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1 Introduction and motivation

The development of mortality is typically described using mortality rates - also referred to as death
rates. The precise assessment of its probabilistic future behavior is important for the financial
stability of social security systems, life insurance companies, and related industries.1 For example,
most premium and risk capital calculations of life insurers are based on life tables which summarize
the mortality rates of a population. The German Institute of Actuaries (DAV) considers the accurate
projection of future death rates as one of the most pressing issues in the German insurance and
pension industry. In a recent report (Deutsche Aktuarvereinigung, 2004), the DAV analyzed several
deterministic projection models for German mortality rates with different cohort and period trend-
functions and came to the conclusion that a log-linear approach is most suitable.2 Bomsdorf and
Trimborn (1992) proposed an extrapolative projection model for future German mortality rates. In
their approach, projections of one-year mortality rates mx(t) depend log-linearly on the individual
age x and observation year t. The present paper extends their deterministic model into a time-
dynamic stochastic model by utilizing a panel data approach. More precisely, our model makes it
possible to distinguish between a common time effect and a common age effect in the time series of
cross-sectional mortality data using panel data procedures.

Our model is related to a popular probabilistic mortality model developed by Lee and Carter
(1992). Their model is also based on a log-linear approach and has been extended in a number of
publications; see Lee (2000) for an overview. It has already been applied to the stochastic modelling
and forecasting of mortality rates in various countries, see e.g. Tuljapurkar et al. (2000). The
relationship between our mortality model and the Lee-Carter model will be discussed below. It
turns out that their model proposed for US mortality rates is not directly applicable to German life
tables. In particular, it leads to confidence bands of future life expectancy in Germany which are
implausibly narrow.

∗All correspondence to Rafael Schmidt. The authors thank two anonymous referees for constructive comments
which improved an earlier version of this paper. The third author gratefully acknowledges financial support by the
Deutsche Forschungsgemeinschaft (DFG).
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Our first objective is to provide forecasts of future German mortality rates with plausible confi-
dence bands - and the resulting life expectancies - and to provide a mortality model with interpretable
parameters. Our second objective is to build a stochastic model which serves as a basis for the pricing
of financial products depending on mortality fluctuations. Obviously, future cash flows of almost all
life insurance products depend on the risk of a changing mortality. Even though the price of this risk
is usually not explicitly mentioned in the contract, most insurance companies are aware of it and
charge an additional ad-hoc price premium. However, pure mortality products such as the Swiss Re
mortality bond issued in December 2003 (which is based on a mortality index of the general popu-
lation of US, UK, France, Italy and Switzerland), need a precise determination of the mortality risk
and the resulting price premium. Furthermore, for internal risk management, insurance companies
would like to be able to quantify precisely the risk contribution due to fluctuating mortality. Note
that most life insurers hedge themselves against mortality risk by selling products with opposed cash
flow structures, such as life and pension insurances.

The paper is organized as follows. After introducing the data in Section 2.1, we describe our model
and the estimation of the parameters (Section 2.2). Then, in Section 2.3, we present the results for
German life expectancy until 2050. A comparison of our model to Lee and Carter (1992) is given in
Section 2.4. The impact of random death rates on the price of mortality derivatives is illustrated in
Section 3 where we price a simple mortality bond on the basis of our stochastic model. We conclude
in Section 4.

2 Stochastic modelling of mortality

2.1 Data description

The stochastic mortality model that follows will be applied to mortality rates obtained from German
period life tables. These life tables are created by the German Federal Statistical Office (Statistisches
Bundesamt) over a period of three years and have yearly been published since 1962. In the following
we refer to a life table by its middle year, e.g. life table 1961/1963 corresponds to year 1962. The last
available life table for our calculations was 2002. The tables contain mortality rates mx(t) for each
gender, individual age x, and observation year t. Age x is given - in one-year steps - from 0 to 89 until
the year 2000, and from 0 to 100 since the year 2001. Because of the increasing life expectancy in
Germany, we are interested in mortality rates up to the age of 115. For that, we apply the Kannisto
model (Thatcher, Kannisto and Vaupel, 1998) in order to extrapolate the last available life table up
to the age of 115.3

Mortality rates of (former) East Germany increased for a short while after the German reunification
in 1990 (see, for example, Riphahn and Zimmermann, 2000), then slowly decreased and approached
the level of West German mortality. However, due to the relatively small size of the East German
population, this effect had little impact on overall German life expectancy. We disregard this effect
and use West German life tables until 2000 which is in line with Bomsdorf (2004). Since 2001, life
tables of West and East Germany are not available separately, thus, we took the combined life tables
from then on. Note that the considered death rates form a quasi-panel data set.4

2.2 The model

The discrete-time model. The projection model by Bomsdorf and Trimborn (1992) for one-year
mortality rates mx(t), depending on age x and year t, takes the form:

mx(t) = exp(αx + βxt).

Thus, the parameters αx and βx are age specific. The gender indexing is suppressed for notational
convenience. In order to incorporate the current mortality rate5 (at time t0), this log-linear function
will be rewritten as:

mx(t) = mx(t0) · exp{βx(t− t0)}. (1)
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The term exp(βx) will be interpreted as a growth factor (or reduction factor). More precisely,
100 · {exp(βx)−1} shows the annual percentage change in death rates for x-year old persons: βx < 0
indicates a decline of mx(t), whereas βx > 0 implies an increase of mx(t).

We extend the Bomsdorf-Trimborn model, as given in Formula (1), by expressing the (approxi-
mate) growth rate6 βx via a stochastic time-dependent growth rate β(x, t), which accounts for the
decline in death rates over time. In other words, β(x, t) is modelled as a family of random variables
depending on age x and year t, and the dynamics of the mortality rates takes the form

mx(t) = mx(t− 1) · exp{β(x, t)}. (2)

We utilize a panel data model for β(x, t). In particular, we distinguish between two effects: first, a
common time effect ut over all ages (which denotes the common level of mortality growth/decline in
year t) and second, an age specific effect µx which is stochastically independent of ut :

β(x, t) = ut + µx + σxεx,t. (3)

The i.i.d. standardized error terms εx,t represent influences which are not captured by the first two
summands and σx models the nonconstant volatility across age. We model ut as a stochastic process
and µx as a fixed effect. Wilmoth (1990) also utilizes an additive approach; however, instead of
focusing on the growth rate he models the logarithmic death rate directly. Denton et al. (2005)
model β(x, t) as a stochastic process, too, and apply it to Canadian mortality data. They propose a
‘quasi’ version of a vector autoregressive process for β(x, t).

Estimation. The fitting procedure is based on known techniques for panel data analysis, see e.g.
Baltagi (2005). In order to obtain a unique parametrization of the model, we set the median of µx

over all ages x equal to zero. First, we estimate ut as the empirical median of β(x, t) taken over all
ages x and denote the estimator by ût. Contrary to the sample mean, the median is quite robust
regarding the varying volatility σx and the resulting outliers of β(x, t) (see Appendix for details). The
fixed effect µx is now estimated by µ̂x = β̄(x, ·)− ū·. In the second step, we estimate the parameters
of the stochastic process ut which, in the discrete-time setting, is given by

ut+1 = ut + r · (s− ut) + ηt. (4)

Here, ηt denotes the i.i.d. normally distributed error terms with E(ηt) = 0 and V (ηt) = σ2
η. The

parameter s is consistently estimated by ū·. Further, the parameter r is obtained using the least
square estimator

r̂ = arg min
r

T−1∑
t=1

{ût+1 − ût − r · (ŝ− ût)}2 .

Finally, the estimators for the variances of the error terms are

σ̂2
η =

1
T − 2

T−1∑
t=1

{ût+1 − ût − r̂ · (ŝ− ût)}2 and σ̂2
x =

1
T − 1

T∑
t=1

{
β(x, t)− β̄(x, .)− ū· − ût

}2
.

In order to get an impression of the magnitude of µx and σx, we present the estimation results for
men in Figure 1. The results for women are similar. They clearly show that the different volatilities
σx across all ages cannot be ignored in the mortality forecast.

Further, our estimation yields an empirical mean of -0,021 for ut for women and -0,018 for men.
This indicates an average yearly mortality decline of 2,1% for women and 1,8% for men. More
estimation results are presented in the next section.

The continuous-time model. The plot in Figure 2 displays the realized path of the process ut

based on the life tables from 1962 to 2002 and one example path of ut according to our fitted model
until 2050 for women.7 It also shows that - in the past - the process (ut)t≥0 tended back to its mean.
In particular, we identified that a mean reverting autoregressive process with normally distributed
error terms fits ut well. This mean reversion motivates the following continuous-time embedding
using an Ornstein-Uhlenbeck process - in finance known as a Vasicek model - which is given by
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Figure 1: Estimates of the volatility σx across all ages (left plot) and estimates of the fixed age
effects µx (right plot) across all ages for men.

dut = r (s− ut) dt + σdWt, σ > 0. (5)

Note that in the continuous-time setting, Formula (2) is replaced by a stochastic differential
equation (SDE). Wt is a Wiener process and the parameter r ∈ [0, 1] expresses the degree of the
backwards drift to the mean s. If r is close to one, the degree of mean reversion is high. In the
discrete setting, the special case r = 1 yields a white noise process and r = 0 represents a random
walk. In contrast to life-table analysis, where the mortality dynamics are sufficiently described via
discrete-time models, many pricing models in finance are easier to deal with in a continuous-time
framework. This is mainly due to various results regarding the risk-neutral evaluation of financial
products, see Bingham and Kiesel (2004) for more details.

Figure 2: Realized path of ut from 1963 to 2002 (solid line) and example path
(dotted line) according to our fitted model for women.

2.3 Forecasting German life expectancy

As mentioned in Section 2.1, we apply the Kannisto model (Thatcher, Kannisto and Vaupel, 1998) in
order to extrapolate the last available life table of 2002 up to the age of 115. In addition, we assume
that the average annual mortality decline at the age of x = 115 equals zero, i.e., E(ut + µ115) = 0.
Between the ages of 90 and 115, we interpolate µx linearly. Further, we set σx = σ89 for all
x = 90, . . . , 115. In order to illustrate the benefits of our model, we consider four variants of ut (the
parametrization is that of Formula (5)): first, a deterministic variant (A), second, a white noise
process with r = 1 (B.1), third, a fitted Ornstein-Uhlenbeck variant with r = 0.28 for women and
r = 0.34 for men (B.2) and, finally, a random walk with r = 0 (B.3).

Figure 3 illustrates the mortality levels mx(2002), and the forecasted medians and approximate
90% forecast intervals of mx(2050) for the female population on a logarithmic scale.8 It implies
a strong decline of mx(t) from t = 2002 to t = 2050 across all ages. Even though the biggest
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Figure 3: Mortality rates mx(t) (on logarithmic scale) in 2002 (gray line),
forecasted median (thick black line) and 90% forecast intervals7 in 2050 for the
female population using variant B.2 (thin solid line) and B.3 (dotted line).

changes (on logarithmic scale) are found in the younger age groups, the decrease for older age groups
affects the life expectancy and population development more due to much higher death rates. The
approximate 90% forecast interval for the fitted Ornstein-Uhlenbeck variant is much narrower than
the 90% forecast interval for the random walk. For the latter, the boundaries of the 90% interval
for the age 100 reach from a logarithmic death rate of 1.00 to a rate of about 0.01. Thus, the
random walk sharply overestimates the variance and - in our context - obviously does not represent
a plausible model for ut.

Table 1 contains the results for the life expectancy of men (m) and women (f) at birth in 2050,
based on forecasted period life tables. In line with a number of other authors, e.g. Lee and Carter
(1992), we do not forecast life expectancies directly but calculate those from forecasted mortality
rates.

5% quantile median 95% quantile band width

Type women (men) women (men) women (men) women (men)

Variant A 88.0 (82.1) 88.3 (82.4) 88.5 (82.7) 0.4 (0.6)

Variant B.1 I 87.4 (81.3) 88.3 (82.4) 89.2 (83.6) 1.9 (2.4)

II 86.9 (80.4) 88.3 (82.4) 89.8 (84.4) 2.9 (4.0)

Variant B.2 I 86.1 (79.5) 88.3 (82.4) 90.5 (85.3) 4.4 (5.8)

II 84.8 (77.5) 88.3 (82.4) 92.6 (86.9) 7.8 (9.4)

Table 1: Life expectancy at birth in 2050 based on the period model - in years - for women (and
men). Type II includes the uncertainty in the estimation of the model parameters in Formulae (3)
and (4), whereas Type I excludes the latter; see the Appendix for more details.

Our results demonstrate an increase in life expectancy for both genders. In the period model,
median life expectancy at birth for women (respectively for men) rises from 81.3 (75.6) years 2002
to 88.3 (82.4) years in 2050.9 Variant A with a deterministic ut yields a band width of only 0.4 years
for women (0.6 years for men). The white noise variant B.1 generates a band width of 1.9 (2.4)
years, and 2.9 (4.0) if we include the uncertainty in the parameter estimation. The fitted Ornstein-
Uhlenbeck variant B.2 produces plausible band widths of 4.4 (5.8) years without the uncertainty in
the parameter estimation and 7.8 (9.4) including the latter. In all cases, the forecast intervals for
men are wider than for women. Thus, future male mortality is more volatile than female mortality.

In contrast to the period view, Table 2 provides life expectancies based on the cohort model.10 In
the cohort model, median life expectancy at birth for women (respectively for men) increases from
90.8 (84.8) years 2002 to 96.2 (90.1) years in 2050. The proposed model B.2 leads to a 5% quantile
of 92.7 (85.9) years for women (for men) and a 95% quantile of 99.6 (94.0) years. If we include
the uncertainty from the parameter estimation, the 5% quantile becomes 89.4 (81.0) and the 95%
quantile is 104.1 (101.3) years.
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5% quantile median 95% quantile band width

Type women (men) women (men) women (men) women (men)

Variant A 95.8 (89.6) 96.2 (90.1) 96.6 (90.5) 0.8 (0.9)

Variant B.1 I 94.9 (88.5) 96.2 (90.1) 97.4 (91.9) 2.5 (3.4)

II 93.2 (85.6) 96.2 (90.1) 99.5 (94.9) 6.3 (9.3)

Variant B.2 I 92.7 (85.9) 96.2 (90.1) 99.6 (94.0) 6.9 (8.1)

II 89.4 (81.0) 96.2 (90.1) 104.1 (101.3) 14.7 (20.3)

Table 2: Life expectancy at birth in 2050 based on the cohort model - in years - for women (and
men). Type II includes the uncertainty in the estimation of the model parameters in Formulae (3)
and (4), whereas Type I excludes the latter; see the Appendix for more details.

Tables 1 and 2 show that the forecasted life expectancies are quite different for the period model
and the cohort model. We emphasize that the median life expectancies in the cohort model are
higher than in the period model, although the absolute increase is smaller in the cohort model. In
particular, the absolute increase of the median life expectancy in 2050 for women (for men) is 7.0
(6.8) years in the period model whereas it is 5.4 (5.3) in the cohort model. The confidence intervals
are wider in the cohort model since we need to forecast mortality rates further ahead.

A comparison of the above results for the different processes ut shows that versions A and B.1
systematically underestimate the volatility and produce forecast bands which are implausibly narrow.
By contrast, version B.3 yields extremely wide forecast bands. In other words, these versions of ut

are not adequate in order to model German mortality data (see also Figure 2). Version B.2, which
models the process ut as a mean-reverting autoregressive process in discrete time or as an Ornstein-
Uhlenbeck process in continuous time, yields much more plausible confidence intervals for the forecast
of life expectancy and death rates.

Finally, we compared the previous findings with life expectancies derived from projected death
rates using the deterministic Bomsdorf-Trimborn model given in Section 2.2. The calculated life
expectancies deviate at most by 0.1 years from the median life expectancies given in Tables 1 and
2 (in the column ’median’). Further results for future life expectancies in Europe, North America,
Japan, and Australia - derived from the above stochastic mortality model - are reported in Babel et
al. (2006).

2.4 Comparison to Lee and Carter (1992)

The log-linear stochastic mortality model developed by Lee and Carter (1992) takes the following
form:

mx(t) = exp(ax + bxkt + εx,t), (6)

where the exponential trend function contains age-dependent parameters ax and bx, and kt is mod-
elled as a general time-varying index.11 The random variables εx,t reflect stochastic influences which
are not captured by the previous terms. In a large number of papers this model has been extended
and utilized for the stochastic modelling and forecasting of mortality rates in various countries, see
e.g. Lee (2000) for an overview and Li et al. (2004) for using the model for populations with limited
data.

Lee and Carter (1992) propose a fitting procedure which is based on a least square method -
implemented via a singular value decomposition - regarding the matrix of logarithms of mx(t).
Comparing the Lee-Carter model to our model, a first difference is that we focus on the logarithmic
difference of mx(t) rather than on the logarithm of mx(t) itself. In this context, if the error term is
ignored, Formula (6) yields

ln mx(t)− ln mx(t− 1) = bx(kt − kt−1). (7)

Thus, the growth factor β(x, t) has a multiplicative structure rather than an additive structure, as
we proposed in Formula (3). For US mortality data, Lee and Carter (1992) identify a random walk
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with drift for kt, i.e. kt = c + kt−1 + et. In that case, Formula (7) takes the form

ln mx(t)− ln mx(t− 1) = bxc + bxet = (bx − 1)c + c + bxet.

It follows that the time-varying factor ut in Formula (3) is modelled as a constant c in the above
model. This highlights a second difference to our model where we propose an Ornstein-Uhlenbeck
process for ut. The additive structure of our stochastic mortality model has further implications:
First, we are able to incorporate the varying volatility of death rates across the different age groups.
In particular, we decompose the volatility into a purely temporal term and a statistically inde-
pendent age-specific term. Second, the interpretation of the parameters of our model are that of
well-established panel data models. The decomposition into the age effect and time effect allows
a direct and intuitive interpretation of the yearly mortality fluctuation. Third, we do not need to
estimate the parameters using a singular value decomposition - as in the Lee-Carter model - which
may require an additional re-estimation of the time index kt. We refer to Lee (2000) for a discussion
of the latter.

In order to measure the goodness of fit of the respective mortality models, we consider two different
approaches. First, we assess the goodness of fit of the projected (future) death rates by a measure
which has also been utilized in Lee and Carter (1992). Second, we test whether the hypothesis of
white noise for ut must be rejected and examine its implications on the width of the confidence
bands of future life expectancies. Regarding the first approach, the fit of our model (version B.2) in
comparison to the Lee-Carter model is demonstrated in Table 3. This table presents - for various
age groups - one minus the ratios of the sample variance of the differences between the actual and
projected death rates to the sample variance of the actual rates. A projected death rate in our
model in a given year is based on the (realized) death rate in the preceding year multiplied by the
average growth factor which is estimated as in Section 2.2, cf. also Formula (2). The Lee-Carter
model is estimated as described in Lee and Carter (1992): We estimate the parameters using the
singular value decomposition and normalize the bx to sum to unity and the kt to sum to 0. We
do not re-estimate the kt in order to improve the fit to the actual observed deaths, as this would
decrease the goodness of fit with respect to the above measure.

Babel-Bomsdorf-Schmidt Lee-Carter
age group male (in %) female (in %) male (in %) female (in %)

0-19 98.8 97.9 96.2 98.7
20-39 97.9 98.3 95.8 98.9
40-59 98.0 98.7 92.9 98.7
60-79 99.0 99.5 96.2 99.5
80-89 98.6 99.1 94.4 99.0
min 96.5 95.3 84.3 96.0
max 99.5 99.6 99.5 99.8

average 98.6 98.7 95.2 98.9

Table 3: Average explained variance of our mortality model (version B.2) in comparison to the
Lee-Carter model.

The results in Table 3 reveal that the fit of the projected death rates in both models is satisfactory.
Our model leads to a better fit for men whereas Lee-Carter exceeds our model for women. In
particular, the lowest explained variance in our model (in the Lee-Carter model) is 0.953 for women
aged 21 (respectively 0.843 for men aged 18); the average explained variance is 0.986 (0.952) for men
and 0.987 (0.989) for women.

In our second approach, we first test whether the hypothesis of white noise for ut must be rejected.
The Ljung-Box test clearly rejects the above null-hypothesis at a significance level of 0.1% for both
women and men, cf. also Figure 2. The impact of substituting the white noise process by a mean
reverting process for ut on the width of the confidence bands for future life expectancies is shown in
Table 4.

As expected, the width of the confidence bands in the Lee-Carter model are very similar to the
results for the model version B.1, which assumes a white noise process for ut. In contrast to that,
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5% quantile median 95% quantile band width

Type women (men) women (men) women (men) women (men)

Lee-Carter model I 87.5 (81.6) 88.4 (82.7) 89.2 (83.8) 1.7 (2.2)

II 87.1 (81.1) 88.4 (82.7) 89.7 (84.4) 2.6 (3.3)

Variant B.1 I 87.4 (81.3) 88.3 (82.4) 89.2 (83.6) 1.9 (2.4)

II 86.9 (80.4) 88.3 (82.4) 89.8 (84.4) 2.9 (4.0)

Variant B.2 I 86.1 (79.5) 88.3 (82.4) 90.5 (85.3) 4.4 (5.8)

II 84.8 (77.5) 88.3 (82.4) 92.6 (86.9) 7.8 (9.4)

Table 4: Life expectancy at birth in 2050 based on the period model - in years - for women (and
men). Type II includes the uncertainty in the estimation of the model parameters in Formulae (3)
and (4), whereas Type I excludes the latter; see the Appendix for more details.

the confidence bands of our model version B.2 - where ut is modelled as a mean reverting process -
are more than twice the band width calculated from model version B.1.

Note that the confidence bands obtained by Tuljapurkar et al. (2000) for German life expectancies
are not directly comparable to our results, because the authors use abridged mortality data for their
estimation and consider a different observation period (1952-1990). Regarding the first, we prefer the
period life tables, as described in Section 2.1, for our calculation because these tables are commonly
used in the German insurance and pension industry.

3 Pricing mortality bonds

Our second application refers to the pricing of financial products which depend on mortality fluc-
tuations. We have already mentioned that future cash flows of almost all life insurance products
depend on the risk of a changing mortality. In the following we consider a simple mortality bond
with maturity T and the following coupon payoff-structure (a similar structure has been considered
by Lin and Cox, 2005; for other mortality derivatives, see Cairns et al., 2006):

Ct =





0 if lx+t > Ut,

P · Ut − lx+t

Ut − Lt
if Lt < lx+t ≤ Ut,

P if lx+t ≤ Lt,

for t ≤ T.

Here, Ct denotes the total coupon paid to the investor in year t and lx+t is the number of survivors
from a group of annuitants (in the reference portfolio) initially all aged x. The investor receives the
full payment P if lx+t does not exceed a time-dependent lower trigger level Lt, otherwise he gets only
a fraction of P. In particular, the investor receives no payments in year t if the number of survivors
exceeds the upper level Ut.

This payoff structure comprises the following features: It hedges the risk that the mortality exceeds
a pre-specified level. This risk is called longevity risk. For example, the protection seller might hedge
his risk that the annuity or pension payments exceed a certain level. From the protection buyer’s
view, this type of mortality derivative is interesting, for example, for pure life insurers or reinsurers
who want to diversify their risk of declining mortality. In particular, the payoff structure is that of a
so-called double barrier option which is commonly traded with a stock as underlying asset. Another
important characteristic of the above payoff structure is its lack of basis risk which comprises the risk
that the hedge is not the same as the protection seller’s risk. This is often the case if the payment
structure depends on a non-traded index.

For our calculations, we assume an initial cohort of 10,000 men or women, all aged 65 or 45 in
2002. The strike levels Lt are determined by the expected number of survivors at time t and we
set Ut = Lt + 500. The principal amount of the bond (paid at maturity T ) is 100 and payment P
corresponds to a coupon rate of 5%. Consequently, the price of a straight bond (without mortality
risk) discounted at a rate of 5% is 100. The mortality bond is now either evaluated under the risk
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neutral market measure or the real world measure, depending on whether the instrument (or its
underlying asset) is liquidly traded on the market or whether it is evaluated in a risk management
context. Note that mortality bonds cannot be perfectly hedged, as it is often the case for equity
derivatives. Here we price the mortality bond using the real-world death rates based on the cohort
model (by taking the corresponding expectation of the payoffs). Some results are presented in Table
5.

male (65) male (45) female (65) female (45)

Number of annuitants 10,000 10,000 10,000 10,000

Straight bond price 100.00 100.00 100.00 100.00

Mortality bond price A 98.37 99.58 98.90 99.78

Mortality bond price B.1 97.04 99.13 97.90 99.61

Mortality bond price B.2 93.12 97.99 95.34 99.15

Coupon rate 0.05 0.05 0.05 0.05

Maturity (in years) 26 26 26 26

Table 5: Mortality bond prices for variants of the mortality process based on the cohort model.

Table 5 illustrates a declining bond price with increasing parameter r in the Ornstein-Uhlenbeck
process (5). This decline is intuitive as the coupon payments are more likely to be lower in case
the fluctuations of the death rates increase. Further, it shows that the evaluation of this type of
mortality derivative is quite sensitive to the stochastic modelling of mortality.

4 Conclusion

We propose a stochastic mortality model which forms an extension of the deterministic log-linear
projection model by Bomsdorf and Trimborn (1992). The latter describes the future development
of mortality rates, starting from the current mortality level, by age dependent growth factors. We
extend the model into a time-dynamic stochastic model by utilizing a panel data approach. More
precisely we distinguish between two effects: first, a common time effect over all ages which denotes
the common level of mortality growth/decline, implemented by a mean reverting process, and second,
an age specific effect, which describes the age specific deviation from the common mortality level.
The structure of the model allows a direct and intuitive interpretation of the parameters and leads
to plausible forecasting results, e.g. in Germany, life expectancy at birth for women (for men) rises
from 81.3 (75.6) in years 2002 to 88.3 (82.4) years in 2050 in the period model. Further, the period
model implies a 95% quantile of 92.6 (86.9) years for women (for men) in 2050. Finally, the forecasted
mortality rates are utilized for the pricing of a simple mortality bond whose payoff structure depends
on the changing mortality.

The confidence bands for life expectancy are wider in our model than in the Lee and Carter (1992)
model applied to German life tables. This is due to an additional temporal noise term which is found
in German life tables. By contrast, the goodness of fit of the (deterministic) projection of future
death rates is quite similar in both models.

Summarizing the characteristics of our stochastic mortality model: The volatility is decomposed
into a purely temporal term and a stochastically independent age-specific term. This decomposition
leads to an intuitive interpretation of the model and its parameters. Further, we incorporate the
varying volatility of death rates across the different age groups. The estimation procedure is that of
well-established panel data procedures.

Appendix: Forecast error

The error structure of the forecast of the growth rate β(x, t) is that of a panel data or error component
model with heteroskedasticity and serial correlation, cf. Chapter 5 in Baltagi (2005). Let ex,t denote
the error of the forecast for β(x, t) given the information up to time t− 1. Then, ex,t = εut + εµx +
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(σx + εσx)εx,t, where εut is the error in forecasting ut, and εµx (resp. εσx) is the error in estimating
the parameter µx (resp. σx). The empirical bootstrap shows that the standard deviation of εµx

(which is on average 0.003) is negligible with respect to the standard deviation σx and may, hence,
be disregarded in the derivation of the forecast interval. This holds also for the respective correlations
between εut

, εσx
and εµx

over all ages. The distribution of the error εut
in our model version B.2 is

determined by the error ηt and the error in estimating the parameters r, s, and ση given in Formula
(4). The empirical standard deviation of the estimation of r, s, and the estimated standard deviation
ση of ηt are provided in Table 6.

σ̂r σ̂s σ̂η

male 0.1221 0.0043 0.0088
female 0.1147 0.0040 0.0071

Table 6: Standard error of the estimation of r, s, and the standard deviation ση.

The forecast intervals of Type I in Tables 1, 2, and 4 are based on the error terms εut
and σxεx,t

excluding the error in the parameter estimation, and are derived from 5000 Monte Carlo simulations
of successive one-year growth rates (for each age). The Type II forecasts in these tables include the
errors in the estimation of the model parameters σx, r, s, and ση; the distribution of these errors
is assumed to be multivariate normal. Obviously, with increasing forecast horizon, the error of the
time effect εut

dominates the error term σxεx,t.

Table 7 illustrates the sensitivity of the estimation procedure by fitting the model either from all
available death rates or from death rates for age groups 30-89 or 60-89 only. It implies that the model
forecasts and estimates are quite robust if derived from those death rates. Finally, our calculations
show that if we disregard a small (random) number of historical life tables the estimation results are
stable.

age group 0-89 30-89 60-89
5%-quantile 19.2 19.3 19.2
95%-quantile 24.5 24.6 24.4

r̂ 0.34 0.32 0.31
σ̂η · 100 0.88 0.85 0.86

Table 7: Estimation results of parameters r and ση, and life expectancy in 2050 for men aged 60
(cohort model) based on death rates of age groups 0-89, 30-89, and 60-89

Notes

1Moreover, Yakita (2001) shows the effects of changing mortality on fertility, capital accumulation, and economic
growth.

2See also, Denuit and Goderniaux (2005) who demonstrate that log-linear models provide accurate projections of
Belgian mortality rates.

3Thatcher, Kannisto, and Vaupel (1998), p.30, and the German Institute of Actuaries (Deutsche Aktuarvereinigung,
2004, pp.79–83) analyze the goodness of fit of various extrapolation methods for ages beyond x = 100. Both references
conclude that the Kannisto model fits the empirical data well. Analogously to Thatcher, Kannisto, and Vaupel (1998)
we base the estimation of the parameters in the Kannisto model on the ages x = 80 to 98.

4We mention that further 11 life tables of Germany are available which are directly based on censuses, the first
one from 1876 and the last one from 1987. In contrast to those life tables, the above series of life tables is derived on
the basis of observed mortality data - without smoothing - and on extrapolated population data which are based on
those censuses.

5The insertion of the most recently available mortality rate, as initial value, into the mortality projection model is
common practice in life insurance. This approach guarantees that the short-term forecasts have a smooth transition
from the most recent mortality rate.

6Note that for βx close to zero we have βx ≈ eβx − 1.
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7The realized paths of ut for men and women - except for one data point in 2000 - are nearly parallel. Motivated by
this, we also applied a bivariate stochastic process (ut) for men and women regarding the estimation of life expectancy.
In simultaneous calculations such as population projections it is important to consider this kind of dependence. In
contrast, this dependence does not influence our separate forecasts of life expectancy.

8We choose the median as a robust estimator of the mean. In comparison to variant B.2, the forecast bands for
variant B.1 are closer to the median. The corresponding results for men are similar. The confidence bands in Figure
3 do not include the uncertainty in the parameter estimation.

9These median life expectancies at birth in 2050 for the period model are similar to the results obtained by Bomsdorf
(2004) and closely correspond to the upper variant (out of three) of life expectancy projections by the German Federal
Statistical Office (Statistisches Bundesamt, 2003). Oeppen and Vaupel (2002) even expect a life expectancy above 100
years for women at birth in 2050 which is included in the 90% confidence band of our cohort model.

10 For the cohort model and the resulting life expectancies, the following projected period mortality rates are con-
sidered m0(t), m1(t+1), . . . , m115(t+115). For projections of German future mortality rates based on a deterministic
cohort model we refer to Bomsdorf (2002).

11The special case of kt = t is closely related to the deterministic approach by Bomsdorf and Trimborn. Denuit and
Goderniaux (2005) also model kt = t for Belgian mortality data. An extensive review of the literature on mortality
models is given in Pitacco (2004).
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(eds) The Mortality Crisis in Transitional Economies. Oxford University Press, 227–252.
Statistisches Bundesamt (2003) Bevölkerung Deutschlands bis 2050. Wiesbaden. Retrievable from http://

www.destatis.de/presse/deutsch/pk/2003/Bevoelkerung 2050.pdf
Thatcher AR, Kannisto V, Vaupel JW (1998) The force of mortality at ages 80–120. Monographs on

Population Aging 5, Odense University Press, Viborg, Denmark.
Tuljapurkar S, Li N, Boe C (2000) A universal pattern of mortality decline in the G7 countries. Nature

405:789–792.
Wilmoth JR (1990) Variation in vital rates by age, period, and cohort. Sociological Methodology 20:295–335.
Yakita A (2001) Uncertain lifetime, fertility and social security. Journal of Population Economics 14:635–

640.

11


