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1.1 Introduction

Tail dependence describes the amount of dependence in the tail of a bivariate
distribution. In other words, tail dependence refers to the degree of dependence
in the corner of the lower-left quadrant or upper-right quadrant of a bivariate
distribution. Recently, the concept of tail dependence has been discussed in
financial applications related to market or credit risk, Hauksson et al. (2001)
and Embrechts et al. (2003). In particular, tail-dependent distributions are of
interest in the context of Value at Risk (VaR) estimation for asset portfolios,
since these distributions can model dependence of large loss events (default
events) between different assets.

It is obvious that the portfolio’s VaR is determined by the risk behavior of
each single asset in the portfolio. On the other hand, the general dependence
structure, and especially the dependence structure of extreme events, strongly
influences the VaR calculation. However, it is not known to most people which
are not familiar with extreme value theory, how to measure and model de-
pendence, for example, of large loss events. In other words, the correlation
coefficient, which is the most common dependence measure in financial appli-
cations, is often insufficient to describe and estimate the dependence structure
of large loss events, and therefore frequently leads to inaccurate VaR estima-
tions, Embrechts et al. (1999). The main aim of this chapter is to introduce
and to discuss the so-called tail-dependence coefficient as a simple measure of
dependence of large loss events.

Kiesel and Kleinow (2002) show empirically that a precise VaR estimation
for asset portfolios depends heavily on the proper specification of the tail-
dependence structure of the underlying asset-return vector. In their setting,
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different choices of the portfolio’s dependence structure, which is modelled
by a copula function, determine the degree of dependence of large loss events.
Motivated by their empirical observations, this chapter defines and explores the
concept of tail dependence in more detail. First, we define and calculate tail
dependence for several classes of distributions and copulae. In our context, tail
dependence is characterized by the so-called tail-dependence coefficient (TDC)
and is embedded into the general framework of copulae. Second, a parametric
and two nonparametric estimators for the TDC are discussed. Finally, we
investigate some empirical properties of the implemented TDC estimators and
examine an empirical study to show one application of the concept of tail
dependence for VaR estimation.

1.2 What is tail dependence?

Definitions of tail dependence for multivariate random vectors are mostly re-
lated to their bivariate marginal distribution functions. Loosely speaking, tail
dependence describes the limiting proportion that one margin exceeds a certain
threshold given that the other margin has already exceeded that threshold. The
following approach, as provided in the monograph of Joe (1997), represents one
of many possible definitions of tail dependence.

Let X = (X1,X2)
> be a two-dimensional random vector. We say that X is

(bivariate) upper tail-dependent if:

λU
def
= lim

v→1−

P
{

X1 > F−1
1 (v) | X2 > F−1

2 (v)
}

> 0, (1.1)

in case the limit exists. F−1
1 and F−1

2 denote the generalized inverse dis-
tribution functions of X1 and X2, respectively. Consequently, we say X =
(X1,X2)

> is upper tail-independent if λU equals 0. Further, we call λU the
upper tail-dependence coefficient (upper TDC). Similarly, we define the lower
tail-dependence coefficient, if it exists, by:

λL
def
= lim

v→0+
P

{

X1 ≤ F−1
1 (v) | X2 ≤ F−1

2 (v)
}

. (1.2)

A generalization of bivariate tail dependence, as defined above, to multivariate
tail dependence can be found in Schmidt and Stadtmüller (2003).
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In case X = (X1,X2)
> is standard normally or t-distributed, formula (1.1)

simplifies to:

λU = lim
v→1−

λU (v)
def
= lim

v→1−

2 · P
{

X1 > F−1
1 (v) | X2 = F−1

2 (v)
}

. (1.3)
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Figure 1.1: The function λU (v) = 2 · P{X1 > F−1
1 (v) | X2 = F−1

2 (v)} for
a bivariate normal distribution with correlation coefficients ρ =
−0.8, −0.6, . . . , 0.6, 0.8. Note that λU = 0 for all ρ ∈ (−1, 1).

STFtail01.xpl

Figures 1.1 and 1.2 illustrate tail dependence for a bivariate normal and t-
distribution. Irrespectively of the correlation coefficient ρ, the bivariate normal
distribution is (upper) tail independent. In contrast, the bivariate t-distribution
exhibits (upper) tail dependence and the degree of tail dependence is affected
by the correlation coefficient ρ.

The concept of tail dependence can be embedded within the copula theory. An
n-dimensional distribution function C : [0, 1]n → [0, 1] is called a copula if it
has one-dimensional margins which are uniformly distributed on the interval
[0, 1]. Copulae are functions that join or “couple” an n-dimensional distribution
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Figure 1.2: The function λU (v) = 2 · P{X1 > F−1
1 (v) | X2 = F−1

2 (v)}
for a bivariate t-distribution with correlation coefficients ρ =
−0.8, −0.6, . . . , 0.6, 0.8.
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function F to its corresponding one-dimensional marginal distribution functions
Fi, i = 1, . . . , n, in the following way:

F (x1, . . . , xn) = C {F1(x1), . . . , Fn(xn)} .
We refer the reader to Joe (1997), Nelsen (1999) or Härdle, Kleinow, and Stahl
(2002) for more information on copulae. The following representation shows
that tail dependence is a copula property. Thus, many copula features transfer
to the tail-dependence coefficient such as the invariance under strictly increas-
ing transformations of the margins. If X is a continuous bivariate random
vector, then straightforward calculation yields:

λU = lim
v→1−

1 − 2v + C(v, v)

1 − v
, (1.4)

where C denotes the copula of X. Analogously, λL = limv→0+
C(v,v)

v holds for
the lower tail-dependence coefficient.
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1.3 Calculation of the tail-dependence coefficient

1.3.1 Archimedean copulae

Archimedean copulae form an important class of copulae which are easy to con-
struct and have good analytical properties. A bivariate Archimedean copula
has the form C(u, v) = ψ[−1]{ψ(u) + ψ(v)} for some continuous, strictly de-
creasing, and convex generator function ψ : [0, 1] → [0,∞] such that ψ(1) = 0
and the pseudo-inverse function ψ[−1] is defined by:

ψ[−1](t) =

{

ψ−1(t), 0 ≤ t ≤ ψ(0),
0, ψ(0) < t ≤ ∞.

We call ψ strict if ψ(0) = ∞. In that case ψ[−1] = ψ−1. Within the framework
of tail dependence for Archimedean copulae, the following result can be shown
(Schmidt, 2003). Note that the one-sided derivatives of ψ exist, as ψ is a convex
function. In particular, ψ′(1) and ψ′(0) denote the one-sided derivatives at the
boundary of the domain of ψ. Then:

i) upper tail-dependence implies ψ′(1) = 0 and λU = 2 − (ψ−1 ◦ 2ψ)′(1),

ii) ψ′(1) < 0 implies upper tail-independence,

iii) ψ′(0) > −∞ or a non-strict ψ implies lower tail-independence,

iv) lower tail-dependence implies ψ′(0) = −∞, a strict ψ, and
λL = (ψ−1 ◦ 2ψ)′(0).

Tables 1.1 and 1.2 list various Archimedean copulae in the same ordering as
provided in Nelsen (1999, Table 4.1, p. 94) and in Härdle, Kleinow, and Stahl
(2002, Table 2.1, p. 42) and the corresponding upper and lower tail-dependence
coefficients (TDCs).
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Table 1.1: Various selected Archimedean copulae. The numbers in the first
column correspond to the numbers of Table 4.1 in Nelsen (1999), p.
94.

Number & Type C(u, v) Parameters

(1) Clayton max
{

(u−θ + v−θ − 1)−1/θ, 0
}

θ ∈ [−1,∞)\{0}

(2) max
[

1 −
{

(1 − u)θ + (1 − v)θ
}1/θ

, 0
]

θ ∈ [1,∞)

(3)
Ali-
Mikhail-Haq

uv

1 − θ(1 − u)(1 − v)
θ ∈ [−1, 1)

(4)
Gumbel-
Hougaard

exp
[

−
{

(− log u)θ + (− log v)θ
}1/θ

]

θ ∈ [1,∞)

(12)
[

1 +
{

(u−1 − 1)θ + (v−1 − 1)θ
}1/θ]−1

θ ∈ [1,∞)

(14)
[

1 +
{

(u−1/θ − 1)θ + (v−1/θ − 1)θ
}1/θ]−θ

θ ∈ [1,∞)

(19) θ/ log
(

eθ/u + eθ/v − eθ
)

θ ∈ (0,∞)

1.3.2 Elliptically-contoured distributions

In this section, we calculate the tail-dependence coefficient for elliptically-
contoured distributions (briefly: elliptical distributions). Well-known elliptical
distributions are the multivariate normal distribution, the multivariate t-distri-
bution, the multivariate logistic distribution, the multivariate symmetric stable
distribution, and the multivariate symmetric generalized-hyperbolic distribu-
tion.

Elliptical distributions are defined as follows: let X be an n-dimensional ran-
dom vector and Σ ∈ R

n×n be a symmetric positive semi-definite matrix. If
X − µ, for some µ ∈ R

n, possesses a characteristic function of the form
φX−µ(t) = Ψ(t>Σt) for some function Ψ : R

+
0 → R, then X is said to be
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Table 1.2: Tail-dependence coefficients (TDCs) and generators ψθ for various
selected Archimedean copulae. The numbers in the first column
correspond to the numbers of Table 4.1 in Nelsen (1999), p. 94.

Number & Type ψθ(t) Parameter θ Upper-TDC Lower-TDC

(1) Pareto t−θ − 1 [−1,∞)\{0} 0 for θ > 0 2−1/θ

for θ > 0

(2) (1 − t)θ [1,∞) 2 − 21/θ 0

(3)
Ali-
Mikhail-Haq

log
1 − θ(1 − t)

t
[−1, 1) 0 0

(4)
Gumbel-
Hougaard

(− log t)θ [1,∞) 2 − 21/θ 0

(12)
(

1
t
− 1

)θ

[1,∞) 2 − 21/θ 2−1/θ

(14)
(

t−1/θ − 1
)θ

[1,∞) 2 − 21/θ 1

2

(19) eθ/t − eθ (0,∞) 0 1

elliptically distributed with parameters µ (location), Σ (dispersion), and Ψ.
Let En(µ,Σ,Ψ) denote the class of elliptically-contoured distributions with the
latter parameters. We call Ψ the characteristic generator. The density func-
tion, if it exists, of an elliptically-contoured distribution has the following form:

f(x) = |Σ|−1/2g
{

(x− µ)>Σ−1(x− µ)
}

, x ∈ R
n, (1.5)

for some function g : R
+
0 → R

+
0 , which we call the density generator.

Observe that the name “elliptically-contoured distribution” is related to the el-
liptical contours of the latter density. For a more detailed treatment of elliptical
distributions see the monograph of Fang, Kotz, and Ng (1990) or Cambanis,
Huang, and Simon (1981).
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In connection with financial applications, Bingham and Kiesel (2002) and Bing-
ham, Kiesel, and Schmidt (2002) propose a semi-parametric approach for el-
liptical distributions by estimating the parametric component (µ,Σ) separately
from the density generator g. In their setting, the density generator is estimated
by means of a nonparametric statistics.

Schmidt (2002b) shows that bivariate elliptically-contoured distributions are
upper and lower tail-dependent if the tail of their density generator is regularly
varying, i.e. the tail behaves asymptotically like a power function. Further,
a necessary condition for tail dependence is given which is more general than
regular variation of the latter tail: more precisely, the tail must be O-regularly
varying (see Bingham, Goldie, and Teugels (1987) for the definition of O-regular
variation). Although the equivalence of tail dependence and regularly-varying
density generator has not been shown, all density generators of well-known el-
liptical distributions possess either a regularly-varying tail or a not O-regularly-
varying tail. This justifies a restriction to the class of elliptical distributions
with regularly-varying density generator if tail dependence is required. In par-
ticular, tail dependence is solely determined by the tail behavior of the density
generator (except for completely correlated random variables which are always
tail dependent).

The following closed-form expression exists (Schmidt, 2002b) for the upper
and lower tail-dependence coefficient of an elliptically-contoured random vector
(X1,X2)

> ∈ E2(µ,Σ,Ψ) with positive-definite matrix

Σ =

(

σ11 σ12

σ11 σ12

)

,

having a regularly-varying density generator g with regular variation index
−α/2 − 1 < 0 :

λ
def
= λU = λL =

∫ h(ρ)

0

uα

√
1 − u2

du

∫ 1

0

uα

√
1 − u2

du

, (1.6)

where ρ
def
= σ12/

√
σ11σ22 and h(ρ)

def
=

(

1 + (1−ρ)2

1−ρ2

)−1/2

.

Note that ρ corresponds to the “correlation” coefficient when it exists (Fang,
Kotz, and Ng, 1990). Moreover, the upper tail-dependence coefficient λU co-
incides with the lower tail-dependence coefficient λL and depends only on the
“correlation” coefficient ρ and the regular variation index α, see Figure 1.3.
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Figure 1.3: Tail-dependence coefficient λ versus regular variation index α for
“correlation” coefficients ρ = 0.5, 0.3, 0.1.
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Table 1.3 lists various elliptical distributions, the corresponding density gener-
ators (here cn denotes a normalizing constant depending only on the dimension
n) and the associated regular variation index α from which one easily derives
the tail-dependence coefficient using formula (1.6).
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Table 1.3: Tail index α for various density generators g of multivariate elliptical
distributions. Kν denotes the modified Bessel function of the third
kind (or Macdonald function).

Density generator g or α for
Number & Type characteristic generator Ψ Parameters n = 2

(23) Normal g(u) = cn exp(−u/2) — ∞

(24) t g(u) = cn

(

1 +
t

θ

)−(n+θ)/2

θ > 0 θ

(25)
Symmetric
general.
hyperbolic

g(u) = cn
Kλ−n

2
{
√

ς(χ+ u)}
(
√
χ+ u)

n

2
−λ

ς, χ > 0
λ ∈ R

∞

(26)
Symmetric
θ-stable

Ψ(u) = exp
{

−
(

1
2u

)θ/2}

θ ∈ (0, 2] θ

(27) logistic g(u) = cn
exp(−u)

{1 + exp(−u)}2
— ∞

1.3.3 Other copulae

For many other closed form copulae one can explicitly derive the tail-dependence
coefficient. Tables 1.4 and 1.5 list some well-known copula functions and the
corresponding lower and upper TDCs.
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Table 1.4: Various copulae. Copulae BBx are provided in Joe (1997).

Number & Type C(u, v) Parameters

(28) Raftery
g {min(u, v),max(u, v); θ} with

g {x, y; θ} = x− 1−θ
1+θ

x1/(1−θ)
(

y−θ/(1−θ) − y1/(1−θ)
)

θ ∈ [0, 1]

(29) BB1
[

1 +
{

(u−θ − 1)δ + (v−θ − 1)δ
}1/δ]

−1/θ θ ∈ (0,∞)
δ ∈ [1,∞)

(30) BB4

[

u−θ + v−θ − 1−

−
{

(u−θ − 1)−δ + (v−θ − 1)−δ
}

−1/δ]

−1/θ
θ ∈ [0,∞)
δ ∈ (0,∞)

(31) BB7
1 −

(

1 −
[

{

1 − (1 − u)θ
}

−δ
+

+
{

1 − (1 − v)θ
}

−δ
− 1

]

−1/δ)1/θ
θ ∈ [1,∞)
δ ∈ (0,∞)

(32) BB8

1

δ

(

1 −
[

1 −
{

1 − (1 − δ)θ
}

−1
·

·
{

1 − (1 − δu)θ
}{

1 − (1 − δv)θ
}

]1/θ)

θ ∈ [1,∞)
δ ∈ [0, 1]

(33) BB11 θmin(u, v) + (1 − θ)uv θ ∈ [0, 1]

(34)
CΩ in
Junker et
al. (2002)

βCs
(θ̄,δ̄)

(u, v) − (1 − β)C(θ,δ)(u, v) with

Archim. generator ψ(θ,δ)(t) =
(

− log e−θt
−1

e−θ
−1

)δ

Cs
(θ̄,δ̄)

is the survival copula with param. (θ̄, δ̄)

θ, θ̄ ∈ R\{0}
δ, δ̄ ≥ 1
β ∈ [0, 1]

1.4 Estimating the tail-dependence coefficient

Suppose X, X(1), . . . ,X(m) are i.i.d. bivariate random vectors with distribu-
tion function F and copula C. We assume continuous marginal distribution
functions Fi, i = 1, 2. Tests for tail dependence or tail independence are given
for example in Ledford and Tawn (1996) or Draisma et al. (2004).

We consider the following three (non-)parametric estimators for the lower and
upper tail-dependence coefficients λU and λL. These estimators have been dis-
cussed in Huang (1992) and Schmidt and Stadtmüller (2003). Let Cm be the
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Table 1.5: Tail-dependence coefficients (TDCs) for various copulae. Copulae
BBx are provided in Joe (1997).

Number & Type Parameters upper-TDC lower-TDC

(28) Raftery θ ∈ [0, 1] 0
2θ

1 + θ

(29) BB1
θ ∈ (0,∞)
δ ∈ [1,∞)

2 − 21/δ 2−1/(θδ)

(30) BB4
θ ∈ [0,∞)
δ ∈ (0,∞)

2−1/δ (2−
2−1/δ)−1/θ

(31) BB7
θ ∈ [1,∞)
δ ∈ (0,∞)

2 − 21/θ 2−1/δ

(32) BB8
θ ∈ [1,∞)
δ ∈ [0, 1]

2−
−2(1 − δ)θ−1 0

(33) BB11 θ ∈ [0, 1] θ θ

(34)
CΩ in
Junker et
al. (2002)

θ, θ̄ ∈ R\{0}
δ, δ̄ ≥ 1
β ∈ [0, 1]

(1 − β)·
·(2 − 21/δ)

β(2 − 21/δ̄)

empirical copula defined by:

Cm(u, v) = Fm(F−1
1m(u), F−1

2m(v)), (1.7)

with Fm and Fim denoting the empirical distribution functions corresponding

to F and Fi, i = 1, 2, respectively. Let R
(j)
m1 and R

(j)
m2 be the rank of X

(j)
1 and

X
(j)
2 , j = 1, . . . ,m, respectively. The first estimators are based on formulas

(1.1) and (1.2):
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λ̂
(1)
U,m =

m

k
Cm

((

1 − k

m
, 1

]

×
(

1 − k

m
, 1

])

=
1

k

m
∑

j=1

I(R
(j)
m1 > m− k,R

(j)
m2 > m− k) (1.8)

and

λ̂
(1)
L,m =

m

k
Cm

( k

m
,
k

m

)

=
1

k

m
∑

j=1

I(R
(j)
m1 ≤ k,R

(j)
m2 ≤ k), (1.9)

where k = k(m) → ∞ and k/m → 0 as m → ∞, and the first expression
in (1.8) has to be understood as the empirical copula-measure of the inter-
val (1 − k/m, 1] × (1 − k/m, 1]. The second type of estimator is already well
known in multivariate extreme-value theory (Huang, 1992). We only provide
the estimator for the upper TDC:

λ̂
(2)
U,m = 2 − m

k

{

1 − Cm

(

1 − k

m
, 1 − k

m

)}

= 2 − 1

k

m
∑

j=1

I(R
(j)
m1 > m− k or R

(j)
m2 > m− k), (1.10)

with k = k(m) → ∞ and k/m → 0 as m → ∞. The optimal choice of k is re-
lated to the usual variance-bias problem and we refer the reader to Peng (1998)
for more details. Strong consistency and asymptotic normality for both types
of nonparametric estimators are also addressed in the latter three reference.

Now we focus on an elliptically-contoured bivariate random vector X. In the
presence of tail dependence, previous arguments justify a sole consideration of
elliptical distributions having a regularly-varying density generator with regular
variation index α. This implies that the distribution function of ||X||2 has also
a regularly-varying tail with index α (Schmidt, 2002b). Formula (1.6) shows
that the upper and lower tail-dependence coefficients λU and λL depend only
on the regular variation index α and the “correlation” coefficient ρ. Hence, we
propose the following parametric estimator for λU and λL:

λ̂
(3)
U,m = λ̂

(3)
L,m = λ

(3)
U (α̂m, ρ̂m). (1.11)
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Several robust estimators ρ̂m for ρ are provided in the literature such as estima-
tors based on techniques of multivariate trimming (Hahn, Mason, and Weiner,
1991), minimum-volume ellipsoid estimators (Rousseeuw and van Zomeren,
1990), and least square estimators (Frahm et al., 2002). The Hill estimator
which serves as an estimator for the regular variation index α has already been
considered in Chapter ??.

For more details regarding the relationship between the regular variation index
α, the density generator, and the random variable ||X||2 we refer to Schmidt
(2002b). Observe that even though the estimator for the regular variation

index α might be unbiased, the TDC estimator λ̂
(3)
U,m is biased due to the

integral transform.

1.5 Comparison of TDC estimators

In this section we investigate the finite-sample properties of the introduced
TDC estimators. One thousand independent copies of m = 500, 1000, and 2000
i.i.d. random vectors (m denotes the sample length) of a bivariate standard t-
distribution with θ = 1.5, 2, and 3 degrees of freedom are generated and the
upper TDCs are estimated. Note that the parameter θ equals the regular
variation index α which we discussed in the context of elliptically-contoured
distributions. The empirical bias and root-mean-squared error (RMSE) for all
three introduced TDC estimation methods are derived and presented in Tables
1.6, 1.7, and 1.8, respectively.

Table 1.6: Bias and RMSE for the nonparametric upper TDC estimator λ̂
(1)
U

(multiplied by 103). The sample length is denoted by m.

Original θ = 1.5 θ = 2 θ = 3
parameters λU = 0.2296 λU = 0.1817 λU = 0.1161

Estimator λ̂
(1)
U λ̂

(1)
U λ̂

(1)
U

Bias (RMSE) Bias (RMSE) Bias (RMSE)

m = 500 25.5 (60.7) 43.4 (72.8) 71.8 (92.6)
m = 1000 15.1 (47.2) 28.7 (55.3) 51.8 (68.3)
m = 2000 8.2 (38.6) 19.1 (41.1) 36.9 (52.0)
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Table 1.7: Bias and RMSE for the nonparametric upper TDC estimator λ̂
(2)
U

(multiplied by 103). The sample length is denoted by m.

Original θ = 1.5 θ = 2 θ = 3
parameters λU = 0.2296 λU = 0.1817 λU = 0.1161

Estimator λ̂
(2)
U λ̂

(2)
U λ̂

(2)
U

Bias (RMSE) Bias (RMSE) Bias (RMSE)

m = 500 53.9 (75.1) 70.3 (88.1) 103.1 (116.4)
m = 1000 33.3 (54.9) 49.1 (66.1) 74.8 (86.3)
m = 2000 22.4 (41.6) 32.9 (47.7) 56.9 (66.0)

Table 1.8: Bias and RMSE for the parametric upper TDC estimator λ̂
(3)
U (mul-

tiplied by 103). The sample length is denoted by m.

Original θ = 1.5 θ = 2 θ = 3
parameters λU = 0.2296 λU = 0.1817 λU = 0.1161

Estimator λ̂
(3)
U λ̂

(3)
U λ̂

(3)
U

Bias (RMSE) Bias (RMSE) Bias (RMSE)

m = 500 1.6 (30.5) 3.5 (30.8) 16.2 (33.9)
m = 1000 2.4 (22.4) 5.8 (23.9) 15.4 (27.6)
m = 2000 2.4 (15.5) 5.4 (17.0) 12.4 (21.4)

Regarding the parametric approach we apply the procedure introduced in Sec-
tion 1.4 and estimate ρ by a trimmed empirical correlation coefficient with
trimming proportion 0.05% and α (= θ) by a Hill estimator. For the latter we
choose the optimal threshold value k according to Drees and Kaufmann (1998).
The empirical bias and RMSE corresponding to the estimation of ρ and α are
provided in Tables 1.9 and 1.10. Observe that Pearson’s correlation coefficient
ρ does not exist for θ < 2. In this case, ρ denotes some dependence parameter
and a more robust estimation procedure should be used (Frahm et al., 2002).
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Table 1.9: Bias and RMSE for the estimator of the regular variation index α
(multiplied by 103). The sample length is denoted by m.

Original θ = 1.5 θ = 2 θ = 3
parameters α = 1.5 α = 2 α = 3
Estimator α̂ α̂ α̂

Bias (RMSE) Bias (RMSE) Bias (RMSE)

m = 500 2.2 (211.9) −19.8 (322.8) −221.9 (543.7)
m = 1000 −14.7 (153.4) −48.5 (235.6) −242.2 (447.7)
m = 2000 −15.7 (101.1) −60.6 (173.0) −217.5 (359.4)

Table 1.10: Bias and RMSE for the “correlation” coefficient estimator ρ̂ (mul-
tiplied by 103). The sample length is denoted by m.

Original θ = 1.5 θ = 2 θ = 3
parameters ρ = 0 ρ = 0 ρ = 0
Estimator ρ̂ ρ̂ ρ̂

Bias (RMSE) Bias (RMSE) Bias (RMSE)

m = 500 0.02 (61.6) −2.6 (58.2) 2.1 (56.5)
m = 1000 −0.32 (44.9) 1.0 (42.1) 0.6 (39.5)
m = 2000 0.72 (32.1) −1.2 (29.3) −1.8 (27.2)

Finally, Figures 1.4 and 1.5 illustrate the (non-)parametric estimation results

of the upper TDC estimator λ̂
(i)
U , i = 1, 2, 3. Presented are 3 × 1000 TDC

estimations with sample lengths m = 500, 1000 and 2000. The plots visualize
the decreasing empirical bias and variance for increasing sample length.
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Figure 1.4: Nonparametric upper TDC estimates λ̂
(1)
U (left panel) and λ̂

(2)
U

(right panel) for 3 × 1000 i.i.d. samples of size m = 500, 1000, 2000
from a bivariate t-distribution with parameters θ = 2, ρ = 0, and

λ
(1)
U = λ

(2)
U = 0.1817.
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The empirical study shows that the TDC estimator λ̂
(3)
U outperforms the other

two estimators. For m = 2000, the bias (RMSE) of λ̂
(1)
U is three (two and

a half) times larger than the bias (RMSE) of λ̂
(3)
U , whereas the bias (RMSE)

of λ̂
(2)
U is two (ten percent) times larger than the bias (RMSE) of λ̂

(1)
U . More

empirical and statistical results regarding the estimators λ̂
(1)
U and λ̂

(2)
U are given

in Schmidt and Stadtmüller (2003). However, note that the estimator λ̂
(3)
U was

especially developed for bivariate elliptically-contoured distributions. Thus,

the estimator λ̂
(1)
U is recommended for TDC estimations of non-elliptical or

unknown bivariate distributions.
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Figure 1.5: Nonparametric upper TDC estimates λ̂
(3)
U for 3×1000 i.i.d. samples

of size m = 500, 1000, 2000 from a bivariate t-distribution with

parameters θ = 2, ρ = 0, and λ
(3)
U = 0.1817.
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1.6 Tail dependence of asset and FX returns

Tail dependence is indeed often found in financial data series. Consider two
scatter plots of daily negative log-returns of a tuple of financial securities and

the corresponding upper TDC estimate λ̂
(1)
U for various k (for notational con-

venience we drop the index m).

The first data set (D1) contains negative daily stock log-returns of BMW and
Deutsche Bank for the time period 1992-2001. The second data set (D2) con-
sists of negative daily exchange rate log-returns of DEM/USD and JPY/USD
(so-called FX returns) for the time period 1989-2001. For modelling reasons
we assume that the daily log-returns are i.i.d. observations. Figures 1.6 and
1.7 show the presence of tail dependence and the order of magnitude of the
tail-dependence coefficient. Tail dependence is present if the plot of TDC esti-

mates λ̂
(1)
U against the thresholds k shows a characteristic plateau for small k.

The existence of this plateau for tail-dependent distributions is justified by a
regular variation property of the tail distribution; we refer the reader to Peng
(1998) or Schmidt and Stadtmüller (2003) for more details. By contrast, the
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Figure 1.6: Scatter plot of BMW versus Deutsche Bank negative daily stock
log-returns (2347 data points) and the corresponding TDC estimate

λ̂
(1)
U for various thresholds k.

STFtail06.xpl

characteristic plateau is not observable if the distribution is tail independent.

The typical variance-bias problem for various thresholds k can be also observed
in Figures 1.6 and 1.7. In particular, a small k comes along with a large variance
of the TDC estimator, whereas increasing k results in a strong bias. In the

presence of tail dependence, k is chosen such that the TDC estimate λ̂
(1)
U lies

on the plateau between the decreasing variance and the increasing bias. Thus
for the data set D1 we take k between 80 and 110 which provides a TDC

estimate of λ̂
(1)
U,D1

= 0.31, whereas for D2 we choose k between 40 and 90 which

yields λ̂
(1)
U,D2

= 0.17.

The importance of the detection and the estimation of tail dependence becomes
clear in the next section. In particular, we show that the Value at Risk estima-
tion of a portfolio is closely related to the concept of tail dependence. A proper
analysis of tail dependence results in an adequate choice of the portfolio’s loss
distribution and leads to a more precise assessment of the Value at Risk .
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Figure 1.7: Scatter plot of DEM/USD versus JPY/USD negative daily ex-
change rate log-returns (3126 data points) and the corresponding

TDC estimate λ̂
(1)
U for various thresholds k.
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1.7 Value at Risk – A simulation study

Value at Risk (VaR) estimations refer to the estimation of high target quantiles
of single asset or portfolio loss distributions. Thus, VaR estimations are very
sensitive towards the tail behavior of the underlying distribution model.

On the one hand, the VaR of a portfolio is affected by the tail distribution of
each single asset. On the other hand, the general dependence structure and
especially the tail-dependence structure among all assets have a strong impact
on the portfolio’s VaR, too. With the concept of tail dependence, we supply a
methodology for measuring and modelling one particular type of dependence
of extreme events.

What follows, provides empirical justification that the portfolio’s VaR estima-
tion depends heavily on a proper specification of the (tail-)dependence structure
of the underlying asset-return vector. To illustrate our assertion we consider
three financial data sets: the first two data sets D1 and D2 refer again to the
daily stock log-returns of BMW and Deutsche Bank for the time period 1992-
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2001 and the daily exchange rate log-returns of DEM/USD and JPY/USD
for the time period 1989-2001, respectively. The third data set (D3) contains
exchange rate log-returns of FFR/USD and DEM/USD for the time period
1982-2002.

Typically, in practice, either a multivariate normal distribution or multivariate
t-distribution is fitted to the data in order to describe the random behavior
(market riskiness) of asset returns. Especially multivariate t-distributions have
recently gained the attraction of practitioners due to their ability to model
heavy tails while still having the advantage of being in the class of elliptically-
contoured distributions. Recall that the multivariate normal distribution has
thin tailed marginals which exhibit no tail-dependence, and the t-distribution
possesses heavy tailed marginals which are tail dependent (see Section 1.3.2).
Due to the different tail behavior, one might pick one of the latter two dis-
tribution classes if the data are elliptically contoured. However, elliptically-
contoured distributions require a very strong symmetry of the data and might
not be appropriate in many circumstances.
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Figure 1.8: Scatter plot of foreign exchange data (left panel) and simulated
normal pseudo-random variables (right panel) of FFR/USD ver-
sus DEM/USD negative daily exchange rate log-returns (5189 data
points).
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For example, the scatter plot of the data set D3 in Figure 1.8 reveals that
its distributional structure does not seem to be elliptically contoured at all.
To circumvent this problem, one could fit a distribution from a broader dis-
tribution class, such as a generalized hyperbolic distribution (Eberlein and
Keller, 1995; Bingham and Kiesel, 2002). Alternatively, a split of the de-
pendence structure and the marginal distribution functions via the theory of
copulae (as described in Section 1.2) seems to be also attractive. This split
exploits the fact that statistical (calibration) methods are well established for
one-dimensional distribution functions.

For the data setsD1, D2, andD3, one-dimensional t-distributions are utilized to
model the marginal distributions. The choice of an appropriate copula function
turns out to be delicate. Two structural features are important in the context of
VaR estimations regarding the choice of the copula. First, the general structure
(symmetry) of the chosen copula should coincide with the dependence structure
of the real data. We visualize the dependence structure of the sample data via
the respective empirical copula (Figure 1.9), i.e. the marginal distributions are
standardized by the corresponding empirical distribution functions. Second, if
the data show tail dependence than one must utilize a copula which comprises
tail dependence. Especially VaR estimations at a small confidence level are
very sensitive towards tail dependence. Figure 1.9 indicates that the FX data
set D3 has significantly more dependence in the lower tail than the simulated
data from a fitted bivariate normal copula. The data clustering in the lower
left corner of the scatter plot of the empirical copula is a strong indication for
tail dependence.

Based on the latter findings, we use a t-copula (which allows for tail depen-
dence, see Section 1.3.2) and t-distributed marginals (which are heavy tailed).
Note, the resulting common distribution is only elliptically contoured if the
degrees of freedom of the t-copula and the t-margins coincide, since in this case
the common distribution corresponds to a multivariate t-distribution. The
parameters of the marginals and the copula are separately estimated in two
consecutive steps via maximum likelihood. For statistical properties of the lat-
ter procedure, which is called Inference Functions for Margins method (IFM),
we refer to Joe and Xu (1996).

Tables 1.11, 1.12, and 1.13 compare the historical VaR estimates of the data
sets D1, D2, and D3 with the average of 100 VaR estimates which are simu-
lated from different distributions. The fitted distribution is either a bivariate
normal, a bivariate t-distribution or a bivariate distribution with t-copula and
t-marginals. The respective standard deviation of the VaR estimations are pro-
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vided in parenthesis. For a better exposition, we have multiplied all numbers
by 105.
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Figure 1.9: Lower left corner of the empirical copula density plots of real data
(left panel) and simulated normal pseudo-random variables (right
panel) of FFR/USD versus DEM/USD negative daily exchange rate
log-returns (5189 data points).
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Table 1.11: Mean and standard deviation of 100 VaR estimations (multiplied
by 105) from simulated data following different distributions which
are fitted to the data set D1.

Quantile Historical Normal t-distribution t-copula &
VaR distribution t-marginals

Mean (Std) Mean (Std) Mean (Std)

0.01 489.93 397.66 (13.68) 464.66 (39.91) 515.98 (36.54)
0.025 347.42 335.28 (9.67) 326.04 (18.27) 357.40 (18.67)
0.05 270.41 280.69 (7.20) 242.57 (10.35) 260.27 (11.47)
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Table 1.12: Mean and standard deviation of 100 VaR estimations (multiplied
by 105) from simulated data following different distributions which
are fitted to the data set D2.

Quantile Historical Normal t-distribution t-copula &
VaR distribution t-marginals

Mean (Std) Mean (Std) Mean (Std)

0.01 155.15 138.22 (4.47) 155.01 (8.64) 158.25 (8.24)
0.025 126.63 116.30 (2.88) 118.28 (4.83) 120.08 (4.87)
0.05 98.27 97.56 (2.26) 92.35 (2.83) 94.14 (3.12)

Table 1.13: Mean and standard deviation of 100 VaR estimations (multiplied
by 105) from simulated data following different distributions which
are fitted to the data set D3.

Quantile Historical Normal t-distribution t-copula &
VaR distribution t-marginals

Mean (Std) Mean (Std) Mean (Std)

0.01 183.95 156.62 (3.65) 179.18 (9.75) 179.41 (6.17)
0.025 141.22 131.54 (2.41) 124.49 (4.43) 135.21 (3.69)
0.05 109.94 110.08 (2.05) 91.74 (2.55) 105.67 (2.59)

The results of the latter tables clearly show that the fitted bivariate normal-
distribution does not yield an overall satisfying estimation of the VaR for all
data sets D1, D2, and D3. The poor estimation results for the 0.01− and
0.025−quantile VaR (i.e. the mean of the VaR estimates deviate strongly from
the historical VaR estimate) are mainly caused by the thin tails of the normal
distribution. By contrast, the bivariate t-distribution provides good estimations
of the historical VaR for the data sets D1 and D2 over all quantiles. However,
both data sets are approximately elliptically-contoured distributed since the
estimated parameters of the copula and the marginals are almost equal. For
example for the data set D1, the estimated degree of freedom of the t-copula
is 3.05 whereas the estimated degrees of freedom of the t-marginals are 2.99
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and 3.03, respectively. We have already discussed that the distribution of the
data set D3 is not elliptically contoured. Indeed, the VaR estimation improves
with a splitting of the copula and the marginals. The corresponding estimated
degree of freedom of the t-copula is 1.11 whereas the estimated degrees of
freedom of the t-marginals are 4.63 and 5.15. Finally, note that the empirical
standard deviations do significantly differ between the VaR estimation based
on the multivariate t-distribution and the t-copula, respectively.
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