, i.e., Fn ∈ RV−α, α > 0, then Fm is also regularly
varying with the same index, i.e., Fm ∈ RV−α.

Proof. Recall that Φ ∈ Ωn if and only if

Φ(x) =
∫ ∞

0

Ψn(xr2)dFn(r),

where Fn : IR+ → [0, 1] is a distribution function and
Ψn(y′y) =

∫
x′x=1

eiy′xdSn(x)/Sn (see formula (2.3)). Let Φ ∈ Ωn, then Φ ∈ Ωm,
∀1 ≤ m ≤ n. Consequently, for any fixed m, 1 ≤ m ≤ n, there exists a distribution
function Fm such that

Φ(x) =
∫ ∞

0

Ψm(xr2)dFm(r), and Ψm(y′y) =
∫

x′x=1

eiy′xdSm(x)/Sm.

i) Suppose Fn has a regularly varying tail, i.e., Fn ∈ RV−α, α > 0. Applying
Lemma 2.6 we obtain

(3.1) Fm(u) =
∫ 1

0

Fn

(u

y

)
dFBm

(y),

where FBm
denotes the distribution function of Bm and B2

m follows a Beta(m
2 , n−m

2 )
distribution for 1 ≤ m < n. Moreover, utilizing the uniform convergence Theorem
1.3 for regularly varying functions yields that for every ε ∈ (0, α], ε < 1, there
exists a constant Kε ≥ 0 such that

Fm(u)
Fn(u)

=
∫ 1

0

Fn(u
y )

Fn(u)
dFBm

(y) ≤
∫ 1

0

(
1
y

)−α+ε

(1 + ε)dFBm
(y)

= (1 + ε)
∫ 1

0

yα−εdFBm
(y) = (1 + ε)IEBα−ε

m < ∞

for all u ≥ Kε. Similarly, there exists K̂ε ≥ 0 such that

Fm(u)
Fn(u)

≥ (1 − ε)IEBα+ε
m > 0

for all u ≥ K̂ε. Because ε > 0 is arbitrary and limε→0 IEBα±ε = IEBα, this implies

lim
u→∞

Fm(u)
Fn(u)

= IEBα, α > 0.
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Therefore, for all t > 0

lim
u→∞

Fm(tu)
Fm(u)

= lim
u→∞

Fm(tu)
Fn(tu)

Fn(u)
Fm(u)

Fn(tu)
Fn(u)

= t−α

holds and we conclude that Fm ∈ RV−α, α > 0, 1 ≤ m ≤ n.
�

Remark. Similarly, one can show that the density function fm, 1 ≤ m ≤ n, corre-
sponding to Fm is regularly varying with index −α − 1, i.e., fm ∈ RV−α−1, α > 0,
if the density function fn of Fn is regularly varying with the same index, i.e.,
fn ∈ RV−α−1, α > 0.

The converse of Proposition 3.1 is also true under a further condition.

Condition 3.2 (Tauberian condition, Bingham et.al. [2], p. 197). Let h : IR+ →
IR be a measurable function, then h satisfies the so-called Tauberian condition if

lim
λ→1+

lim inf
x→∞ inf

t∈[1,λ]
{h(tx) − h(x)} ≥ 0

holds.

Remark. The above condition is equivalent to h being a slowly decreasing function
(compare Bingham, et.al. [2], p.41).

Proposition 3.3. Let Fn and Fm be the distribution functions of the generating
variate Rn and Rm corresponding to X ∈ Sn(Φ) and X(m) ∈ Sm(Φ), 1 ≤ m ≤ n. If
Fm has a regularly varying tail for some m ∈ {1, . . . , n}, i.e., Fm ∈ RV−α, α > 0,
and xαFn(x) satisfies the Tauberian Condition 3.2 then Fn is also regularly varying
with the same index, i.e., Fn ∈ RV−α.

Proof. For this converse of Proposition 3.1 we need a deeper result. Assume that
Fm has a regularly varying tail, i.e., Fm ∈ RV−α, α > 0, 1 ≤ m < n. Again, with
Lemma 2.6 we obtain

Fm(u) =
∫ 1

0

Fn

(u

y

)
fBm

(y)dy

=
∫ ∞

u

Fn(x)fBm

(u

x

) u

x2
dx

=
∫ ∞

0

fBm

(u

x

)u

x
1(0,1)

(u

x

)
Fn(x)

dx

x
= k

M∗ Fn(u),

where fBm
is the density function of Bm and k

M∗ Fn is a Mellin convolution (see Def-
inition 1.5) with kernel k(t) = fBm

(t)t1(0,1)(t), t > 0. Because we want to transfer

the regular variation property of k
M∗ Fn towards Fn we arrive at the Wiener-

Tauberian Theorem for Mellin convolutions (see Bingham, Goldie, and Teugels [2],
Theorem 4.8.3, p. 230). The latter theorem requires us to consider the Mellin
transform of k, i.e.,

ǩ(z) =
∫ ∞

0

t−z+1fBm
(t)1(0,1)(t)

dt

t
.
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which converges for −∞ < Rez < m, since B2
m is Beta

(
m
2 , n−m

2

)
distributed, and

therefore
fBm

(t) =
2

Beta
(

m
2 , n−m

2

) tm−1(1 − t2)
n−m

2 −1, t > 0,

and

ǩ(z) =
2

Beta
(

m
2 , n−m

2

) ∫ 1

0

t−z+m−1(1 − t2)
n−m

2 −1dt

=
Beta

(−z+m
2 , n−m

2

)
Beta

(
m
2 , n−m

2

) .(3.2)

The Wiener-Tauberian Theorem implies a regularly varying tail function Fn, i.e.
Fn ∈ RV−α, α > 0, if the following two conditions hold:
i) the Wiener condition on the kernel: ǩ �= 0 for Re(z) = −α, and
ii) the Tauberian condition:

lim
λ→1+

lim inf
x→∞ inf

t∈[1,λ]

{Fn(tx)
(tx)−α

− Fn(x)
x−α

}
≥ 0.

Since we assume that xαFn fulfills the Tauberian condition it remains to show that
the Wiener condition holds.
Recall from equation (3.2) that

ǩ(z) =
Beta

(−z+m
2 , n−m

2

)
Beta

(
m
2 , n−m

2

) , −∞ < Re(z) < m, 1 ≤ m < n,

and therefore ǩ(z) > 0, since Γ(ω) > 0 for Re(ω) > 0, according to Freitag and
Busan [7], Theorem 1.10, p. 199. �

Remark. We have not shown yet, whether one can drop the Tauberian condition
in the latter theorem. This issue will be addressed in a forthcoming work.

Proposition 3.4. Let X
d= RnU (n) ∈ Sn(Φ). Suppose the distribution function of

Rn has a regularly varying tail, i.e., Fn ∈ RV−α, α > 0. Then the tail function G
of the univariate margins of X is also regularly varying with the same index.

Proof. Due to the symmetry of spherical distributions we may write G as the uni-
variate distribution function of X ∈ Sn(Φ). Recall that the univariate margin X(1)

possesses the stochastic representation X(1) d= R1U
(1), where U (1) is independent

of R1 and U (1) is Bernoulli distributed. Then for all t > 0

lim
x→∞

G(tx)
G(x)

= lim
x→∞

IP(X(1) > tx)
IP(X(1) > x)

= lim
x→∞

IP(R1U
(1) > tx)

IP(R1U (1) > x)
= lim

x→∞
IP(R1 > tx)
IP(R1 > x)

= t−α,

because R1 inherits the regular variation property from Rn by Proposition 3.1. The
second to last equality follows from the independence of U (1) and R1 ≥ 0, and the
Bernoulli distribution of U (1). �

It is obvious from the definition of spherical distributions that if X ∈ Sn(Φ)
possesses a density, it must be of the form g(t′t), for some measurable function
g : IR+ → IR+.
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Definition 3.5. Suppose X ∈ Sn(Φ) possesses a density function g(t′t). Then g is
called the density generator of X and we write X ∈ Sn(g).

The next lemma connects the density generator of a spherical distribution with
the density of its generating variate.

Lemma 3.6. Let X ∈ Sn(Φ) with stochastic representation X
d= RnU (n). Then X

possesses a density generator g if and only if Rn has a density fn. The relationship
between fn and g is given by

(3.3) fn(x) =
2πn/2

Γ(n/2)
xn−1g(x2), x ≥ 0.

Proof. First, we assume that X has a density generator g. We apply the Liou-
ville/Dirichlet integral formula (see e.g. Whittaker and Watson [11], Ch. 12.5)
which holds for any nonnegative measurable function v :∫

IRn

v
( n∑

i=1

x2
i

)
dx1 . . . dxn =

πn/2

Γ(n/2)

∫ ∞

0

yn/2−1v(y)dy.

Thus, for every measurable function h ≥ 0 we deduce

IEh(Rn) = IEh(‖X‖) =
∫

IRn

h(
√

x′x)g(x′x)dx

=
πn/2

Γ(n/2)

∫ ∞

0

h(
√

y)g(y)yn/2−1dy =
2πn/2

Γ(n/2)

∫ ∞

0

h(r)g(r2)rn−1dr.

Setting h(r) = 1[0,x](r) for x ≥ 0, yields equation (3.3). For the converse we
assume that Rn has density fn and X ∈ Sn(Φ) with stochastic representation
X

d= RnU (n).Then

IEeit′X =
∫ ∞

0

IEei(rt)′U(n)
fn(r)dr

=
Γ(n/2)
πn/2

∫ ∞

0

πn/2

2Γ(n/2)u
n−1

2

un/2−1IEei(
√

ut)′U(n)
fn(

√
u)du

=
Γ(n/2)
2πn/2

∫
IRn

IEei(‖x‖t)′U(n) fn(‖x‖)
‖x‖n−1

dx1 . . . dxn

=
∫

IRn

Ψn(‖x‖2‖t‖2)
Γ(n/2)
2πn/2

fn(‖x‖)
‖x‖n−1

dx1 . . . dxn

=
∫

IRn

eit′x Γ(n/2)
2πn/2

fn(‖x‖)
‖x‖n−1

dx1 . . . dxn = Φ(t′t),

according to equation (2.4) and to the fact that
∫

IRn

Γ(n/2)
2πn/2

fn(‖x‖)
‖x‖n−1 dx1 . . . dxn = 1.

The uniqueness theorem for characteristic functions leads to the conclusion. �

Proposition 3.7. Let X ∈ Sn(Φ) with stochastic representation X
d=RnU (n). Then

X has a regularly varying density generator g ∈ RV−(α+n)/2, α > 0, if and only if
Rn possesses a regularly varying density fn ∈ RV−α−1, α > 0.

Proof. The proposition follows immediately by Lemma 3.6 with

lim
x→∞

fn(xt)
fn(x)

= lim
x→∞ tn−1 g(x2t2)

g(x2)
= t−α−1.
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�

Another consequence of Lemma 2.6 concerning O-regularly varying tail functions
is stated in the next proposition.

Proposition 3.8. Let X ∈ Sn(Φ). Suppose that the generating variate Rm0 , 1 ≤
m0 ≤ n of the margin Xm0 possesses an O-regularly varying tail, i.e., Fm0 ∈ OR.
Then Fm ∈ OR for all 1 ≤ m ≤ n, where Fm denotes the distribution function of
the generating random variable Rm.

Proof. Suppose Xm0 ∈ Sm0(Φ) and Fm0 ∈ OR.

i) Consider first the case 1 ≤ m < m0. Recall from Lemma 2.6 that Rm
d= Rm0Bm,

where Rm0 and Bm are independent and B2
m is Beta(m/2, (m0−m)/2) distributed.

Then for all t > 1

lim inf
x→∞

Fm(tx)
Fm(x)

= lim inf
x→∞

IP(Rm > tx)
IP(Rm > x)

= lim inf
x→∞

IP(Rm > tx)
IP(Rm0Bm > x)

≥ lim inf
x→∞

IP(Rm > tx)
IP(Rm0 > x)

≥ lim inf
x→∞

IP(Rm0 > tx)
IP(Rm0 > x)

· lim inf
x→∞

IP(Rm > tx)
IP(Rm0 > tx)

.

Further,

lim inf
x→∞

IP(Rm > tx)
IP(Rm0 > tx)

= lim inf
x→∞

IP(Rm0Bm > tx)
IP(Rm0 > tx)

= lim inf
x→∞

∫ 1

0

IP(Rm0 > tx/b)
IP(Rm0 > tx)

dFBm
(b)

≥
∫ 1

0

lim inf
x→∞

IP(Rm0 > tx/b)
IP(Rm0 > tx)

dFBm
(b) > 0,

since lim infx→∞
IP(Rm0>tx/b)

IP(Rm0>tx) > 0 for all 0 < b ≤ 1. The last but one inequality
follows from Fatou’s lemma. Combining these inequalities and applying the pre-
requisite Fm0 ∈ OR yields the desired result.
ii) Let now m0 < m ≤ n. Again from Lemma 2.6 we know that Rm0

d= RmBm0 ,
where Rm and Bm0 are independent and B2

m0
is Beta(m0/2, (m − m0)/2) dis-

tributed. Then for all t > 1

0 < lim inf
x→∞

Fm0(tx)
Fm0(x)

= lim inf
x→∞

IP(RmBm0 > tx)
IP(RmBm0 > x)

≤ lim inf
x→∞

IP(Rm > tx)
IP(RmBm0 > x)

= lim inf
x→∞

(∫ 1

0

IP(bRm > x)
IP(Rm > tx)

dFBm0
(b)

)−1

=
(

lim sup
x→∞

∫ 1

0

IP(Rm > x
bt )

IP(Rm > x)
dFBm0

(b)
)−1

where B2
m0

is Beta(m0/2, (m−m0)/2) distributed and independent of Rm. There-
fore,

lim sup
x→∞

∫ 1

0

IP(Rm > x
bt )

IP(Rm > x)
dFBm0

(b) < ∞.
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Assume there exists some b0 with 1 ≥ b0 > 1/t such that

lim supx→∞
IP(Rm> x

b0t )

IP(Rm>x) = ∞. Then

lim sup
x→∞

IP(Rm > x
bt )

IP(Rm > x)
≥ lim sup

x→∞

IP(Rm > x
b0t )

IP(Rm > x)
= ∞

for all b ∈ [b0, 1]. Moreover, for all N ∈ IN, there exists xN ≥ 0 such that

IP(Rm > xN

bt )
IP(Rm > xN )

≥ N ∀ b ∈ [b0, 1]

and thus ∫ 1

0

IP(Rm > xN

bt )
IP(Rm > xN )

dFBm0
(b) ≥ N(1 − FBm0

(b0)).

Because N can be chosen arbitrarily large we conclude

lim sup
x→∞

∫ 1

0

IP(Rm > x
bt )

IP(Rm > x)
dFBm

(b) = ∞,

which leads to a contradiction. Hence,

lim sup
x→∞

IP(Rm > x
bt )

IP(Rm > x)
< ∞ ∀ b ∈ [

1
t
, 1]

or equivalently

lim inf
x→∞

IP(Rm > tbx)
IP(Rm > x)

> 0 ∀ b ∈ [
1
t
, 1] and t > 1.

This completes the proof. �

4. Tail dependence for spherical distributions

We are ready to prove Theorem 2.4. For completeness we state the theorem
again.

Theorem 2.4. Let X ∈ Sn(Φ), n ≥ 2, with stochastic representation X
d=

RnU (n).
α) Suppose Fn, the distribution function of Rn, has a regularly varying tail. Then
all bivariate margins have the tail dependence property.
β) If X has a tail dependent bivariate margin, then the tail function of the univariate
margins G is O-regularly varying.
γ) If X has a tail dependent bivariate margin, then the tail function Fn of Rn is
O-regularly varying.

Proof. α) All bivariate margins of X ∈ Sn(Φ) possess the same tail dependence
index due to the symmetry of the characteristic function Φ(t′t) of X. Thus, it
suffices to prove tail dependence for the bivariate margin X(2) = (X1,X2). Again,
due to the symmetry of the characteristic function, both univariate margins possess
the same marginal distribution function G. Let Fn, the distribution function of Rn,
have a regularly varying tail Fn ∈ RV−α, α > 0, i.e.

(4.1) lim
x→∞

Fn(tx)
Fn(x)

= t−α, ∀t > 0.

Then Proposition 3.1 requires also a regularly varying tail for F2, where F2 denotes
the distribution function of R2 corresponding to X(2) d= R2U

(2). Note that regu-
lar variation (at ∞) implies that F2 has an infinite right endpoint. Recall from
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Lemma 2.5 that X(2) possesses the stochastic representation X(2) = (X1,X2)′ =
(R2DU

(1)
1 , R2

√
1 − D2U

(1)
2 )′, where U

(1)
1 , U

(1)
2 , R2, and D are mutually indepen-

dent, U
(1)
1 , U

(1)
2 are Bernoulli distributed, and D2 is Beta( 1

2 , 1
2 ) distributed. We

denote the distribution function of D by FD. Then

lim
v→1−

IP(X1 > G−1(v)|X2 > G−1(v)) = lim
x→∞ IP(X1 > x|X2 > x)

= lim
x→∞ IP(R2

√
1 − D2U

(1)
1 > x|R2DU

(1)
2 > x)

= lim
x→∞

1
2
IP(R2

√
1 − D2 > x|R2D > x)

= lim
x→∞

1
2

∫ 1

0
IP

(
R > max( 1√

1−u2 , 1
u )x

)
dFD(u)∫ 1

0
IP

(
R > x

u

)
dFD(u)

= lim
x→∞

1
2

∫ 1

1/
√

2
F 2

(
x√

1−u2

)
/F 2(x)dFD(u) +

∫ 1/
√

2

0
F 2

(
x
u

)
/F 2(x)dFD(u)∫ 1

0
F 2

(
x
u

)
/F 2(x)dFD(u)

.

Together with the uniform convergence Theorem 1.3 we infer that for any ε > 0
exists a constant Kε > 0 such that for all x ≥ Kε

IP(X1 >x|X2 >x)≤
(

1 + ε

1 − ε

)
1
2

∫ 1

1/
√

2
(
√

1 − u2)αdFD(u) +
∫ 1/

√
2

0
uαdFD(u)∫ 1

0
uαdFD(u)

.

Analogously, we obtain

IP(X1 >x|X2 >x)≥
(

1 − ε

1 + ε

)
1
2

∫ 1

1/
√

2
(
√

1 − u2)αdFD(u) +
∫ 1/

√
2

0
uαdFD(u)∫ 1

0
uαdFD(u)

.

Because ε > 0 can be chosen arbitrarily small we finally conclude for α > 0

lim
v→1−

IP(X1 > G−1(v)|X2 > G−1(v))

=
1
2

∫ 1

1/
√

2
(
√

1 − u2)αdFD(u) +
∫ 1/

√
2

0
uαdFD(u)∫ 1

0
uαdFD(u)

= λ ∈ (0, 1]

and consequently X possesses the tail dependence property.
Using the fact that D2 is Beta( 1

2 , 1
2 ) distributed and therefore D has density

fD(u) =
2(1 − u2)−

1
2

Beta( 1
2 , 1

2 )
,

we additionally obtain the tail dependence index λ by

λ = lim
x→∞

∫ 1/
√

2

0
F 2(x/u) 1√

1−u2 du∫ 1

0
F 2(x/u) 1√

1−u2 du
=

∫ 1/
√

2

0
uα√
1−u2 du∫ 1

0
uα√
1−u2 du

.

Before proving part β) we first prove part γ).
γ) Assume that X ∈ Sn(Φ) possesses a bivariate margin with positive tail depen-
dence coefficient λ. Hence, all bivariate margins are tail dependent with equal tail
dependence coefficient, using the same argumentation as in part α). Without loss of
generality we consider the bivariate margin X(2) = (X1,X2). Employing the same
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notation as in part α) tail dependence is equivalent to the existence of the following
limit ∫ 1/

√
2

0
F 2(x/u) 1√

1−u2 du∫ 1

0
F 2(x/u) 1√

1−u2 du
→ λ ∈ (0, 1] (x → ∞).

Hence, there exist constants ε > 0 and Kε ≥ 0 such that λ − ε > 0 and for all
x ≥ Kε

π

4
F 2(

√
2x) ≥

∫ 1/
√

2

0

F 2(x/u)
1√

1 − u2
du

≥ (λ − ε)
∫ 1

0

F 2(x/u)
1√

1 − u2
du

≥ (λ − ε)
∫ 1

0

F 2(x/u)du ≥ (λ − ε)F 2(
3
√

2x)(1 − 1/
3
√

2).

These inequalities lead to

F 2(
√

2x)
F 2(

3
√

2x)
≥ 4(1 − 1/ 3

√
2)(λ − ε)

π
=: ĉ > 0

for all x ≥ Kε. The latter is equivalent with characterizing F 2 as O-regularly
varying, since F 2 is monotone decreasing (see also Bingham, Goldie, and Teugels
[2], p.65, Corollary 2.0.6). Finally, Proposition 3.8 implies an O-regularly varying
tail function F .

β) Suppose again that X ∈ Sn(Φ) possesses a bivariate tail dependent margin.
Then part γ) and Proposition 3.8 yield

lim inf
x→∞

G(tx)
G(x)

= lim inf
x→∞

IP(R1U
(1) > tx)

IP(R1U (1) > x)
= lim inf

x→∞
F 1(tx)
F 1(x)

> 0,

where R1U
(1) denotes the stochastic representation of X(1). Therefore, G is O-

regularly varying. This completes the proof. �

Corollary 4.1. Let X ∈ Sn(Φ), n ≥ 2, with stochastic representation X
d=

RnU (n). If G has a regularly varying tail, i.e. G ∈ RV−α, α > 0, and xαFn(x)
satisfies the Tauberian Condition 3.2, where Fn denotes the tail function of the
generating variate Rn, then all bivariate margins possess the tail dependence prop-
erty.

Proof. Let X ∈ Sn(Φ). Suppose the corresponding one-dimensional distribution
function G has a regularly varying tail with index −α, α > 0. Recall that the uni-
variate margin X(1) possesses the stochastic representation X(1) d= R1U

(1), where
U (1) is independent of R1 and U (1) is Bernoulli distributed. Then for all t > 0

lim
x→∞

G(tx)
G(x)

= lim
x→∞

IP(X(1) > tx)
IP(X(1) > x)

= lim
x→∞

IP(R1U
(1) > tx)

IP(R1U (1) > x)
= lim

x→∞
IP(R1 > tx)
IP(R1 > x)

= t−α.

Therefore, R1 has also a regularly varying tail F 1 with index −α, and consequently
the tail function Fn inherits the same property according to Proposition 3.3. Mak-
ing use of Theorem 2.4 part α) yields the desired conclusion. �
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Remark. We have not shown yet, whether regular variation of the generating vari-
ate is equivalent to the tail dependence property for spherically distributed random
vectors. To answer this open question one has to consider the ratio Mercerian theo-
rem discussed in Bingham and Inoue [3]. The ratio Mercerian theorem asserts that
under adequate conditions

lim
x→∞

∫ 1/
√

2

0
F 2(x/u) 1√

1−u2 du∫ 1

0
F 2(x/u) 1√

1−u2 du
= λ ∈ (0, 1]

implies F 2 ∈ RV−α, α > 0. One of the key assumptions is that −α is the only zero
of ∫ 1

0

tα√
1 − t2

dt

∫ 1/
√

2

0

tz√
1 − t2

dt −
∫ 1/

√
2

0

tα√
1 − t2

dt

∫ 1

0

tz√
1 − t2

dt

in some vertical strip a ≤ Re(z) ≤ b such that −α ∈ (a, b).
In Section 6 we encounter spherical distributions which are given by their density

functions. Thus, one should have a similar result to Theorem 2.4 regarding density
functions of spherically distributed random vectors. First we prove a necessary
lemma.

Lemma 4.2. Let F be the distribution function of an absolutely continuous non-
negative random variable such that its tail function F ∈ OR and the corresponding
density function f is eventually decreasing. Further if

(4.2) lim sup
x→∞

F (bx)
F (x)

< 1

for some b > 1, then f ∈ OR holds.

Proof. We show first: There exist some constants K, c1, c2 > 0 such that

(4.3) 0 < c1 ≤ xf(x)
F (x)

≤ c2 < ∞ ∀ x ≥ K.

i) Let F ∈ OR, then there exist K, c2 > 0 such that F (2x)/F (x) ≥ 2
c2

> 0 and f is
decreasing for all x ≥ K/2. Further

1 ≥ F (x) − F (2x)
F (x)

=

∫ 2x

x
f(u)du

F (x)
≥ xf(2x)

F (x)

for all x ≥ K/2 and therefore

2xf(2x)
F (2x)

≤ xf(2x)
F (x)

2F (x)
F (2x)

≤ 2F (x)
F (2x)

≤ c2

for all x ≥ K/2. Thus,
xf(x)
F (x)

≤ c2 < ∞ for all x ≥ K.

ii) Let F ∈ OR, with lim supx→∞
F (bx)

F (x)
< 1 for some b > 1, then there exist

ε,K > 0 such that F (bx)

F (x)
≤ 1 − ε for all x ≥ K. Further

0 < ε ≤ 1 − F (bx)
F (x)

=

∫ bx

x
f(u)du

F (x)
≤ xf(x)(b − 1)

F (x)
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and therefore

0 < c1 :=
ε

b − 1
≤ xf(x)

F (x)

for all x ≥ K.
iii) The conclusion f ∈ OR follows now immediately by

0 < lim inf
x→∞

c1F (tx)
tc2F (x)

≤ lim inf
x→∞

f(tx)
f(x)

≤ lim sup
x→∞

f(tx)
f(x)

≤ 1.

�

The next condition seems to be more appropriate and easier to check in the
context of density generators than (4.2).

Condition 4.3. Let h : IR+ → IR+ be a measurable function eventually decreasing
such that for some ε > 0

lim sup
x→∞

h(tx)
h(x)

≤ 1 − ε uniformly ∀ t > 1.

Theorem 4.4. Let X ∈ Sn(g), n ≥ 2, be absolutely continuous with density gen-
erator g.
α) Suppose g is a regularly varying function, i.e., g ∈ RV−(α+n)/2 with α > 0, then
all bivariate margins of X possess the tail dependence property.
β) If X has a tail dependent bivariate margin and g satisfies Condition 4.3, then g
must be O-regularly varying.

Proof. α) Let g be the density generator of X ∈ Sn(g), which is supposed to be
regularly varying with index −(α + n)/2, α > 0. Then fn is also regularly varying
with index −α−1, α > 0, according to Proposition 3.7. Consequently, Karamata’s
Theorem (see Bingham, Goldie, and Teugels [2], p. 26) implies that Fn is regularly
varying with index −α, α > 0, i.e. Fn ∈ RV−α. The conclusion follows by Theorem
2.4.
β) Suppose X ∈ Sn(g) possesses a tail dependent bivariate margin. Recall, in
that case all bivariate margins are tail dependent with the same tail dependence
coefficient. According to Theorem 2.4 the distribution function of the univariate
margins G must be O-regularly varying. Further g satisfies Condition 4.3 and
the density function g(x2) of G inherits this condition, which requires (4.2) for G.
Therefore, Lemma 4.2 implies that g is O-regularly varying. �

Remark. The tail dependence coefficient λ for spherical distributions possessing
regularly varying generating variates with index −α, α > 0, or regularly varying
density generator with index −α/2 − 1, α > 0, is given by

(4.4) λ =

∫ 1/
√

2

0

uα

√
1 − u2

du∫ 1

0

uα

√
1 − u2

du

.

See also Figure 1 below.
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Figure 1. Tail dependence index λ versus regular variation index α

5. Tail dependence for elliptically contoured distributions

After investigating the relationship of spherical distributions and tail dependence
in the last section we turn now to the more general case of elliptically distributed
random vectors.

Definition 5.1 (Elliptically contoured distribution). Let X be an n-dimensional
random vector. Then X is called elliptically distributed with parameters μ ∈ IRn

and Σ ∈ IRn×n if

(5.1) X
d= μ + A′Y,

where Y is a m-dimensional spherically distributed random vector, i.e., Y ∈ Sm(Φ),
A ∈ IRm×n with A′A = Σ, and rank(Σ)=m. We denote by En(μ,Σ,Φ) the family
of n-dimensional elliptically distributed random vectors with parameters μ, Σ, and
characteristic generator Φ.

According to the stochastic representation of spherical distributions we may rep-
resent every n-dimensional elliptically distributed random vector X ∈ En(μ,Σ,Φ)
with parameters μ and positive semidefinite matrix Σ, rank(Σ) = m, m ≤ n by

X
d= μ + RmA′U (m),

where A′A = Σ and the random variable Rm ≥ 0 is independent of the m-
dimensional random vector U (m). The random vector U (m) is uniformly distributed
on the unit sphere in IRm. As in Section 2 we denote by Fm the distribution function
of Rm.

Following along the lines of the previous section we first state the main result of
this section before we go into details.

Theorem 5.2. Let X ∈ En(μ,Σ,Φ), n ≥ 2, with positive definite matrix Σ and
stochastic representation X

d= μ + A′Y d= μ + RnA′U (n).
α) If X has a tail dependent bivariate margin, then the tail function Fn must be
O-regularly varying.
β) If X has a tail dependent bivariate margin, then the tail function G must be
O-regularly varying, where G denotes the distribution function of the univariate
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margins of Y.
γ) Suppose the distribution function Fn of Rn has a regularly varying tail. Then
all bivariate margins are tail dependent.
δ) Suppose the distribution function G has a regularly varying tail, i.e. G ∈ RV−α,
α > 0, and xαFn(x) satisfies the Tauberian Condition 3.2 then all bivariate margins
possess the tail dependence property.

Before proving the theorem we present two preliminary steps. The following
lemma is the equivalence to Lemma 2.6 for spherical distributions.

Lemma 5.3. Suppose X ∈ En(μ,Σ,Φ) with stochastic representation X
d= μ +

RmA′U (m) and X
d= μ̂+ Rm̂Â′U (m̂) with n ≥ m ≥ m̂. Then there exists a constant

c > 0 such that
μ = μ̂, Â′Â = cA′A, Rm̂

d=
1√
c
Bm̂Rm,

where Rm is independent of Bm̂ and B2
m̂ follows a Beta( m̂

2 , m−m̂
2 ) distribution if

m > m̂ and Bm̂ ≡ 1 if m = m̂.

For a proof we refer the reader to Cambanis, Huang, and Simons [4], pp. 372.

Lemma 5.4. Let X ∈ En(μ,Σ,Φ) with stochastic representation X
d= μ + A′Y,

Y ∈ Sm(Φ), m ≤ n A ∈ IRm×n, and A′A = Σ. If Â ∈ IRm×n with Â′Â = Σ then
X

d= μ + Â′Y.

Proof. The lemma follows immediately by IEeit′A′Y = IEei(At)′Y = Φ((At)′(At)) =
Φ(t′Σt) = Φ((Ât)′(Ât)) = IEeit′Â′Y and the uniqueness theorem for characteristic
functions. �

Proof (of Theorem 5.2). Let X ∈ En(μ,Σ,Φ), n ≥ 2, with positive definite matrix
Σ and stochastic representation X

d= μ+A′Y d= μ+RnA′U (n). According to Lemma
5.3 we may restrict ourself to a 2-dimensional elliptical distribution. Moreover,

without loss of generality we set μ = 0, i.e., X ∈ E2(0,Σ,Φ). Let Σ =
(

σ11 σ12

σ12 σ22

)

and A =
( √

σ11 σ21/
√

σ11

0
√

σ22

√
1 − ρ2

)
the corresponding Cholesky decomposition,

where ρ :=
σ21√
σ11σ22

∈ (−1, 1), because Σ is positive definite. Note that Lemma 5.4

justifies the consideration of this specific type of A. Observe that the generalized
inverse distribution functions G−1

1 , G−1
2 of X1, X2 are related in the following

way:
√

σ22G
−1
1 (u) =

√
σ11G

−1
2 (u). The cases where G1 and G2 have a finite right

endpoint are ruled out by the regular variation or tail dependence property. Then
according to Lemma 5.3

lim
u→1−

IP(X1 > G−1
1 (u) | X2 > G−1

2 (u))

= lim
x→∞ IP(X1 >

√
σ11x | X2 >

√
σ22x)

= lim
x→∞

IP(Y1 > x, σ21√
σ11

Y1 +
√

σ22

√
1 − ρ2Y2 >

√
σ22x)

IP(Y1 > x)

= lim
x→∞

IP(R2B2 > x,R2B2(ρ +
√

1 − ρ2
√

1−B2
2

B2
2

U
(1)
2 ) > x)

IP(R2B2 > x)
,
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where we used the mutual independence of U
(1)
1 , U

(1)
2 , R2, and B2, and applied

the fact that U
(1)
1 , and U

(1)
2 are Bernoulli distributed. Further, straightforward

calculations show that

lim
u→1−

IP(X1 > G−1
1 (u) | X2 > G−1

2 (u))

=
1
2

lim
x→∞

⎛
⎝ IP(R2B2 > x,R2B2(ρ +

√
1 − ρ2

√
1−B2

2
B2

2
) > x)

IP(R2B2 > x)

+
IP(R2B2 > x,R2B2(ρ −

√
1 − ρ2

√
1−B2

2
B2

2
) > x)

IP(R2B2 > x)

⎞
⎠

=
1
2

lim
x→∞

2
∫ h(ρ)

0
IP(R2 > x

u ) 1√
1−u2 du∫ 1

0
IP(R2 > x

u ) 1√
1−u2 du

with h(ρ) :=
(
1 + (1−ρ)2

1−ρ2

)−1/2

. The last equality rises from the fact that B2
2 is

Beta(1
2 , 1

2 ) distributed, and B2, and R2 are independent random variables. Ex-
ploiting exactly the same techniques as in the spherical case for

∫ h(ρ)

0
IP(R2 > x

u ) 1√
1−u2 du∫ 1

0
IP(R2 > x

u ) 1√
1−u2 du

instead of

∫ 1√
2

0 IP(R2 > x
u ) 1√

1−u2 du∫ 1

0
IP(R2 > x

u ) 1√
1−u2 du

yields the desired result (compare to the proof of Theorem 2.4 and Corollary
4.1). �

Remark. Along the lines of the last proof we have not shown that an elliptically
contoured random vector possesses the tail dependence property if and only if
its corresponding spherical random vector in the sense of (5.1) possesses the tail
dependence property. This is still an open question.

Theorem 5.5. Let X ∈ En(μ,Σ, g), n ≥ 2, with positive definite matrix Σ and
stochastic representation X

d= μ + A′Y, where Y ∈ Sn(g) possesses the density
generator g. Then
α) all bivariate margins of X possess the tail dependence property if g is regularly
varying, i.e., g ∈ RV−(α+n)/2, α > 0, and
β) if X possesses a tail dependent bivariate margin and g satisfies Condition 4.3,
then g must be O-regularly varying.

Proof. Suppose X ∈ En(μ,Σ,Φ), n ≥ 2, with positive definite matrix Σ and
stochastic representation X

d= μ + A′Y d= μ + A′RnU (n), where Y ∈ Sn(g).
α) Let g ∈ RV−(α+n)/2, α > 0. Then Proposition 3.7 and Karamata’s Theorem (see
Bingham, Goldie, and Teugels [2], p. 26) imply that Fn ∈ RV−α, α > 0, where
Fn denotes the tail function of the generating variate Rn of Y. Hence, all bivariate
margins of X are tail dependent according to Theorem 5.2.
β) Assume X ∈ En(μ,Σ, g) possesses a tail dependent bivariate margin. Then,
according to Theorem 5.2, the tail function of the univariate margins of Y must
be O-regularly varying. Further g satisfies Condition 4.3 and the density function
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g(x2) of G inherits this condition, which yields (4.2) for G. Therefore, Lemma 4.2
requires g to be O-regularly varying. �

Finally, we state the closed form expression for the tail dependence coefficient
for an elliptically contoured random vector (X1,X2)′ ∈ E2(μ,Σ,Φ) with positive
definite matrix Σ having a regular varying generating variate with index −α < 0
or having a regular varying density generator with index −α/2 − 1 < 0 :

(5.2) λ =

∫ h(ρ)

0

uα

√
1 − u2

du∫ 1

0

uα

√
1 − u2

du

,

with ρ := σ12√
σ11σ22

and h(ρ) :=
(
1 + (1−ρ)2

1−ρ2

)−1/2

(see also Figure 2). This formula
has been developed in the proof of Theorem 5.2. Note, that ρ corresponds to the
correlation coefficient in the case of existence (see Fang, Kotz, and Ng [6], p.44, for
the covariance formula of elliptically contoured distributions). We remark that the
(upper) tail dependence index λ coincides with the lower tail dependence index and
depends only on the (correlation) coefficient ρ and the regular variation index α.

Figure 2. Tail dependence index λ versus regular variation index
α for ρ = 0.5, 0.3, 0.1

6. Examples of elliptically contoured distributions

In the following subsections we investigate for several elliptically contoured dis-
tributions, whether they possess the tail dependence property or their bivariate
marginal distributions are tail independent.

6.1. Multivariate normal distributions and Kotz type distributions. Mul-
tivariate normal distributions are included in the class of symmetric Kotz type
distributions. Therefore, we restrict our attention to the latter family of distribu-
tions.
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Definition 6.1. Let X ∈ En(μ,Σ, g). Then we call X symmetric Kotz type dis-
tributed if the density generator g is of the form

(6.1) g(u) = CnuN−1 exp(−rus), r, s > 0, 2N + n > 2,

where Cn is a normalizing constant.

Theorem 6.2. Let X ∈ En(μ,Σ, g), n ≥ 2, be a symmetric Kotz type distributed
random vector. Then all bivariate margins of X are tail independent.

Proof. Observe that the density generator (6.1) does not belong to the class of
O-regularly varying functions, because

lim
u→∞

g(tu)
g(u)

= lim
u→∞ tN−1 exp(−rus(ts − 1)) = 0

for all t > 1, r, s > 0, and 2N +n > 2. Therefore Theorem 5.5 yields the conclusion,
since the prerequisites are fulfilled. �

Remark. The density generator (6.1) belongs to the multivariate normal distribu-
tion if N = s = 1 and r = 1/2.

6.2. Multivariate t-distributions and symmetric Pearson type VII distri-
butions. Multivariate t-distributions are included in the class of symmetric Pear-
son type VII distributions. Thus, we investigate again the larger class for the tail
dependence property.

Definition 6.3. Let X ∈ En(μ,Σ, g). Then we call X symmetric Pearson type VII
distributed if its density generator is of the form

(6.2) g(u) = Cn(1 +
u

m
)−N , N > n/2, m > 0,

where Cn denotes a normalizing constant.

Theorem 6.4. Let X ∈ En(μ,Σ, g), n ≥ 2, be a symmetric Pearson type VII dis-
tributed random vector. Then all bivariate margins of X possess the tail dependence
property.

Proof. Obviously the density generator (6.2) is regularly varying with index −N ,
and the conclusion follows with Theorem 5.5. �

Remark.
Setting N = (n+m)/2 and m ∈ IN in (6.2) yields the density generator for the well-
known class of multivariate t-distributions, which includes the multivariate Cauchy
distribution for m = 1.

6.3. Multivariate logistic distribution.

Definition 6.5. We call X ∈ En(μ,Σ, g) a multivariate logistically distributed
random vector if its density generator is given by

g(u) = Cn exp(−u)/(1 + exp(−u))2,

where Cn is a normalizing constant.

Theorem 6.6. Suppose X ∈ En(μ,Σ, g), n ≥ 2, is a logistically distributed random
vector then all bivariate margins of X are tail independent.
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Proof. First, observe that g′(u) = Cn exp(−u)/(1 + exp(−u))2( 2 exp(−u)
1−exp(−u) − 1) < 0

for all u > ln 2. Further

lim
u→∞

g(tu)
g(u)

= lim
u→∞ exp(−u(t − 1))

( 1 + exp(−u)
1 + exp(−tu)

)2

= 0

for all t > 1 and and therefore Theorem 5.5 yields the result. �

6.4. Multivariate symmetric generalized hyperbolic distributions.

Definition 6.7. We call X ∈ En(μ,Σ, g) a multivariate symmetric generalized
hyperbolic distributed random vector if its density generator is given by

(6.3) g(u) = Cn

Kλ−n
2
(
√

ψ(χ + u))
(
√

χ + u)
n
2 −λ

, u > 0,

where ψ, χ > 0, λ ∈ IR, Cn is a normalizing constant, and Kν denotes the modified
Bessel function of the third kind (or MacDonald function).

Theorem 6.8. Let X ∈ En(μ,Σ, g), n ≥ 2, be a multivariate symmetric general-
ized hyperbolic distribution. Then all bivariate margins of X are tail independent.

Proof. We show that the density generator (6.3) is monotone decreasing. Applying
the following relationships for modified Bessel functions of the third kind

d

dx
Kν(x) = −Kν−1(x) − ν

x
Kν(x), Kν = K−ν ,

and Kν(x) > 0 for all x ≥ 0 we obtain
d

dx
K−ν(x) =

d

dx
Kν(x) = −Kν−1(x) − ν

x
Kν(x) < 0

for all ν ≥ 0 and x ≥ 0. Hence, g is monotone decreasing. Further,

lim
u→∞

g(tu)
g(u)

= lim
u→∞

Kλ−n
2
(
√

ψ(χ + tu))

Kλ−n
2
(
√

ψ(χ + u))

(√
λ + u

λ + tu

)n
2 −λ

= (
√

t)λ−n
2 lim

u→∞
Kλ−n

2
(
√

ψ(χ + tu))

Kλ−n
2
(
√

ψ(χ + u))
= 0

for all t > 1, according to the asymptotic behavior Kν ∼ √
π
2xe−x(1 + o(1)) (see

Abramowitz and Stegun [1], p. 378, Formula 9.7.2), and thus

lim
x→∞

Kν(sx)
Kν(x)

= lim
x→∞

1√
s
e−x(s−1) = 0 ∀s > 1.

�

7. Other dependence measures for elliptically contoured

distributions

In this section we turn to other dependence measures for elliptically contoured
distributions which might be useful in the study of credit risk models. For instance
we might be interested in a dependence measure which describes the dependence
structure of absolute asset returns. Then we could consider the following depen-
dence measure for elliptically contoured random vectors (X1,X2)′ ∈ E2(μ,Σ,Φ)

λ̂ := lim
x→G−1

2 (1)−
IP(X1 > x | X2 > x),
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if the limit exists, where G−1
2 denotes the generalized inverse distribution function

of X2. We call λ̂ the extreme dependence index for absolute values and say (X1,X2)′

is extreme absolute value dependent if λ̂ > 0 and independent if λ̂ = 0.
Analogous to Theorem 5.2 and Theorem 5.5, related to the tail dependence, we can
establish similar results for extreme absolute value dependence. In particular, in the
case of a bivariate elliptically contoured random vector X ∈ E2(μ,Σ, g), n ≥ 2, Σ
positive definite, with regularly varying density generator with index −α−1, α > 0,
we derive

(7.1) λ̂ =

1
2

∫ ∞

h1(Σ)

u−α−1

√
u2 − 1

du +
1
2

∫ ∞

h2(Σ)

u−α−1

√
u2 − 1

du∫ ∞

1

u−α−1

√
u2 − 1

du

,

where Σ =
(

σ11 σ12

σ12 σ22

)
∈ IR2×2,

g1(Σ) =

√
1 +

(σ22 − σ12)2

σ11σ22 − σ2
12

, and g2(Σ) =

√
1 +

(σ11 − σ12)2

σ11σ22 − σ2
12

.

In the following figure we illustrate that this dependence measure depends on
the individual volatilities of X1 and X2.

Figure 3. Extreme dependence index λ̂ versus volatility σ22 for
regular variation index α = 2.5 and σ11 = 2

Further, one might be interested in a multidimensional extension of the bivariate
tail dependence concept defined in this work. The following definition gives one
possible approach.

Definition 7.1. Let X be a n-dimensional random vector. We say that X is
multivariate tail dependent if for some sets I ∪ J = {1, . . . , n}, and I ∩ J = ∅ the
following limit exists:

(7.2) λ := lim
u→1−

IP(Xi > G−1
i (u), ∀i ∈ I | Xj > G−1

j (u), ∀j ∈ J) > 0;
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where G−1
i , G−1

j , denote the generalized inverse distribution functions of Xi, Xj .
Consequently, we say X is multivariate tail independent if λ equals 0. Further, we
call λ the (upper) multivariate tail dependence coefficient.

Results related to the above multivariate extension of tail dependence will be
presented in a forthcoming work.

Conclusions

Summarizing the results we have found an appealing way of characterizing tail
dependent elliptically contoured distributions by regular and O-regular tail prop-
erties of the corresponding one-dimensional distribution functions or generating
distributions. We applied the above results to a number of well-known elliptically
contoured distributions in order to find out whether they are tail dependent or not.
In this framework we showed that the symmetric Pearson type VII distributions
(including the multidimensional t-distributions) have the tail dependence property.
Therefore, there are a number of elliptically contoured distributions which inherit
many useful properties of the multidimensional normal distribution and moreover
have additional necessary properties to model credit risk in a more realistic way.
Due to the existence of good estimation and simulation techniques for both distri-
butions mentioned above their usage is favorable for dependence modelling within
credit risk models.
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