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Nonparametric estimation of tail dependence

RAFAEL SCHMIDT1 and ULRICH STADTMÜLLER2

ABSTRACT. Dependencies between extreme events (extremal dependencies) are at-
tracting an increasing attention in modern risk management. In practice, the concept
of tail dependence represents the current standard to describe the amount of extremal
dependence. In theory, multivariate extreme-value theory (EVT) turns out to be the
natural choice to model the latter dependencies. The present paper embeds tail depen-
dence into the concept of tail copulae which describes the dependence structure in the
tail of multivariate distributions but works more generally. Various non-parametric
estimators for tail copulae and tail dependence are discussed, and weak convergence,
asymptotic normality, and strong consistency of these estimators are shown by means
of a functional delta method. Further, weak convergence of a general upper-order
rank-statistics for extreme events is investigated and the relationship to tail depen-
dence is provided. A simulation study compares the introduced estimators and two
financial data sets are analyzed with our methods.

Key words: asymptotic normality, copula, empirical copula, nonparametric estimation, strong con-
sistency, tail copula, tail dependence, tail-dependence coefficient.

1 Introduction.

Dependencies between (extreme) financial asset-returns have significantly increased during recent
time periods in almost all international markets. This phenomenon is a direct consequence of
globalization and relaxed market regulation in finance and insurance industry. Especially during
bear markets many empirical surveys like Karolyi & Stulz (1996), Longin & Solnik (2001), and
Campbell, Koedijk & Kofman (2002) show evidence of increasing dependencies between (extreme)
asset-returns. However, increasing extremal dependencies strongly impact the companies’ profit
contributions and may weaken the financial stability of entire industrial sectors. Typically, risk
managers pursue diversification strategies by analyzing and utilizing positive and negative corre-
lations between various asset-returns in order to cut one’s losses due to market or credit risk and
to increase the (risk-adjusted) returns. However, diversification strategies become less effective or
may break down if the financial markets fall simultaneously during bear markets or market crashes.
According to Ong (1999), the primary issue risk managers have always been interested in, is assess-
ing the size - more than the frequency - of losses. For example, the presumable most well-known
risk measure called the Value-at-Risk (VaR) (describes the amount of extreme portfolio loss which
is exceeded only with a certain small probability) depends strongly on the dependence structure of
extreme events which makes it important to model and analyze extremal dependence.

In practice, the current standard of studying extremal dependencies is to use the concept of tail
dependence, cf. Embrechts et al. (2003), Malevergne & Sornette (2004). The aim of the present
paper is to study the estimation of the so-called tail-dependence coefficient in a nonparametric
context. Therefore, tail dependence is embedded into the general framework of tail copulae which
refers to the dependence structure of extreme events of multivariate distributions independently of
their marginal distributions and hence is of interest in extreme value theory as well. Our defini-
tion of tail copulae and tail dependence is based on the well-known concept of copulae (referring

1Department of Economic and Social Statistics, University of Cologne, Germany and Department of Statistics,
London School of Economics, UK

2Department of Number Theory and Probability Theory, University of Ulm, Germany.

1



to the underlying distribution). The considered nonparametric estimator of the tail copula, for
which we obtain an estimator of the tail-dependence coefficient as a special case, will be named
empirical tail copula. The reason for this is its close relationship to the empirical copula (process)
which has been investigated by many authors in the context of process convergence; we mention
Deheuvels (1979, 1981) , Stute (1984), Van der Vaart & Wellner (1996), and Fermanian, Radulović
& Wegkamp (2004). The last two references establish weak convergence of the empirical copula
process under independent and dependent marginal distributions. The methods we utilize to derive
the asymptotics of the empirical tail copula process have been essentially inspired by the methods
used in Van der Vaart & Wellner (1996), Chapter 3.9.4.4, and Fermanian et al. (2004). However,
the limiting results are different and the proofs are more delicate, since we work in the tails of the
distribution. From the viewpoint of EVT, the empirical tail copula, although different, is closely
related to a nonparametric estimator introduced and studied by Huang (1992), Chapter 2, (see also
Peng (1998), pp.96, and Drees & Huang (1998)) in the context of so-called stable tail-dependence
functions. The techniques used in Huang (1992) cannot be applied to the empirical tail copula
as we explain later. We will see that the empirical tail copula and the resulting estimate for the
tail dependence coefficient have smaller finite sample bias than the estimates based on the concept
described above. Another type of estimators for the tail copula can be established via the so-called
spectral measure. The nonparametric estimation of the latter has been investigated by several au-
thors, e.g. Abdous et al. (1999) and Einmahl, de Haan & Piterbarg (2001). For the estimation of
the tail-dependence coefficient, the estimator in Einmahl et al. (2001) coincides with the estimator
proposed by Huang (1992). However, the general limiting process turns out to be complicated
and difficult to estimate, which makes it unattractive especially for (financial) applications. Beside
the derivation of the limiting process of the empirical tail copula, we will propose a procedure
how to estimate (asymptotic) confidence intervals regarding the estimation of the tail-dependence
coefficient.

Similarly to the well-known copula-concept, cf. Joe (1997), Nelsen (1999), we may construct
multivariate extreme-value distributions with a given tail copula. Copulae itself have become quite
prominent in theory and applications, see e.g. Sklar (1996), Song (2000), Cuculescu & Theodorescu
(2003), Embrechts et al. (2003). Important applications of tail copulae in actuarial sciences and
finance concern the modelling of dependencies between extreme insurance claims and large default
events in credit portfolios, and Value-at-Risk considerations of asset portfolios.

We start with the definition of tail copulae and tail dependence, and derive several analytical
properties which justify the name tail copula, even though it is not a copula in the usual sense. In
Section 3, various non-parametric estimators for the tail copula are discussed and Section 4 provides
the main results on weak convergence, asymptotic normality, and strong consistency by means of
a functional delta method (as provided in Van der Vaart & Wellner (1996)). The subsequent
section generalizes the asymptotic results for functionals of general upper-order rank statistics. A
simulation study and a real data analysis complement the theoretical results. Some mathematics
can be found in the Appendix.

2 Copulae, tail copulae and tail dependence

The theory of copulae investigates the dependence structure of multidimensional random vectors.
Copulae are functions that join or ”couple” multivariate distribution functions to their correspond-
ing marginal distribution functions. A copula function C : [0, 1]n → [0, 1] is a multivariate distribu-
tion function with uniformly distributed margins on the interval [0, 1]. For notational convenience,
all further definitions and results are provided for the bivariate case only. Various multidimensional
extensions are possible. We consider a random vector (X,Y )′ with joint distribution function F
and continuous marginal distribution functions G (for X) and H (for Y ). Then the bivariate
distribution function F can be written in the form

F (x, y) = C(G(x),H(y)) or C(u, v) = F (G−1(u),H−1(v)), 0 ≤ u, v ≤ 1, (1)

where G−1,H−1 denote the generalized inverse distribution functions of G and H, i.e., for all
u ∈ [0, 1] : G−1(u) := inf{x ∈ IR | G(x) ≥ u} with inf{∅} = ∞. Conversely, if C is a copula
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and G,H are distribution functions, then the function F defined via (1) is a bivariate distribution
function with margins G,H. Further, with U := G(X) and V := H(Y ), the random variables U
and V are uniform on [0, 1] and C(u, v) = IP(U ≤ u, V ≤ v). The survival copula associated with
the survival function F̄ (x, y) = IP(X > x, Y > y) is defined by

F̄ (x, y) = C̄(Ḡ(x), H̄(y)) or C̄(u, v) = F̄ (Ḡ−1(u), H̄−1(v)), 0 ≤ u, v ≤ 1, (2)

where Ḡ := 1 − G and Ḡ−1(u) := G−1(1 − u) (analogously for H). Hence, we have

C̄(u, v) = IP
(

X > G−1(1 − u), Y > H−1(1 − v)
)

= IP(U > 1 − u, V > 1 − v)

and thus C̄(u, v) = u + v − 1 + C(1− u, 1− v). For more details regarding the theory of copulae we
refer the reader to the monograph of Nelsen (1999) or Joe (1997).

Tail copulae are functions that describe the dependence structure of joint distributions in the

tail and are defined as follows. Throughout this paper we denote by ĪR
2
+ := [0,∞]2\{(∞,∞)}.

Definition 1 (Tail copulae) Let F be a distribution function with corresponding copula C. If the

following limit exists everywhere on ĪR
2
+

ΛL(x, y) := lim
t→∞

tC(x/t, y/t) (3)

then the function ΛL : ĪR
2
+ → IR is called a lower tail copula associated with F.

The corresponding upper tail copula is defined by

ΛU (x, y) := lim
t→∞

tC̄(x/t, y/t) (4)

provided the limit exists.

The following relationships between tail copulae and joint/conditional distributions are worth
mentioning:

ΛL(x, y) = y lim
t→∞

IP(U ≤ x/t | V ≤ y/t) = lim
t→∞

tIP
(

X ≤ G−1(x/t), Y ≤ H−1(y/t)
)

and ΛU (x, y) = lim
t→∞

tIP
(

X > G−1(1 − x/t), Y > H−1(1 − y/t)
)

.

The next definition embeds the well-known concept of tail dependence (Sibuya 1960) within the
framework of tail copulae. The tail-dependence coefficient has attracted a lot of attention among
practitioners as a simple and intuitive measure for dependence between extreme events (such as
extreme asset returns or extreme credit losses), cf. Embrechts et al. (2003), Malevergne & Sornette
(2004). However, the estimation of tail dependence is a nontrivial task, especially for nonstandard
distributions (For an account on tail dependence for elliptically contoured distributions we refer
to Schmidt (2002).). It is precisely this reason that motivates us to consider the tail-dependence
coefficient, as a special case of the tail copula, in more detail.

Definition 2 (Tail dependence) A random vector (X,Y )′ is said to be upper tail-dependent if
ΛU (1, 1) exists and

λU := ΛU (1, 1) = lim
t→∞

tC̄(1/t, 1/t) > 0. (5)

Consequently, (X,Y )′ is called upper tail-independent if λU equals 0. Further, λU is referred to as
the upper tail-dependence coefficient. Similarly, the lower tail-dependence coefficient is defined by
λL := ΛL(1, 1) if existent and lower tail-dependence (independence) is present if λL > 0 (= 0).
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It is well known that the multivariate normal distributions, the multivariate generalized hyper-
bolic distributions (cf. Barndorff-Nielsen (1978)), and the multivariate logistic distributions are
upper and lower tail-independent whereas the multivariate t-distributions and the α-stable distri-
butions are upper and lower tail-dependent.

For our purpose, tail copulae are of primary interest because of the following four reasons:

1. As an intuitive generalization of the tail-dependence coefficient via a function describing the
dependence structure in the tail of a distribution.

2. To derive explicit weak convergence results for the estimators presented below of the lower
and upper tail-dependence coefficient in a completely nonparametric distribution model.

3. As a counterpart of the so-called stable tail-dependence function, cf. Huang (1992), Chapter
2, and Peng (1998), pp.96, which we describe later.

4. As another starting point to construct multidimensional extreme-value distributions.

Estimating the tail copula can be coped with techniques from EVT. It can be shown, see Resnick
(1987), Chapter 5, that the upper tail copula exists on IR2

+ and ΛU 6= 0 if the associated distribution
function F lies in the domain of attraction of an (max-stable) extreme-value distribution with
dependent margins. A similar result holds for the lower tail copula. However, the latter is only a
sufficient condition as the marginal distributions are not necessarily in the domain of attraction of
an extreme-value distribution. Further, within the concept of tail dependence we do not require
the existence of the entire tail copula. As a consequence our estimate will not necessarily provide
an extreme value distribution.

If F lies in the domain of attraction of some (max-stable) extreme-value distribution and if we
normalize the margins to Fréchet distributions then the corresponding extreme-value distribution
GE follows

GE(x, y) = exp{−1/x − 1/y + ΛU (1/x, 1/y)} for x, y > 0 .

Note that if ΛU ≡ 0 on IR2
+ then we are in the independent extremal situation. Obviously the

function ΛU describes the dependence structure of the extreme-value distribution, this is one reason
why we call it a tail copula even though it does not posses all copula properties.

In bivariate EVT the major interest concerns the probability

IP(X > G−1(1 − x) or Y > H−1(1 − y)), (6)

whereas in the context of the (upper) tail copulae the probability under consideration closely relates
to

IP(X > G−1(1 − x) and Y > H−1(1 − y)). (7)

In case of tail dependence, the mapping t 7→ IP(X > G−1(1 − x/t) and/or Y > H−1(1 − y/t)) is
regularly varying of order −1 , and consequently a homogeneity property holds for large t (see the
next section for more details).

At this point we would like to mention that the nonparametric estimators we propose later
are based on the empirical counterparts of the probabilities (6) and (7) and utilize the above
homogeneity property. Notice, in case (X,Y )′ is tail independent, the latter property does not
hold for (7). Here, an adjusted homogeneity property can sometimes be obtained namely if the
limit limt→∞ tηIP(X > G−1(1 − x/t), Y > H−1(1 − y/t)), η < 1, exists and does not vanish. The
parameter η was introduced by Ledford & Tawn (1997, 1996, 1998) as the coefficient of asymptotic
dependence given tail independence. Several estimators for η and related tests for tail independence
were introduced by Coles, Heffernan & Tawn (1999), Peng (1999), and Draisma, Drees, Ferreira
& de Haan (2004). However, according to the latter paper the tests on tail dependence or tail
independence show a disappointing behavior. In contrast to these approaches we concentrate on
tail dependence (i.e. the case η = 1).
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3 Tail-copula properties

The name tail copula is justified by the results of the present section. Many properties of the tail
copula are closely related to copula properties, cf. Nelsen (1999), Chapter 2.

Theorem 1 If the limit functions ΛU (x, y) and ΛL(x, y), (x, y)′ ∈ ĪR
2
+, exist, they have the follow-

ing properties.

i) (Groundedness) ΛU (x, 0) = ΛU (0, y) = ΛL(x, 0) = ΛL(0, y) = 0 for all x, y ∈ ĪR+, and
ΛU (x,∞) = ΛL(x,∞) = x and ΛU (∞, y) = ΛL(∞, y) = y for all x, y ∈ IR+.

ii) (Homogeneity) ΛU (tx, ty) = tΛU (x, y) and ΛL(tx, ty) = tΛL(x, y) for all t > 0 and (x, y)′ ∈
ĪR

2
+.

iii) (Monotonicity) ΛU (x, y) and ΛL(x, y) are nondecreasing and Lipschitz continuous.

iv) ΛU (x, y) and ΛL(x, y) are nonzero everywhere if they do not vanish in a single point (x, y)′ ∈
IR2

+. Hence ΛU (x, y) = 0 (ΛL(x, y) = 0) for all (x, y)′ ∈ IR2
+ in case of upper (lower) tail-

independence.

v) (Uniformity) The limit relations for ΛU (x, y) and ΛL(x, y) are locally uniform in (x, y)′ ∈
IR2

+.

Proof. Properties i) and ii) follow immediately from Definition 1. Note that the limit of a regular
varying function with index −1 is homogeneous.

iii) Consider e.g. Λ := ΛL and let C denote the corresponding copula. As the limit of nonde-

creasing functions, ΛL is nondecreasing. Further, for (x, y)′, (x̄, ȳ)′ ∈ ĪR
2
+ we have

|Λ(x, y) − Λ(x̄, ȳ)| = lim
t→∞

t|C(x/t, y/t) − C(x̄/t, ȳ/t)|

≤ |x − x̄| + |y − ȳ| ≤ K
∣

∣

∣

∣

∣

∣

(

x

y

)

−
(

x̄

ȳ

)

∣

∣

∣

∣

∣

∣

2
(8)

for some constant K > 0 because C is a distribution function with uniform margins.

iv) The following inequalities hold for a, b > 0

min{a, b}Λ(x, y) ≤ Λ(a x, b y) ≤ max{a, b}Λ(x, y) .

To verify this, note that in case a ≤ b, using τ = t/a we find

Λ(a x, b y) = lim
t→∞

t C(ax/t, by/t)

= lim
τ→∞

a τ C(x/τ, (b/a)y/τ) = aΛ(x, (b/a) y) ≥ aΛ(x, y)

and the upper inequality follows similarly. Notice that this result also implies homogeneity. Next,
if Λ(x0, y0) > 0 for some x0, y0 > 0, then we get

Λ(x, y) ≥ min{x/x0, y/y0}Λ(x0, y0) > 0 .

v) Finally, uniform convergence is obtained from the fact that for xn → x0, yn → y0 and
tn → ∞, putting τn = tn/min{xn/x0, yn/y0} and ξn = tn/max{xn/x0, yn/y0} we have

min{xn/x0, yn/y0}τn C(x0/τn, y0/τn) ≤ tn C(xn/tn, yn/tn)

≤ max{xn/x0, yn/y0}ξn C(x0/ξn, y0/ξn).

This implies that tn C(xn/tn, yn/tn) → Λ(x0, y0) as tn → ∞.

The next properties are given for the lower tail copula only. However, analogous properties hold
for the upper pendant.
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Theorem 2 Suppose the limit function ΛL(x, y), (x, y)′ ∈ ĪR
2
+, exists. Then for all (x, y)′, (x̄, ȳ)′ ∈

ĪR
2
+ such that x ≤ x̄, y ≤ ȳ the following properties hold.

i) (”Fréchet-Hoeffding bounds”) 0 ≤ ΛL(x, y) ≤ min{x, y}.
ii) For a, b > 0: min{a, b}ΛL(x, y) ≤ ΛL(a x, b y) ≤ max{a, b}ΛL(x, y) .

iii) (2-increasing) ΛL(x̄, ȳ) − ΛL(x̄, y) − ΛL(x, ȳ) + ΛL(x, y) ≥ 0.

iv) (Strict monotonicity) For ΛL 6≡ 0 : ΛL(x, y) < ΛL(x̄, ȳ) if x < x̄ and y < ȳ.

v) If ΛL exist for x, y ∈ IR2
+ with x2 + y2 = 1 then it exists everywhere onĪR

2
+ .

Proof. i) The upper bound arises from the upper Fréchet-Hoeffding bound for copulae, cf. Nelsen
(1999), Theorem 2.2.3. In particular, for every copula function C we have C(u, v) ≤ min(u, v). Part
ii) has already been shown in the proof of Theorem 1, part iv). Part iii) is deduced from the fact
that every copula is 2-increasing. Finally, part iv) is implied by part ii) and the last part follows
directly from

lim
t→∞

t C(x/t, y/t) = (
√

x2 + y2 lim
τ→∞

τC(x/(
√

x2 + y2τ), y/(
√

x2 + y2τ)) .

Theorem 3 Suppose the limit function ΛL(x, y), (x, y)′ ∈ ĪR
2
+, exists. Then, for any y ∈ R̄+ the

derivative ∂ΛL/∂x exists for almost all x ∈ IR+, and for such x and y

0 ≤ ∂

∂x
ΛL(x, y) ≤ 1. (9)

Similarly, for any x ∈ R̄+ the partial derivative ∂ΛL/∂y exists for almost all y ∈ IR+, and for such
x and y

0 ≤ ∂

∂y
ΛL(x, y) ≤ 1. (10)

Furthermore, the functions x 7→ ∂ΛL(x, y)/∂y and y 7→ ∂ΛL(x, y)/∂x are defined and nondecreasing
almost everywhere on ĪR+.

Proof. The partial derivatives ∂ΛL/∂x and ∂ΛL/∂y exist because monotone functions are differen-
tiable almost everywhere (c.f Theorem 7.2.1 in Wheeden & Zygmund (1977)). Inequalities (9) and
(10) are implied by the Lipschitz condition (8). Further, for fixed y ≤ ȳ the function y 7→ ΛL(x, y)−
ΛL(x, ȳ) is nondecreasing according to part iii) in Theorem 2. Thus ∂(ΛL(x, y) − ΛL(x, ȳ))/∂x is
defined and nonnegative almost everywhere. The final assertion is now immediate.

4 Nonparametric estimators

Suppose (X,Y )′, (X(1), Y (1))′, . . . , (X(m), Y (m))′ are iid random vectors with distribution function
F having marginal distribution functions G,H and copula C.

Below we propose a set of nonparametric estimators for the upper and lower tail copula ΛU (x, y)
and ΛL(x, y), (x, y)′ ∈ R̄2

+. Note that nonparametric estimation turns out to be appropriate for
unknown tail copulae as no general finite-dimensional parametrization of tail copulae exists (in
contrast to the one-dimensional EVT). Let Cm denote the empirical copula defined by

Cm(u, v) = Fm(G−1
m (u),H−1

m (v)), (u, v)′ ∈ [0, 1]2 (11)

with Fm, Gm,Hm being the empirical distribution functions corresponding to F,G,H. Analogously
we define the empirical survival copula by C̄m(u, v) = F̄m(Ḡ−1

m (u), H̄−1
m (v)), (u, v)′ ∈ [0, 1]2 with

F̄m(x, y) =
1

m

m
∑

j=1

1{X(j)>x,Y (j)>y}
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and Ḡm = 1 − Gm, H̄m = 1 − Hm. Note that a slightly modified version of the generalized
inverse distribution function of Ḡm and H̄m is necessary, i.e., we define Ḡ−1(u) := sup{x ∈ IR |
Ḡ(x) ≥ u} with sup{∅} = −∞. The choice of the empirical distribution function to model the
marginal distributions avoids any misidentification due to a wrong parametrical fit of the marginal
distributions. Empirical investigations regarding such misidentifications and misinterpretations
of the corresponding (extremal) dependence structure are provided in Frahm, Junker & Schmidt
(2005).

Let R
(j)
m1 and R

(j)
m2 denote the rank of X(j) and Y (j), j = 1, . . . ,m, respectively. The first set of

estimators are based on formulae (3) and (4):

Λ̂L,m(x, y) :=
m

k
Cm

(kx

m
,
ky

m

)

≈ 1

k

m
∑

j=1

1{R
(j)
m1≤kx and R

(j)
m2≤ky} (12)

and

Λ̂U,m(x, y) :=
m

k
C̄m

(kx

m
,
ky

m

)

≈ 1

k

m
∑

j=1

1{R
(j)
m1>m−kx and R

(j)
m2>m−ky} (13)

with some parameter k ∈ {1, . . . ,m} to be chosen by the statistician. For the asymptotic results
we assume throughout this paper that k = k(m) → ∞ and k/m → 0 as m → ∞. The estimators
Λ̂U,m(x, y) and Λ̂L,m(x, y) are referred to as empirical tail copulae.

The far right sides in equations (13) and (12) provide two approximative rank order statis-
tics which are based on a slightly modified representation of the empirical tail copula. Such a
representation was proposed by Genest, Ghoudi & Rivest (1995):

Čm(u, v) =
1

m

m
∑

j=1

1{Gm(X(j))≤u and Hm(Y (j))≤v}, (u, v)′ ∈ [0, 1]2. (14)

The present paper establishes results of weak convergence and strong consistency for the tail-copula
estimators Λ̂U,m and Λ̂L,m. However, the following reasoning shows that all results hold also for
the related rank order statistics. Note that Cm, C̄m, and the corresponding empirical tail copulae
depend also on the ranks of X(j) and Y (j), j = 1, . . . ,m.

The empirical tail copulae and the rank order statistics coincide on the grid {(i/k, j/k), 1 ≤
i, j ≤ m}. Otherwise the pointwise differences are at most 2/k. Consider e.g. the lower empirical
tail copula Λ̂L,m(x, y) which is left-continuous whereas the corresponding rank order statistics is
right-continuous. The difference between the latter estimators is bounded by

sup
(x,y)′∈ĪR2

+

|Λ̂L,m(x, y) − 1

k

m
∑

j=1

1{R
(j)
m1≤kx and R

(j)
m2≤ky}|

≤ max
1≤i,j≤m

∣

∣

∣

m

k
Cm

( i

m
,

j

m

)

− m

k
Cm

( i − 1

m
,
j − 1

m

)
∣

∣

∣
≤ m

k

2

m
=

2

k
.

Alternatively, we could define the empirical copula Cm in (11) by considering a right-continuous
version of the inverse function, i.e., G̃−1(u) = inf{x ∈ IR | G(x) > u}. This choice would yield
a right continuous version of the empirical copula. The asymptotic behavior, however, does not
change because of the same reasoning as above.

The following related estimator was introduced and investigated by Huang (1992), Chapter
2, (see also Peng (1998), pp.96, and Drees & Huang (1998)) in the context of so-called stable
tail-dependence functions. The relationship between the upper tail copula and the stable tail-
dependence function l is given by ΛU (x, y) = x+y−l(x, y). The latter authors discuss the estimation
of the function l with respect to questions arising from EVT. Recall that ΛU (x, y) = x + y −
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limt→∞ t(1 − C(1 − x/t, 1 − y/t)). The corresponding estimator for ΛU (x, y) on IR2
+ is

Λ̂EV T
U,m (x, y) := x + y − m

k

(

1 − Cm

(

1 − kx

m
, 1 − ky

m

))

(15)

≈ x + y − 1

k

m
∑

j=1

1{R
(j)
m1>m−kx or R

(j)
m2>m−ky}, (x, y) ∈ IR2

+,

with k = k(m) → ∞ and k/m → 0 as m → ∞. The estimator Λ̂EV T
L,m could be similarly defined by

substituting the empirical survival copula for the empirical copula in (15). An important practical
problem for all estimators arises in the optimal choice of the parameter k which relates to the usual
variance-bias problem. Some methods of choosing an optimal k are described below.

The main purpose of the paper concerns the study of the asymptotic behavior of the empirical
tail copulae Λ̂U,m and Λ̂L,m stated in (13) and (12). These estimators, although different, are related
to the estimator in (15) proposed in Huang (1992) and an asymptotic result for (15) is proven in the
latter reference. However, instead of utilizing the Skorokhod representation theorem, we apply a
general Delta method to prove the asymptotic results for Λ̂U,m(x, y) and Λ̂L,m(x, y). We must chose
a different approach since the method of proof, as it is used in Huang (1992), cannot be applied
in our case. In particular, the estimator in (15) is only defined on IR2

+ and the fluctuation of the
empirical tail copula at infinity cannot be coped with using the techniques in the latter reference.
The evaluation of the tail copula at the point x = ∞ or y = ∞ is very useful since by doing this
we obtain immediately the lower-dimensional tail copula (similarly to setting arguments equal to 1
in a multivariate distribution function). We remark that the asymptotic results for Λ̂EV T

U,m can be

shown with the same techniques. The estimator Λ̂EV T
U,m has an additional finite sample bias since

the uncertainty of the copula’s margins enter into the estimation (cf. formula (15)). The absolute
difference between Λ̂U,m and Λ̂EV T

U,m is bounded by 2/k for x ≤ m/k and x − m/k for x > m/k.
Although at the first glance this difference for x ≤ m/k appears to be small, one has to keep in mind
that for sample sizes m = 1000 (2000) the threshold is usually around k = 50 (100). The impact of
the additional (finite sample) bias cannot be disregarded which we illustrate in the empirical study
in Section 7. Based on the above estimators for the lower and upper tail copula, we propose

λ̂U,m := Λ̂U,m(1, 1), and λ̂EV T
U,m := Λ̂EV T

U,m (1, 1) (16)

as nonparametric estimators for the upper tail-dependence coefficient and analogous estimates for
the lower tail-dependence coefficient.

Another type of estimators utilizes a representation of tail copulae via the spectral measure with
respect to the || · ||∞ norm which is well known in EVT. In particular the following relationship
holds if the underlying distribution is in the domain of attraction of an extreme value distribution:

ΛU (x, y) = x + y −
∫ π/2

0

( x

1 ∨ cot θ
∨ y

1 ∨ tan θ

)

Φ(dθ), (x, y) ∈ IR2
+,

where the finite measure Φ, which lives on [0, π/2], denotes the spectral measure of ΛU . Einmahl
et al. (2001) propose a nonparametric estimator for the above spectral measure Φ :

Φ̂m(θ) =
1

k

m
∑

j=1

1
{

R
(j)
m1 ∨ R

(j)
m2 ≥ m + 1 − k, arctan

m + 1 − R
(j)
m2

m + 1 − R
(j)
m1

≤ θ
}

for θ ∈ [0, π/2] and discuss the related asymptotic properties. Thus, a natural estimator for the
upper tail copula is defined by

Λ̂S
U,m(x, y) := x + y −

∫ π/2

0

( x

1 ∨ cot θ
∨ y

1 ∨ tan θ

)

Φ̂m(dθ),
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with k = k(m) → ∞ and k/m → 0 as m → ∞. Note that λ̂S
U,m := Λ̂S

U,m(1, 1) degenerates to

Φ̂m(π/2) and therefore λ̂S
U,m corresponds to the rank order statistics in (15) which is approximately

Λ̂EV T
U,m . Another representation of the spectral measure, called the Pickands representation (Pickands

1981), yields similar estimators. In this context, nonparametric estimators have been proposed, e.g.,
in Abdous et al. (1999), Hall & Tajvidi (2000), and Falk & Reiss (2003). Further nonparametric
estimators for the lower tail-dependence coefficient are introduced in Dobrić & Schmid (2005).

5 Asymptotic normality

The proof of asymptotic normality for the estimators Λ̂U,m(x, y) and Λ̂L,m(x, y) is accomplished
in two steps. In the first step we assume that the margins G and H are known, and we provide
the asymptotic results. In the second step we assume that the marginal distribution functions G
and H are unknown, and prove asymptotic normality by utilizing a Delta method (see Theorem 9).
The techniques to convey this can be found in Van der Vaart & Wellner (1996). Some important

tools and the underlying space B∞(ĪR
2
+), where weak convergence takes place, are provided in the

Appendix A.1. In the case of known marginal distribution functions G and H we consider the
following estimator for ΛU (x, y) and ΛL(x, y) :

Λ̂∗
U,m(x, y) :=

1

k

m
∑

j=1

1
{

G(X(j)) > 1 − kx

m
and H(Y (j)) > 1 − ky

m

}

(17)

and

Λ̂∗
L,m(x, y) :=

1

k

m
∑

j=1

1
{

G(X(j)) ≤ kx

m
and H(Y (j)) ≤ ky

m

}

. (18)

Condition 1 (Second order condition) The lower tail copula ΛL(x, y) is said to satisfy a sec-
ond order condition if a function A : IR+ → IR+ exists such that A(t) → 0 as t → ∞ and

lim
t→∞

ΛL(x, y) − tC(x/t, y/t)

A(t)
= g(x, y) < ∞

locally uniformly for (x, y)′ ∈ ĪR
2
+ and some nonconstant function g. The second order condition

for the upper tail copula is defined analogously.

Note that A(t) is regularly varying at infinity so this is just a second order condition on regular
variation, cf. de Haan & Stadtmüller (1996).

Theorem 4 (Asymptotic normality under known margins G and H) Let F be a distribu-
tion function with continuous marginal distribution functions G and H. Suppose the tail copulae
ΛU 6≡ 0 and ΛL 6≡ 0 exist and the Second order Condition 1 with

√
k A(m/k) → 0 as m → ∞ (19)

holds for some sequence k = k(m) → ∞ and k/m → 0. Then

√
k

(

Λ̂∗
U,m(x, y) − ΛU (x, y)

)

w→ GΛ̂∗
U
(x, y) (20)

and √
k

(

Λ̂∗
L,m(x, y) − ΛL(x, y)

)

w→ GΛ̂∗
L
(x, y), (21)
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where GΛ̂∗
U
(x, y) and GΛ̂∗

L
(x, y) are centered tight continuous Gaussian random fields. Weak con-

vergence takes place in B∞(ĪR
2
+) and the covariance structure of GΛ̂∗

L
(x, y) is given by

IE
(

GΛ̂∗
L
(x, y) · GΛ̂∗

L
(x̄, ȳ)

)

= ΛL

(

min{x, x̄},min{y, ȳ}
)

(22)

for (x, y)′, (x̄, ȳ)′ ∈ ĪR
2
+. The same holds for GΛ̂∗

U
substituting ΛL by ΛU .

Remark. Suppose A(t) = t−ρ, ρ > 0, then k = o(m2ρ/(1+2ρ)).

Intuition. Note that for y = ȳ = ∞ the covariance structure (22) degenerates to min{x, x̄} which
equals the covariance structure of a Brownian motion. At the first glance this seems to be odd
since the empirical distribution function converges weakly to a Brownian bridge. However, the
fluctuation at infinity cannot decrease for the limiting process of an empirical tail copula since we
move into the tail with the threshold k with increasing sample size (Thus, solely taking extreme
events into account of our estimation.).

Proof. The claim of weak convergence is proven for the estimator Λ̂∗
L,m(x, y). The upper counterpart

is treated analogously. Because of (19) it suffices to prove

αm(x, y) :=
√

k

(

Λ̂∗
L,m(x, y) − m

k
C

(kx

m
,
ky

m

)

)

w→ GΛ̂∗
L
(x, y) as m → ∞

with k = k(m) → ∞ and k/m → 0 as m → ∞, and GΛ̂∗
L
(x, y) being a centered tight Gaussian

random field or process. Further, weak convergence takes place in B∞(ĪR
2
+). We have to verify:

Finite dimensional convergence and tightness of the process αm(x, y).

i) (Finite dimensional convergence) We show that the finite-dimensional projections of
αm(x, y) converge in distribution to a normal random vector, i.e., for each finite subset {(x1, y1), . . . , (xt, yt)}
of ĪR

2
+ there exists a centered normal random vector (α(x1, y1), . . . , α(xt, yt)) with appropriate co-

variance structure such that

(αm(x1, y1), . . . , αm(xt, yt))
d→ (α(x1, y1), . . . , α(xt, yt)).

The latter is shown by a multivariate version of the Lindeberg-Feller theorem for triangular arrays,
see Durrett (1996), p.116, or Araujo & Giné (1980), p.41. Let {(x1, y1), . . . , (xt, yt)} be an arbitrary

but fixed finite subset of ĪR
2
+. Put

Z
(j)
i,m :=

1√
k
1
{

G(X(j)) ≤ kxi

m
and H(Y (j)) ≤ kyi

m

}

− 1√
k

C
(kxi

m
,
kyi

m

)

for all i = 1, . . . , t. Then IE(Z
(j)
i,m) = 0 for all i = 1, . . . , t. For every r, s ∈ {1, . . . , t}

m
∑

j=1

IE
(

Z(j)
r,m · Z(j)

s,m

)

=
m

k

{

IP
(

G(X(1)) ≤ k

m
min{xr, xs} and H(Y (1)) ≤ k

m
min{yr, ys}

)

−C

(

kxr

m
,
kyr

m

)

C

(

kxs

m
,
kys

m

)}

→ ΛL(min{xr, xs},min{yr, ys}) =: ar,s as m → ∞.

Notice that t C(xr/t, yr/t)C(xs/t, ys/t) → 0 as t → ∞. The matrix A = (ar,s)r,s=1,...,t is nonzero if

ΛL 6≡ 0 according to Theorem 1. Further, for Z
(j)
m = (Z

(j)
1,m, . . . , Z

(j)
t,m) and the Euclidian norm ||.||2

we have ||Z(j)
m ||22 =

∑t
i=1

(

Z
(j)
i,m

)2 ≤ t/k and thus

m
∑

j=1

∫

{||Z(j)
m ||2>ε}

||Z(j)
m ||22 dIP → 0 as m → ∞
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for every ε > 0. Therefore (αm(x1, y1), . . . , αm(xt, yt))
d→ (α(x1, y1), . . . , α(xt, yt)) ∼ N(0, A) with

A = (ar,s).

ii) (Tightness) First we prove tightness on [0,M ]2 for every fixed M ∈ IN via asymptotic
uniform equicontinuity in probability of αm, i.e, for each ξ > 0 and η > 0 there exist δ ∈ (0, 1) and
m0 ∈ IN such that

IP
(

sup
|x1 − x2|2 + |y1 − y2|2 < δ

xi, yi ∈ [0, M], i = 1, 2

|αm(x1, y1) − αm(x2, y2)| ≥ ξ
)

≤ η ∀m ≥ m0.

Note that αm belongs to the space of cádlág functions D(ĪR
2
+). It can be shown that the ball-

σ-field (with respect to the uniform metric on compacta) coincides with the projection σ-field in

the space D(ĪR
2
+) and therefore αm is measurable with respect to the ball-σ-field. This justifies

to take probability instead of outer probability (see the Appendix for more details) in the above
expression. Tightness is now shown by the following reasoning. Consider a partition of [0,M ]2 into
equally sized cubes Il,L with partition points (M · l1/L,M · l2/L), li ∈ {0, . . . , L}, L ∈ IN, i = 1, 2.
Then for arbitrary but fixed ξ > 0 and δ ∈ (0, 1) such that 1/L ≥ δ we obtain

IP
(

sup
|x1 − x2|2 + |y1 − y2|2 < δ

xi, yi ∈ [0, M], i = 1, 2

|αm(x1, y1) − αm(x2, y2)| ≥ ξ
)

≤ IP
(

3 max
1 ≤ li < L

i = 1, 2

sup
(x1

y1
),(x2

y2
)∈Il,L

|αm(x1, y1) − αm(x2, y2)| ≥ ξ
)

=: I1.

Without loss of generality we assume x1 < x2 and y1 < y2. Then,

I1 ≤
∑

1 ≤ li < L

i = 1, 2

{

IP
(

sup
(x1

y1
),(x2

y2
)∈Il,L

√
m

∣

∣

∣

1

m

m
∑

j=1

1{ kx1
m

<G(X(j))≤ kx2
m

and H(Y (j))≤ ky2
m

}

−C
((kx1

m
,
kx2

m

]

×
[

0,
ky2

m

])
∣

∣

∣
≥ 1

2

√
k√
m

ξ

3

)

+IP
(

sup
(x1

y1
),(x2

y2
)∈Il,L

√
m

∣

∣

∣

1

m

m
∑

j=1

1{G(X(j))≤ kx1
m

and ky1
m

<H(Y (j))≤ ky2
m

}

−C
([

0,
kx1

m

]

×
(ky1

m
,
ky2

m

])
∣

∣

∣
≥ 1

2

√
k√
m

ξ

3

)}

≤
2

∑

n=1

∑

1 ≤ li < L

i = 1, 2

c · exp

(

− η2kξ2

36mC(Ali,L
n,m)

· ψ
(

√
kη

mC(Ali,L
n,m)

)

)

=: I2,

where the constants c, η > 0 are independent of the other parameters, and

Ali,L
1,m :=

(

M
k(l1 − 1)

mL
,M

kl1
mL

]

×
[

0,M
kl2
mL

]

, and

Ali,L
2,m :=

[

0,M
k(l1 − 1)

mL

]

×
(

M
k(l2 − 1)

mL
,M

kl2
mL

]

.

The last inequality is due to Ruymgaart & Wellner (1982), Inequality 1.1. In particular the function
ψ : [−1,∞) → IR satisfies ψ(0) = 1, ψ(x) ∼ (2 log x)/x → 0 as x → ∞, ψ is decreasing and
continuous, and (·)ψ(·) is increasing. Observe that C(Ali,L

n,m) ≤ k
Lm for all li ∈ {1, . . . , L}, i = 1, 2.

Distinguish two cases: Either for m,L ∈ IN, n = 1, 2, and li ∈ {1, . . . , L}, i = 1, 2,

√
kη

mC(Ali,L
n,m)

≤ 1 or

√
kη

mC(Ali,L
n,m)

> 1.
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In the first case an upper bound is provided by

I2 ≤ 2L2c · exp
(

− η2ξ2

36
Lψ(1)

)

, L ∈ IN,

whereas in the second case we utilize the upper bound

I2 ≤ 2L2c · exp
(

− ηξ2

36

√
kψ(1)

)

→ 0 as m → ∞.

This immediately yields tightness on [0,M ]2 for every fixed M ∈ IN. Tightness on [0,M ] × {∞}
and {∞} × [0,M ] is shown along the same lines.

iii) According to part ii), Theorem 1.5.7 and Lemma 1.3.8 in Van der Vaart & Wellner (1996)
the sequence of restrictions αm|Ti

with Ti as defined in Definition 4 is asymptotically tight. This
follows because the limiting process GΛ̂∗

L
(x, y)|Ti

is tight in IR for every (x, y)′ ∈ Ti as its law is

a Borel probability-measure on a Polish space. Hence, the sequence of restrictions αm|Ti
weakly

converges to the tight limit GΛ̂∗
L
(x, y)|Ti

due to part i) and Theorem 1.5.4 in Van der Vaart &

Wellner (1996). Finally, weak convergence of αm in B∞(ĪR
2
+) is provided by Theorem 8. Continuity

of the sample paths in ĪR
2
+ follows according to the Addendum 1.5.8 in the latter reference.

The covariance structure (22) has been explicitly derived in part i).

Remark. If the tail copula is only defined on some subinterval of ĪR
2
+, the latter results hold only

on this subinterval of ĪR
2
+.

Theorem 5 (Asymptotic normality under unknown margins G and H) Let F be a distri-
bution function with continuous marginal distribution functions G and H. If the tail copulae ΛU 6≡ 0
and ΛL 6≡ 0 exist, possess continuous partial derivatives, and the Second order Condition 1 holds,
then for

√
kA(m/k) → 0 as m → ∞

√
k
{

Λ̂U,m(x, y) − ΛU (x, y)
} w→ GΛ̂U

(x, y) and
√

k
{

Λ̂L,m(x, y) − ΛL(x, y)
} w→ GΛ̂L

(x, y),

where GΛ̂U
(x, y) and GΛ̂L

(x, y) are centered tight continuous Gaussian random fields. Weak con-

vergence takes place in B∞(ĪR
2
+) and the limiting process GΛ̂L

(x, y) can be expressed by

GΛ̂L
(x, y) = GΛ̂∗

L
(x, y) − ∂

∂x
ΛL(x, y)GΛ̂∗

L
(x,∞) − ∂

∂y
ΛL(x, y)GΛ̂∗

L
(∞, y) (23)

with GΛ̂∗
L

established in Theorem 4. The same holds for GΛ̂U
replacing ΛL (and Λ̂∗

L) by ΛU (and Λ̂∗
U ).

Proof. The proof is given for the lower empirical tail copula as the upper empirical tail copula can
be treated similarly.

First we note that, in contrast to the estimator Λ̂∗
L,m(x, y), the estimator Λ̂L,m(x, y) contains

additional fluctuation which is due to the empirical marginal distributions. At the end of the
proof, however, we will see that Λ̂L,m(x, y) can be expressed as the value of a functional map φ

evaluated at the ’point’ Λ̂∗
L,m(x, y). Since we have already derived the asymptotic behavior of the

estimator Λ̂∗
L,m(x, y) in Theorem 4, we might thus apply a functional Delta method in order to

derive the asymptotic behavior of Λ̂L,m(x, y). In other words, a functional Delta method combined
with the appropriate mapping φ will yield the asymptotic results. The limiting process GΛ̂∗

L
(x, y)

from Theorem 4 will play a central role in this context.

The space of locally uniformly bounded real functions on compact sets of IR+ is denoted by
B∞(IR+); the appropriate metric is defined analogously to (31) given in the Appendix A.1. Let
BI(IR+) ⊂ B∞(IR+) denote the set of all nondecreasing functions ζ : IR+ 7→ IR+. Define the set

BI
∞(ĪR

2
+) := {γ ∈ B∞(ĪR

2
+) | γ(·,∞) ∈ BI(IR+) and γ(∞, ·) ∈ BI(IR+)}.

12



We apply the Delta method as stated in Theorem 9 in Appendix A.1 (with rm =
√

k(m) =
√

k)
to the following map

φ : BI
∞(ĪR

2
+) 7→ B∞(ĪR

2
+).

The Delta method involves a first-order Taylor approximation (in our particular functions space

B∞(ĪR
2
+)) evaluated at the (function) point ΛL(x, y) in ”direction” GΛ̂∗

L
(x, y).

For the precise definition of φ we need some additional notation: Let ζ− denote the adjusted
generalized inverse function of ζ ∈ BI(IR+) defined by

ζ−(p) :=

{

ζ−1(p) if ζ−1(p) < ∞,
limz→∞ ζ(z) if ζ−1(p) = ∞,

where ζ−1 refers to the generalized inverse function. Split the set ĪR
2
+ into three subsets S1 := IR2

+,

S2 := [0,∞)× {∞}, and S3 := {∞}× [0,∞). For some arbitrary function γ ∈ BI
∞(ĪR

2
+) the map φ

is defined for (x, y)′ ∈ S1 by

φ : γ(x, y)
φ17→ (γ(x, y), γ(x,∞), γ(∞, y))

φ27→ (γ(x, y), γ−(x,∞), γ−(∞, y))
φ37→ γ ◦ (γ−(x,∞), γ−(∞, y)),

for (x, y)′ ∈ S2 by

φ : γ(x, y)
φ17→ (γ(x, y), γ(x,∞), γ(x,∞))

φ27→ (γ(x, y), γ−(x,∞), γ−(x,∞))
φ37→ γ ◦ (γ−(x,∞),∞),

and for (x, y)′ ∈ S3 by

φ : γ(x, y)
φ17→ (γ(x, y), γ(∞, y), γ(∞, y))

φ27→ (γ(x, y), γ−(∞, y), γ−(∞, y))
φ37→ γ ◦ (∞, γ−(∞, y)).

The spaces C(ĪR
2
+) ⊂ B∞(ĪR

2
+) and C(IR+) ⊂ B∞(IR+) consist of all continuous functions in

B∞(ĪR
2
+) and B∞(IR+), respectively. In order to apply the Delta method we have to show that

the map φ is Hadamard-differentiable on BI
∞(ĪR

2
+) at γ0 = ΛL tangentially to C(ĪR

2
+) ⊂ B∞(ĪR

2
+).

Note that the Delta method (Theorem 9) involves a directional derivative on the function space

B∞(ĪR
2
+) where the ”direction” is a member of the function space C(ĪR

2
+) ⊂ B∞(ĪR

2
+).

Let us first outline the next steps: We will show that the map φ is Hadamard-differentiable by
proving that each intermediate map φ1, φ2 and φ3 is Hadamard-differentiable and finally applying
the chain rule for Hadamard-derivatives. Differentiability of φ1 and φ3 follows easily, but for φ2

we have to make an effort. Essentially we have to show that the adjusted generalized inverse map
γ(·,∞) → γ−(·,∞) is Hadamard-differentiable at the point ΛL(·,∞) and ΛL(∞, ·), respectively.
Differentiability will be proven directly by verifying the existence of the corresponding limit (cf. (32)
in Definition 5). The calculation depends crucially on the fact that differentiability is established
tangentially or directionally to a set of continuous functions, since we will need to work out a certain
form of uniform convergence/boundedness on compacta (convergence of functions).

i) The first map φ1 is Hadamard-differentiable on BI
∞(ĪR

2
+) at ΛL tangentially to C(ĪR

2
+) as it

is linear and continuous.

ii) The second map φ2 is Hadamard-differentiable on BI
∞(ĪR

2
+)×BI(IR+)×BI(IR+) at (ΛL, idIR+

, idIR+
)

tangentially to C(ĪR
2
+) × C(IR+) × C(IR+). Note that Hadamard differentiability of φ2 is equiva-

lent to Hadamard differentiability of the respective (vector) components of φ2. The first (vector)

component of φ2 is Hadamard-differentiable as it represents the identity map on BI
∞(ĪR

2
+). The sec-

ond and third (vector) components are Hadamard-differentiable because the adjusted generalized
inverse maps

γ(·,∞) → γ−(·,∞) and γ(∞, ·) → γ−(∞, ·)
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are Hadamard-differentiable on BI(IR+) at idIR+
tangentially to C(IR+) as we will show next. Note

that
γ0(·,∞) = γ0(∞, ·) = ΛL(·,∞) = ΛL(∞, ·) = idIR+

corresponds to the identity function on R+.

We restrict ourselves to the map γ(·,∞) → γ−(·,∞). Set γ̄0(·) := γ0(·,∞) = idIR+
. Consider

the sequence ht → h as t → 0 where h ∈ C(IR+) (i.e., h is a continuous function on IR+ and
ht ∈ B∞(IR+)) such that γ̄0 + tht ∈ BI(IR+) for every t . Let p ∈ IR+ then γ̄−

0 (p) = p. Abbreviate
(γ̄0 + tht)

−(p) to ξpt and notice that ξpt ∈ IR+. Setting εpt := t2 ∧ ξpt ≥ 0 yields for p ∈ [0,Mt)
with Mt := limz→∞(γ̄0 + tht)(z)

(γ̄0 + tht)(ξpt − εpt) ≤ p ≤ (γ̄0 + tht)(ξpt).

Further γ̄0(ξpt) = ξpt and γ̄0(ξpt − εpt) = ξpt − εpt for all p ∈ IR+. Thus it follows that

−th(ξpt) + o(t) ≤ ξpt − p ≤ −th(ξpt − εpt) + o(t), (24)

where the o(t)-terms are uniform in p ∈ [0,Mt). Note that Mt → ∞ as t → 0 because ht → h with
h ∈ C(IR+).

Finally, h(ξpt) → h(p) and h(ξpt − εpt) → h(p) uniformly in p ∈ IR+ because h is continuous
on R+ and ξpt → p uniformly in p ∈ IR+ on B∞(IR+). The last claim is proven if we show that
|ξpt − p| = O(t) uniformly in p on the interval [0, T ] for arbitrary but fixed T. According to (24), it
suffices to show that h(ξpt) is uniformly bounded on [0, T ]. However, the function h is continuous on
IR+, therefore, we must prove that ξpt is uniformly bounded on [0, T ]. This follows by the definition
of the adjusted generalized inverse function and the fact that ht → h as t → 0 (h is continuous) on
B∞(IR+).

Hence Hadamard differentiability of γ(·,∞) → γ−(·,∞) holds and its derivative at idIR+
is given

by the linear map h 7→ −h.

iii) The third map φ3 (composition map) is Hadamard-differentiable on BI
∞(ĪR

2
+) × BI(IR+) ×

BI(IR+) at (ΛL, idIR+
, idIR+

) tangentially to C(ĪR
2
+) × C(IR+) × C(IR+) according to Lemma 1

stated in the Appendix. Uniform Fréchet differentiability in Lemma 1 is implied by the continuous
partial derivatives of ΛL which yield (uniformly) continuous differentiability of ΛL with respect to
the metric (31), cf. Heuser (2000) , Satz 164.4, and Van der Vaart & Wellner (1996), Problem 1,
p.397.

iv) Hadamard differentiability of φ on BI
∞(ĪR

2
+) at γ0 = ΛL tangentially to C(ĪR

2
+) ⊂ B∞(ĪR

2
+)

follows now with the chain rule (Lemma 3.9.3. in Van der Vaart & Wellner (1996)).

v) The final steps link the Delta method to the desired weak convergence result. Note that

γ0(x, y) = ΛL(x, y) and the paths of Λ̂L,m(x, y) ∈ BI
∞(ĪR

2
+) can be (almost surely) decomposed into

Λ̂∗
L,m

(m

k
G

(

G−1
m

( k

m
x
))

,
m

k
H

(

H−1
m

( k

m
y
))

)

with m
k G

(

G−1
m

(

k
mx

))

and m
k H

(

H−1
m

(

k
my

))

being the adjusted generalized inverse functions (empir-

ical quantile functions) of the margins Λ̂∗
L,m(x,∞) and Λ̂∗

L,m(∞, y). In other words, we can apply

the Delta method as stated in Theorem 9 with the above defined map φ, rm =
√

k(m) =
√

k, θ =

ΛL(x, y), and Xm = Λ̂∗
L,m(x, y) (consult the latter theorem for the meaning of the respective vari-

ables). At this point we also use the fact that the limiting process X is known and corresponds to
GΛ̂∗

L
in Theorem 4.

The structure of the limiting process (23) follows from the Delta method (see Theorem 9 in
the Appendix). Recall that the Delta method involves a first-order Taylor approximation (in the

functions space B∞(ĪR
2
+)) evaluated at the (function) point ΛL(x, y) in ”direction” GΛ̂∗

L
(x, y). In

other words, GΛ̂∗
L
(x, y) serves as the direction of the directional derivatives which appears in the
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Delta method leading to the limiting process GΛ̂L
(x, y). The partial derivatives in formula (23)

belong to the gradient of ΛL(x, y) which arises from Lemma 1 stated in the Appendix (cf. proof
below). This Lemma basically transfers the chain rule for directional derivatives of the Euclidian
space to our function space (in the context of Hadamard differentiability tangentially or directionally
to a specific set, cf. Definition 5).

After some calculation we obtain that the derivative φ′
ΛL

of the map φ (at the point ΛL) is of
the form

φ′
ΛL

(γ)(x, y) = γ(x, y) − ∂

∂x
ΛL(x, y)γ(x,∞) − ∂

∂y
ΛL(x, y)γ(∞, y).

The latter formula utilizes the specific form of the Hadamard-derivative of the inverse operator
γ(·,∞) → γ−(·,∞) at idIR+

which is the linear map h → −h (cf. the derivative of the map
φ2). Further, the derivative of the map φ3 is derived via Lemma 1 with the following notation:
α(x, y) = (γ(x,∞), γ(∞, y)) and β(x, y) = γ(x, y). The latter derivative is then evaluated at the
points B(x, y) = Λ(x, y) and A(x, y) = (Λ−(x,∞),Λ−(∞, y)) = (idIR+

, idIR+
). Finally we apply the

chain rule as stated in Lemma 3.9.3 in Van der Vaart & Wellner (1996). The evaluation of the
derivative φ′

ΛL
in ”direction” of the process GΛ̂∗

L
finalizes the proof.

Theorem 6 (Strong consistency) Let F be a distribution function with continuous marginal
distribution functions G and H. If the tail copulae ΛU 6= 0 and ΛL 6= 0 exist and k/ log log m → ∞
as m → ∞ then Λ̂U,m converges almost surely to ΛU and Λ̂L,m converges almost surely to ΛL in

the space B∞(ĪR
2
+) (equipped with the metric d as in (31)) In particular

IP
(

lim
m→∞

d(Λ̂U,m,ΛU ) = 0
)

= 1 and IP
(

lim
m→∞

d(Λ̂L,m,ΛL) = 0
)

= 1. (25)

Proof. The proof is provided for the upper tail copula. Recall that a sequence converges in the

space B∞(ĪR
2
+) with respect to the metric d (cf. (31)) if the sequence converges uniformly on

each compact subset Ti introduced in Definition 4. Let T > 0 be an arbitrary but fixed constant.
The conclusion follows now with the strong consistency result for empirical stable tail-dependence
functions given in Theorem 1.1 in Qi (1997) and the relationship ΛU (x, y) = x+y− l(x, y). Further,
we utilize the fact that

|Λ̂U,m(x, y) − ΛU (x, y)| =
∣

∣

∣

1

k

m
∑

j=1

1{R
(j)
m1>m−kx and R

(j)
m2>m−ky} − ΛU (x, y)

∣

∣

∣
≤

≤
∣

∣

∣

1

k

m
∑

j=1

1{R
(j)
m1>m−kx or R

(j)
m2>m−ky} − l(x, y)

∣

∣

∣

+
∣

∣

∣

1

k

m
∑

j=1

1{R
(j)
m1>m−kx} − x

∣

∣

∣
+

∣

∣

∣

1

k

m
∑

j=1

1{R
(j)
m2>m−ky} − y

∣

∣

∣

≤
∣

∣

∣

1

k

m
∑

j=1

1{R
(j)
m1>m−kx or R

(j)
m2>m−ky} − l(x, y)

∣

∣

∣
+

2

k
.

The proof for the lower tail copula is similar.

Corollary 1 (Asymptotic normality of λ̂U,m and λ̂L,m) With the prerequisites of Theorem 5

√
k
{

λ̂U,m − λU

} d→ N0,σ2
U

and
√

k
{

λ̂L,m − λL

} d→ N0,σ2
L
,

where N0,σ2
L

and N0,σ2
U

are centered Gaussian random variables with variances

σ2
L = λL +

( ∂

∂x
ΛL(1, 1)

)2

+
( ∂

∂y
ΛL(1, 1)

)2

(26)

+ 2λL

(( ∂

∂x
ΛL(1, 1) − 1

)( ∂

∂y
ΛL(1, 1) − 1

)

− 1
)
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and analogue variance σ2
U .

Proof. Note that e.g. for the lower tail copula ΛL we know from Theorem 5 that

IEG
2
Λ̂L

(x, y) = ΛL(x, y) +
( ∂

∂x
ΛL(x, y)

)2

x +
( ∂

∂y
ΛL(x, y)

)2

y

+ 2ΛL(x, y)
(( ∂

∂x
ΛL(x, y) − 1

)( ∂

∂y
ΛL(x, y) − 1

)

− 1
)

.

Remarks. i) From formula (26) it becomes clear that the local behavior of the tail copula at

the point (1, 1) determines the asymptotic variance of λ̂U,m and λ̂L,m. Thus, the embedding of the
tail-dependence coefficients into the concept of tail copulae was necessary in order to obtain the
above corollary.

ii) A sole consideration of the tail copula at the point (1, 1), as it is the case for the tail-
dependence coefficient by Definition 2, should be considered with care. Although the (tail) copula
is invariant with respect to scaling or any strictly increasing transformation of the marginal dis-
tributions of X and Y, the point Λ(1, 1) only determines the tail copula on its diagonal (by the
homogeneity property).

Example. To illustrate the previous results we calculate the tail copula ΛL and the asymptotic
variance σ2

L in (26) for the well-known Pareto copula.

The Pareto copula C(u, v) is given by

C(u, v) = max
(

[u−θ + v−θ − 1]−1/θ, 0
)

, θ ∈ [−1,∞)\{0}.

It can be shown that the Pareto copula is lower tail-dependent with lower tail-dependence coefficient
λL = 2−1/θ for θ > 0. Further, the lower tail copula exists for θ > 0 and can be expressed by

ΛL(x, y) =
(

x−θ + y−θ
)−1/θ

.

Thus, the partial derivatives are

∂

∂x
ΛL(x, y) =

(

x−θ + y−θ
)−((1/θ)+1)

x−(θ+1) and
∂

∂y
ΛL(x, y) =

(

x−θ + y−θ
)−((1/θ)+1)

y−(θ+1).

Consequently, the asymptotic variance σ2
L in (26) is given by (see also Figure 1)

σ2
L(θ) = 2−1/θ − 3

2
4−1/θ +

1

2
8−1/θ. (27)

As often in nonparametric statistics the asymptotic variance of e.g. λ̂L,m depends on the
derivative of an unknown function and has to be estimated. In our case one could estimate the
derivatives of the tail copula by some smoothing method, but since we do not have too many
data in the tails, we do not recommend this. An alternative and appealing method is to find a
simple but flexible parametric copula as the Pareto copula, calculate its tail copula, and utilize the
corresponding variance functional σ2

L(θ) as an approximation for the unknown asymptotic variance.
In the simulation study we applied the proposed method and estimated σ2

L(θ) = 2−1/θ − 3
24−1/θ +

1
28−1/θ via σ2

L(θ̂), where we replaced θ by the MLE θ̂. Several simulation results are explained in
Section 7.

6 General rank order statistics for extreme events

In the present section we extent the main asymptotic results (stated in Theorem 5) in the framework
of general rank order statistics of extreme events. We restrict ourselves to the lower tail copula ΛL.
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Figure 1: Lower tail-dependence coefficient λL(θ) (left plot) and corresponding asymptotic variance
σ2

L(θ) as in formula (26) (right plot) for the Pareto copula.

Rank order statistics of the type

1

m

m
∑

j=1

J
(

R
(j)
m1/m,R

(j)
m2/m

)

=
1

m

m
∑

j=1

J(Gm(X(j)),Hm(Y (j))) (28)

have been investigated, for example, by Ruymgaart, Shorack & van Zwet (1972), Ruymgaart (1974)
and Rüschendorf (1976). Recently, Fermanian et al. (2004) considered general rank order statistics
in the framework of empirical copula processes.

In the context of (lower) tail copulae, a similar family of multivariate (lower) rank order statistics
can be investigated:

Rm :=
1

k

m
∑

j=1

J
(

R
(j)
m1/k,R

(j)
m2/k

)

.

In this formula the function J is defined on ĪR
2
+, whereas in formula (28) the function J has

domain [0, 1]2. The next theorem establishes asymptotic normality of Rm under certain regularity
assumptions on J.

Theorem 7 Let F be a distribution function with continuous marginal distribution functions G and
H. Suppose that the (lower) tail copula ΛL 6≡ 0 exists and possesses continuous partial derivatives.

Assume that J : ĪR
2
+ → IR is of bounded variation, continuous from above with discontinuities of

the first kind Neuhaus (1971), and bounded on ĪR
2
+. Then

1√
k

m
∑

j=1

(

J
(R

(j)
m1

k
,
R

(j)
m2

k

)

− IEJ
(m

k
G(X(j)),

m

k
H(Y (j))

)

)

w→
∫

ĪR2
+

GΛL
(x, y)dJ(x, y), (29)

where GΛL
equals the limiting process in Theorem 5 and weak convergence takes place in B∞(ĪR

2
+).

Moreover, the limiting process is also a centered Gaussian field.

Proof. With the stated prerequisites we have

1√
k

m
∑

j=1

(

J
(R

(j)
m1

k
,
R

(j)
m2

k

)

− IEJ
(m

k
G(X(j)),

m

k
H(Y (j))

)

)

=
m√
k

∫

[0,1]2
J
(m

k
u,

m

k
v
)

d(Čm − C)(u, v) =: I1,
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where Čm(u, v) = 1
m

∑m
j=1 1{Gm(X(j))≤u and Hm(Y (j))≤v} denotes the modified empirical copula pro-

cess. Utilizing the integration by parts formula, given in Baron, Liflyand & Stadtmüller (2000),
yields

I1 =

∫

[0,1]2

m√
k

(

(Čm − C)(u−, v−)
)

dJ
(m

k
u,

m

k
v
)

−
∫

[0,1]

m√
k

((Čm − C)(u−, 1))dJ
(m

k
u, 1

)

−
∫

[0,1]

m√
k

((Čm − C)(1, v−))dJ
(

1,
m

k
v
)

=: I2.

Substituting x =
m

k
v and y =

m

k
u provides

I2 =

∫

[0,m/k]2

m√
k

(

(Čm − C)
( k

m
x−,

k

m
y −

))

dJ(x, y)

−
∫

[0,m/k]

m√
k

(

(Čm − C)
( k

m
x−, 1

))

dJ(x, 1)

−
∫

[0,m/k]

m√
k

(

(Čm − C)
(

1,
k

m
y −

))

dJ(1, y) =: I3.

Notice that

m√
k

(

(Čm − C)(
k

m
x−, 1)

)

=
√

k
(

Λ̂L,m(x−,∞) − x
)

=
√

k
(1

k
[kx−] − x

)

∈ [0, 1/
√

k].

Thus, m√
k

(

(Čm − C)(
k

m
x−, 1)

)

= O
( 1√

k

)

.

The expression m√
k

(

(Čm − C)(1, k
my−)

)

possesses the same property. Therefore, the continuous

mapping theorem (Van der Vaart & Wellner (1996), Theorem 1.3.6) leads to

I3
w→

∫

ĪR2
+

GΛL
(x−, y−)dJ(x, y) =

∫

ĪR2
+

GΛL
(x, y)dJ(x, y)

which is centered Gaussian.

7 Simulation and empirical study

The simulation study aims at three different types of questions. First, we analyze the finite-sample
behavior of the nonparametric estimators for the (lower or upper) tail-dependence coefficient (in
short: TDC) which have been considered in Section 4. Second, we construct asymptotic confidence
intervals related to one particular TDC estimator and discuss the applicability of the proposed
approximation method. Finally, we investigate the finite-sample behavior of the nonparametric
estimator for the tail copula, i.e., the empirical tail copula. Moreover, the TDCs and the tail
copulae are estimated for two financial time series.

7.1 Comparison of nonparametric TDC estimators

Consider 1000 independent copies of m = 500, 1000, 2000 iid pseudo-random vectors which are
generated from a bivariate standard t-distribution with ν = 1.5, 2, 3 degrees of freedom, i.e., a
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spherically contoured t-distribution with density generator g(u) = c (1+u/ν)−(1+ν/2) (for a detailed
discussion of the latter and various applications to finance we refer to Bingham, Kiesel & Schmidt
(2003)). We restrict ourselves to the estimation of the upper TDC. The empirical bias and mean-
squared error (MSE) for all implemented TDC estimations are derived and presented in Tables 1
and 2.

Table 1: Sample-bias and MSE for the nonparametric upper TDC estimator λ̂U (For notational
convenience we drop the index m representing the sample length).

Original ν = 1.5 ν = 2 ν = 3
parameters λU = 0.2296 λU = 0.1817 λU = 0.1161

Estimator λ̂U λ̂U λ̂U

Bias (MSE) Bias (MSE) Bias (MSE)

m = 500 0.0255 (0.00369) 0.0434 (0.00530) 0.0718 (0.00858)
m = 1000 0.0151 (0.00223) 0.0287 (0.00306) 0.0518 (0.00466)
m = 2000 0.0082 (0.00149) 0.0191 (0.00169) 0.0369 (0.00270)

Table 2: Sample-bias and MSE for the nonparametric upper TDC estimator λ̂EV T
U (For notational

convenience we drop the index m representing the sample length).

Original ν = 1.5 ν = 2 ν = 3
parameters λU = 0.2296 λU = 0.1817 λU = 0.1161

Estimator λ̂EV T
U λ̂EV T

U λ̂EV T
U

Bias (MSE) Bias (MSE) Bias (MSE)

m = 500 0.0539 (0.00564) 0.0703 (0.00777) 0.1031 (0.01354)
m = 1000 0.0333 (0.00301) 0.0491 (0.00437) 0.0748 (0.00744)
m = 2000 0.0224 (0.00173) 0.0329 (0.00228) 0.0569 (0.00436)

We conclude that the TDC estimator λ̂U outperforms the estimator λ̂EV T
U with respect to the

sample-bias and MSE. For example, for m = 2000 the bias of λ̂EV T
U is two times larger than the

bias of λ̂U whereas the MSE is one and a half times larger. The larger bias of λ̂EV T
U reflects the

additional uncertainty induced by the unknown marginal distribution functions. Regarding the
finite-sample variances, both types of estimators behave similarly. Further we observe that the
empirical bias and variance decrease with increasing sample size m. Moreover, the bias of the latter
estimators increases with growing correlation.

Choosing the threshold k. The algorithm to choose the threshold k utilizes the homogeneity
property of tail copulae as stated in Theorem 1 part ii) which corresponds to a balancing of the
variance-bias problem. For sufficiently large data sets, this homogeneity property transfers to the
nonparametric estimators yielding a characteristic plateau while plotting the estimates for successive
k (cf. the well-known Hill plot for the Hill estimator). The optimal threshold k is now estimated
via a simple plateau-finding algorithm after smoothing the latter plot by some box kernel. The
results of the proposed algorithm are quite satisfying according to our simulation study.

7.2 Confidence intervals

Recall the discussion at the end of Section 5: The estimation of the asymptotic variance or standard
deviation of λ̂L (and λ̂U ) depends on the parameters λL (and λU ) itself and involves certain deriva-
tives of the tail copula. We restrict ourselves to the lower TDC λL. Unfortunately the estimation of
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the latter derivatives turns out to be quite sensitive. Therefore, for arbitrary copulae we proposed
to construct an approximation σL(θ) of the true asymptotic standard deviation σL via formula (27).

The parameter θ is received from an ML-fitted Pareto copula, i.e., we utilize σL(θ̂) where θ̂ denotes
the ML-estimate of θ. The quality of the approximation is investigated for the t-copula.

Consider 200 independent copies of m = 500 iid pseudo-random vectors which are generated
from a bivariate t-copula with various parameters ν and correlation coefficient ρ = 0.25. The
corresponding sample-means of the nonparametric estimator λ̂L and the approximated confidence
intervals are presented in Figure 2. The threshold k is chosen according to the plateau algorithm
described above. Note that there is an increasing bias for larger values of the parameters ν which
results in an asymmetric confidence band. The estimation improves (in the sense of a smaller sample
bias) with increasing sample size. The results are characteristic for all other estimations which we
have not listed in this work.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.1

0.2

0.3

0.4

0.5

0.6

True lower TDC (t-copula)
Nonparametric TDC  (samplesize: 500)
Lower and upper CI bound  (samplesize: 500)

ν

Figure 2: True lower TDC for the t-copula for various parameters ν and correlation coefficient
ρ = 0.25, the corresponding sample-means of the nonparametric estimator λ̂L, and the sample-
means of the approximated confidence intervals (confidence level α = 0.05) for sample size m = 500.

The quality of the approximation of the true confidence interval is illustrated in Table 3. For
almost all parameter constellations ν, the sample-means of the approximated asymptotic standard
deviations are below the corresponding sample standard deviations σ̂L which are disturbed by the
sample-bias. The last column of Table 3, which represents the percentage of the approximated
confidence intervals containing the real TDC, shows very satisfying results. These results justify
the usage of the approximated asymptotic standard deviation σL(θ) even if the copula is not the
Pareto copula. Note that an increasing correlation ρ deteriorates the latter results because of the
increasing bias of the nonparametric TDC estimator. However, for most applications (especially in
finance) a correlation of ρ = 0.25 is quite common. A sensitivity analysis regarding different choices
of the threshold k has been also implemented. However, it has been omitted in order to shorten
the presentation and can be obtained from the authors on request.

7.3 Estimation of the tail copula

So far we have concentrated on estimating the TDC via the nonparametric estimators λ̂L and λ̂U

given in (16). Now we turn to the estimation of the entire tail copula utilizing the proposed non-
parametric estimators. More precisely, we consider the estimation of the lower tail copula belonging
to a Pareto copula via the estimator Λ̂L(x, y) stated in (12). For the simulation experiment we uti-
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Table 3: Various estimation results using simulated data generated from a bivariate t-copula with
various parameters ν and correlation coefficient ρ = 0.25 (the confidence level is α = 0.05).

ν λL mean(λ̂L) σ̂L mean(σ(θ̂)) % of λL ∈
[λ̂L ± 1.64σL(θ̂)√

k
]

0.2 0.532 0.523 0.43 0.433 1
0.3 0.51 0.506 0.444 0.416 0.974
0.4 0.489 0.483 0.466 0.371 0.954
0.6 0.452 0.44 0.427 0.349 0.966
0.8 0.418 0.411 0.47 0.343 0.921
1 0.388 0.384 0.458 0.34 0.923

1.2 0.36 0.366 0.428 0.328 0.968
1.4 0.335 0.351 0.421 0.339 0.964
1.6 0.312 0.327 0.423 0.33 0.976
1.8 0.291 0.318 0.44 0.313 0.939
2 0.272 0.305 0.424 0.311 0.948

lize 200 independent copies of 500 iid pseudo-random vectors which are generated from a bivariate
Pareto copula with parameter θ = 1. The estimation results are presented in Figure 3.

For reasons of comparability we chose a fixed threshold k for the tail-copula estimation (which
we estimated for x = y = 1 according to the described plateau algorithm). The above estimation
of the nonparametric tail copula yields very satisfying results for x, y ≤ 1.2. For larger arguments x
and y, the increasing bias results from the fixed threshold choice. A more flexible threshold choice
improves these results.
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Figure 3: Left: True lower tail copula of the Pareto copula with parameter θ = 1. Right: Mean-
bias of nonparametric estimates Λ̂L(x, y) for 200 samples of a Pareto copula with parameter θ = 1
and sample size 500.

A particular point of interest concerns the estimation of the tail copula in case the data result
from a tail-independent random vector. Below we consider data which are generated from a bivariate
normal distribution (with correlation coefficients ρ = 0 and ρ = 0.25) which is known to be tail
independent, cf. Schmidt (2002). The left picture in Figure 4 reveals that in case of the standard
normal distribution (copula) the tail-copula estimates are performing well. Usually the tail-copula
estimates are more volatile in the case of tail independence in comparison to tail dependence.
Consider, for example, the single realization of the tail-copula estimator for the normal distribution
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with ρ = 0.25 in the right picture of Figure 4.

Thus our simulations point out that in addition to solely glancing on the TDC the estimation
of the tail copula helps a lot to decide whether data are tail dependent or not.
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Figure 4: Left: Mean of nonparametric estimates Λ̂L(x, y) for 200 samples of a data set of sample
size 500 generated from a bivariate standard normal distribution. Right: Specific nonparametric
estimate Λ̂L(x, y) for a data set of sample size 500 generated from a normal distribution with
parameter ρ = 0.25.

7.4 Application to financial data

The present section reveals that tail dependence is indeed often found in financial data. Provided are
two bivariate series of daily negative log-returns of financial securities and the corresponding upper
TDC-estimate λ̂U for various k (again, for notational convenience we drop the index m representing
the sample size). Data set D1 contains negative daily stock log-returns of BMW and Deutsche Bank
for the time period 1993-2002 and data set D2 consists of negative daily exchange-rate log-returns
of DM-USD and Yen-USD for the time period 1989-2002. For modelling reasons we assume that the
daily log-returns are iid observations (which usually cannot be rejected for extreme returns). Plot 5
shows the presence of tail dependence and the order of magnitude of the tail-dependence coefficient.
Moreover, the typical variance-bias problem for various threshold values k can be observed, too. In
particular, a small k comes along with a large variance of the TDC estimate, whereas an increasing
k results in a strong bias. The threshold k is chosen according to the plateau-finding algorithm
described in Section 7.1. Thus for the data set D1 the algorithm takes k between 80 and 110 which
provides a TDC estimate of λ̂U,D1

= 0.31, whereas for D2 we obtain λ̂U,D2
= 0.14.

One application of TDC estimations is given within the Value at Risk (VaR) framework of
asset portfolios. VaR calculations relate to high quantiles of portfolio-loss distributions and asset
return distributions, respectively. In particular, VaR estimations are highly sensitive towards the
tail behavior and the tail dependence of the portfolio’s asset-return distribution. Fitting the asset-
return random vector towards a multidimensional distribution while utilizing a TDC estimation
leads to more accurate VaR estimates (Schmidt 2005). Observe that upper tail-dependence for a
random vector (X1,X2)

′ is equivalent to

λU = lim
α→0

IP(X2 > VaR1−α(X2)|X1 > VaR1−α(X1)) > 0. (30)

Finally, in Figure 6 we provide the estimation of the tail copula related to both financial data
sets.
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Figure 5: Scatter plot of BMW versus Dt. Bank negative daily stock log-returns (2325 data points)

and the corresponding TDC estimates λ̂U for various k.
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Figure 6: Left: Nonparametric tail-copula estimate Λ̂L(x, y) for negative daily stock log-returns
of BMW versus Dt. Bank. Right: Nonparametric tail-copula estimate Λ̂L(x, y) for negative daily
exchange-rate log-returns of DM-USD versus Yen-USD.

8 Conclusions

Summarizing the results, we presented the concept of tail copulae to model extremal dependencies
between random variables. It was shown that tail copulae have several analogies to ordinary cop-
ulae. Further, we provided nonparametric estimators for the tail copula and the tail-dependence
coefficient, and we established the asymptotic normality and strong consistency. A simulation study
illustrated that the finite sample behavior of these estimators is satisfying. Among other results,
our simulations pointed out that, in addition to solely exploring the tail-dependence coefficient, the
estimation of the tail copula helps a lot to decide whether data are tail dependent or not.
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A Appendix

A.1 The space B∞(ĪR
2
+) and the Delta method

The present section defines the function space B∞(ĪR
2
+) and introduces the appropriate concept

of weak convergence. We equip the space with some metric and establish necessary and sufficient
conditions for weak convergence. The latter space is very suitable for empirical tail copulae. Further,
a general Delta method is formulated which we utilize in order to prove the main asymptotic results.

Consider the metric spaces (ID, d) and (IE, e). Concepts of weak convergence and almost-sure
convergence are traditionally applied to Borel probability measures defined on some space (ID,D)
with D denoting the Borel σ-field of ID; see for example Billingsley (1968), p.68. In particular, D
is the smallest σ-field generated by the open sets. However, in the context of empirical tail copulae
which are defined in some space (ID,D), these concepts have to be modified as no probability
measures can be established on the corresponding Borel σ-field D. Loosely speaking, the Borel σ-
field turns out to be too large. This problem arises also for general empirical processes, and several
solutions have been proposed in the literature. First, one could restrict to a smaller σ-field like the
ball σ-field DB , and define weak convergence on the new space (ID,DB); see for instance Dudley
(1966), Dudley (1967) and Pollard (1984). Second, the metric d could be adjusted in such a way
that the classical theory is still applicable. A famous example represents the Skorokhod metric on
the càdlàg space D[0, 1]; see Skorokhod (1956). For our purpose the concepts of weak convergence
and almost-sure convergence defined by outer expectations are appropriate. A good reference for
this theory is the book by Van der Vaart & Wellner (1996).

Definition 3 (Weak convergence with respect to outer expectations)
Let Y be an arbitrary (not necessarily measurable) map from a probability space (Ω,A, IP) to the
extended real line ĪR. The outer integral of Y with respect to the probability measure IP is defined as

IE∗Y = inf{IEU : U ≥ Y,U : Ω → ĪR measurable and IEU exists}.

For each m ≥ 1, let Xm be an arbitrary (not necessarily measurable) map from a probability space

(Ωm,Am, IPm) to a metric space (ID, d). Then, Xm is said to converge weakly (
w→) to a Borel-

measurable map X, if
IE∗f(Xm) → IEf(X) for every f ∈ Cb(ID),

where Cb(ID) denotes the set of all bounded, continuous and real functions on ID.

The main advantage of Definition 3 in general empirical processes theory arises from the fact
that classical theorems like the continuous mapping theorem and Prohorov’s theorem can be es-
tablished in the new setting; see Van der Vaart & Wellner (1996). Once the latter theorems are
established, the convergence theory becomes less technical like for instance a multidimensional
Skorokhod construction, as in Neuhaus (1971).

In order to define the space B∞(ĪR
2
+) together with an appropriate metric we need some more

notation: The space l∞(T ) for an arbitrary set T is defined as the set of all uniformly bounded,
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real functions on T, i.e. all functions f : T → IR such that

||f ||T := sup
t∈T

|f(t)| < ∞.

Consequently, the uniform distance on l∞(T ) is defined by

d(f1, f2) = ||f1 − f2||T .

The stochastic processes {Xm(t) : t ∈ T} considered below will have their sample paths in l∞(T )

if T is a compact subset of ĪR
2
+. If not stated otherwise, T will always denote a compact subset of

ĪR
2
+.

The space l∞(T ) will be equipped with the corresponding Borel σ-field. The only measurability
we require for Xm is the measurability of the maps Xm(t) : Ωm → IR, t ∈ T (this means that Xm(t)
is a random variable for each fixed t ∈ T , cf. Pollard (1984)); a rather weak condition. However,
the limiting process X which turns out to be a continuous Gaussian process is a Borel measurable
map X|T : Ω → C(T ) as the space C(T ) of all continuous real function is a separable and complete
subspace of l∞(T ) with respect to the uniform metric. Moreover, it can be shown that the Borel
σ-field of C(T ) correspond to the related projection σ-field.

We are ready to define the metric space B∞(ĪR
2
+).

Definition 4 The space B∞(ĪR
2
+) is defined as the family of all functions f : ĪR

2
+ → IR which

are locally uniformly-bounded on every compact subset of ĪR
2
+ (but not necessarily on ĪR

2
+). Then,

B∞(ĪR
2
+) is a complete metric space under the metric

d(f1, f2) =

∞
∑

i=1

2−i(||f1 − f2||Ti
∧ 1) (31)

with T3i = T3i−1∪[0, i]2, T3i−1 = T3i−2∪([0, i]×{∞}), T3i−2 = T3(i−1)∪({∞}×[0, i]) ⊂ ĪR
2
+, i ∈ IN,

and T0 = ∅. Thus a sequence of elements in B∞(ĪR
2
+) converges in this metric if it converges

uniformly on each Ti.

Remark. The space B∞(ĪR
n
+) is defined analogously to B∞(ĪR

2
+).

The following theorem is fundamental for our purposes. A proof can be found in Van der Vaart
& Wellner (1996), Theorem 1.6.1.

Theorem 8 For each m ≥ 1, let Xm : Ωm → B∞(ĪR
2
+) be an arbitrary map. Then the sequence Xm

converges weakly to a tight limit if and only if every sequence of restrictions Xm|Ti
: Ωm → l∞(Ti)

converges weakly to a tight limit.

The Delta method, cf. Casella & Berger (2002), Section 5.5.4, is a well-known technique in
statistics to prove results about the asymptotic normality of functionals of estimators. In the
context of tail copulae we need a quite general version of the Delta method. For this, the notion
of Hadamard differentiability is useful. Let (ID, d) and (IE, e) be metrizable or topological vector
spaces, in particular vector addition and scalar multiplication are continuous operations.

Definition 5 (Hadamard differentiability) A map φ : IDφ ⊂ ID → IE is called Hadamard-
differentiable at θ ∈ IDφ if there exists a continuous linear map φ′

θ : ID → IE such that

φ(θ + tmhm) − φ(θ)

tm
→ φ′

θ(h), as m → ∞, (32)

for all converging sequences tm → 0 and hm → h such that θ + tmhm ∈ IDφ for all m. Further,
φ : IDφ ⊂ ID → IE is called Hadamard-differentiable tangentially to a set ID0 ⊂ ID by requiring that
hm → h with h ∈ ID0. In that case the derivative φ′

θ needs only be defined on ID0.
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Note that IDφ is allowed to be any arbitrary subset of ID; this fact turned out to be important
in our elaborations.

Theorem 9 (Delta method) Let φ : IDφ ⊂ ID → IE be Hadamard-differentiable at θ tangentially

to ID0. Suppose Xm : Ωm → IDφ are (not necessarily measurable) maps with rm(Xm − θ)
w→ X for

some sequence of constants rm → ∞, where X : Ω → IDφ is separable. Then

rm

(

φ(Xm) − φ(θ)
) w→ φ′

θ(X).

For details we refer the reader to Van der Vaart & Wellner (1996), p.374.

A.2 Hadamard differentiability

The proof of Theorem 5 (asymptotic normality of the empirical tail copula) in Section 5 requires
the following lemma. The lemma is stated in the original version as provided in Van der Vaart
& Wellner (1996), p.388. However, in our context, the space of uniformly bounded real function
l∞(T ) has to be substituted by the appropriate space of locally uniformly bounded real functions
on compact sets; likewise the corresponding metrics.

Let Y and Z be subsets of normed spaces. Consider the maps A : X 7→ Y and B : Y 7→ Z which
define the composition map Φ(A,B) : X 7→ Z via

Φ(A,B)(x) = B ◦ A(x) = B(A(x)).

If B is a uniformly norm-bounded map from Y 7→ Z, then Φ(A,B) is a uniformly norm-bounded
map from X 7→ Z. Consider now Φ as a map with domain l∞(X )× l∞(Y) equipped with the norm
||(A,B)||∞ = supx ||A(x)||Y ∨ supy ||B(y)||Z .

Lemma 1 Suppose B : Y 7→ Z is Fréchet-differentiable uniformly in y in the range of A with
derivatives B′

y such that y 7→ B′
y is uniformly norm-bounded. Then the composition map Φ :

l∞(X )×l∞(Y) 7→ l∞(X ) is Hadamard-differentiable at (A,B) tangentially to the set l∞(X )×UC(Y)
(UC(T ) denotes the space of uniformly continuous function from T to IR). The derivative is given
by

Φ′
A,B(α, β)(x) = β ◦ A(x) + B′

A(x)

(

α(x)
)

, x ∈ X .
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