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Abstract

In this paper we compare alternative estimation approaches for factor aug-
mented panel data models. Our focus lies on panel data sets where the
number of panel groups (V) is large relative to the number of time peri-
ods (T). The Principal Component (PC) and Common Correlated Effects
(CCE) estimators were originally developed for panel data with large N
and T', whereas the GMM approaches of Ahn et al. (2013) and Robert-
son and Sarafidis (2015) assumes that 7 is small (that is T is fixed in
the asymptotic analysis). Our comparison of existing methods addresses
three different issues. First, we analyze the possibility of an inappropriate
normalization of the factor space (the so-called normalization failure). In
particular we propose a variant of the CCE estimator that avoids the nor-
malization failure by adapting a weighting scheme inspired by the analysis
of Mundlak (1978). Second, we demonstrate how the design of the Monte
Carlo simulations favors some estimators, which explains the conflicting
findings from existing Monte Carlo experiments. Third, we analyze the

effects of estimating versus fixing the number of factors in advance.
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1 Introduction

The seminal work of Holtz-Eakin et al. (1988) has provided two important contri-
butions to the statistical analysis of panel data. First, it proposes a GMM frame-
work for estimating dynamic panel data models that were further developed and
popularized by Arellano and Bond (1991). This approach has become standard
in the dynamic analysis of panel data. The second contribution, the introduction
of time varying individual effects, was less influential and went largely unnoticed
for many years. For example, the excellent monograph of Baltagi (2005) — as
all other textbooks on panel data analysis of the early 2000s — does not consider
time varying individual effects or any other factor structure. Bai (2009) pointed
out that time varying individual effects are just a special case of a factor struc-
ture and provided a general framework for estimating a panel data model with
“interactive fixed effects”, which is also referred to as the factor-augmented panel
data model.

With the work of Ahn et al. (2001, 2013), Pesaran (2006), and Bai (2009) the
interest in models that account for time varying heterogeneity and cross-section
correlation surged considerably and the 25th International Conference on Panel
Data in Vilnius 2019 included a large number of papers dealing with factor-
augmented panel data models. In empirical practice, the Common Correlated
Effects (CCE) approach proposed by Pesaran (2006) has recently become very
popular among empirical researchers. This is due to the fact that this estimator is
easy to understand and implement, a STATA routine (xtmg) and a Gretl add-on
(xtesd) is available and it performs well in Monte Carlo studies. It is however not
clear, whether the CCE approach is similarly attractive in empirical applications
where the number of time periods 7' is small (say 5 — 15). Ahn et al. (2013)
and Robertson and Sarafidis (2015) proposed a GMM approach that is shown to
be consistent for finite 7', whereas the CCE and the Principal Component (PC)
estimator were developed for samples with large 7" and N. Su and Jin (2012)
and Westerlund et al. (2019) showed that the CCE approach is consistent and
asymptotically (mixed) normal if T is fixed and N — oo, whereas the consistency
of the PC estimator requires quite restrictive assumptions (such as i.i.d. errors
across time) in this case. It is however not clear how large 7" should be in order
to ensure reliable estimation and inference.

An important assumption for the CCE estimator is that the (weighted) mean



of the factor loadings is different from zero. This assumption is difficult to verify
as the factors loadings are typically unknown. Furthermore, we show that the
CCE estimator is already biased if the mean of the factor loadings is O(N~1/2).
To escape such a “normalization failure”, we suggest a data dependent weighting
scheme that is inspired by the Mundlak (1978) approach. In our Monte Carlo
simulations we show that this simple weighting scheme performs well, whenever
the original CCE estimator suffers from a normalization failure.

The rest of the paper is organized as follows. Section 2 compares the exist-
ing estimation methods and Section 3 reviews and complements the asymptotic
results for fixed T and N — oo. Possible problems with the normalization of
the estimators are analyzed in Section 4. An extension to multiple factors is
considered in Section 5 and empirical approaches for selecting the number of
common factors are examined in Section 6. We argue that popular selection
rules for the number of factors are generally inconsistent if 7" is fixed. The small
sample properties of alternative estimation procedures are investigated in Section
7. Specifically, we illustrate the detrimental effect of a normalization failure and
demonstrate the robustness of the Mundlak type CCE estimator. Furthermore,
we investigate the effects of estimating the number of factors on the performance
of the estimation procedures. Finally, we employ three general model setups from
the literature in order to compare the competing methods in more challenging

and realistic scenarios. Section 8 concludes.

2 Existing estimation approaches

Consider the factor augmented panel data model:*

Yir = BTy + ex (1)
with Cit = )"Lft + Uzt (2)

where x;; and 3 are k x 1 vectors. For the ease of exposition we first consider a
single factor with » = 1, that is, f; and \; are scalars. The extension to multiple

factors is considered in Section 5.

!The model may include further terms such as v/d;, where d; is some observed strictly
exogenous regressor, cf. Pesaran (2006). As such additional terms are easily accounted for
without affecting the main results, these extensions are ignored.



We adopt a “classical” panel data framework where the coefficient vector (3
is the same for all cross-section units (homogeneous panel). Furthermore, we
assume that 7" may be small relative to N, which is typical for many panel
data applications. It should be noted that the asymptotic framework of Pesaran
(2006) and Bai (2009) assumes that N and T tend to infinity, whereas Ahn et al.
(2013) and Robertson and Sarafidis (2015) suppose that 7" is small and fixed.
Furthermore, the latter approach treats f; as parameters and thereby avoids
making any assumptions on these parameters, whereas Pesaran (2006) and Bai
(2009) assume that the factors are weakly correlated random variables and the
loadings are treated as parameters (or also as random variables). We make the
assumption that u; is independent (strictly exogenous) of x;, f; and A;. This
rules out dynamic specifications.?

It is well known that in the two way panel data model the individual and time
specific effects (which result as special cases of the factor model with constant
factor and loading, respectively) can be removed by a simple data transformation,
where the variables are adjusted by the individual and time specific averages. It
is not difficult to see that a similar transformation exists for the model with

interactive fixed effects, which is given by
Yir — MiT(A) = B [T — M (N)] + wie — Niti (), (3)

where A = (Aq,...,A\y)" and

1 N

m A - )\
(A N2 -~

with A2 = N=' "N A2, The weighted averages Z,(A) and %,(A) are constructed
in an analogous manner. Note that €;(A) = 7,(A) — B'@:(X) = fi+u:(A) serves as
an estimate of f;. Estimating the transformed regression (3) is equivalent to the
least-squares estimator, treating 3 and fi,..., fr as parameters and x; and \;

as regressors. Accordingly, the resulting estimator is efficient if u;; LN (0,02%).

2In panels with individual specific parameters and fixed T, including weakly dependent
regressors (such as lagged dependent variables) result in a bias of order 1/T (the incidental
parameter problem). The GMM based estimators of Section 2.3 are able to cope with this bias
by introducing time dependent vectors of instruments. In this paper we abstract from such
complications. The reader interested in dynamic models is referred to Juodis and Sarafidis
(2018).



2.1 The PC estimator

For the PC approach suggested by Bai (2009), equation (3) is replaced by the

feasible version

~

Yit — Ny (X) =3 [wit — Xﬁt (X) + € — Xz‘ét (X% (4)

where e;; = y; — '@y = \ifi + ui and :\\Z denotes the PC estimator of the factor
loading \;, which is equivalent to the eigenvector associated with the largest
cigenvalue of the sample covariance matrix Q..(8) = T~' 3./, e;(8)e,(8)’ with
e(B) = (yn—B'xi,...,yr—Bx;r). Asshown by Moon and Weidner (2015) the

sum of squared residuals can be obtained by minimizing the objective function

N
ﬁ = argmin {,umin [Z (yi — XiB) (yi — Xiﬁ),] } (5)
i=1
where y; = (yi1,...,vir) and X; = (xa,...,x;r) and ppin{A} denotes the
smallest eigenvalue of the matrix A. The minimum can be obtained by standard
numerical methods, whereas Bai (2009) proposed to compute the (nonlinear)
least-squares estimator of (4) sequentially by starting with the pooled OLS or
within-group estimator of 3 (that is by ignoring the factor structure in the errors).
The first principal component of the residual e;; (,@) yields a first estimator of the
common factor and the associated loadings are used to obtain the estimated
analog of the weighted averages in (4). The estimation procedure is iterated until
the estimators converge to the least-squares estimators of 3 and A.

Moon and Weidner (2019) pointed out that the least-squares objective func-
tion may exhibit several local minima and therefore it is possible that the gradient
based minimization based algorithm fails to find the global minimum. To cope
with this problem, Moon and Weidner (2019) propose a nuclear norm penalty
that results in a convex optimization problem. Another possibility is to initialize
the minimization algorithm by a v/NT-consistent initial estimator. In this case

it is sufficient to assume convexity in the 1/+/NT vicinity around the true value.



2.2 The CCE Estimator

In contrast to the PC estimator, the CCE approach proposed by Pesaran (2006)
does not adopt an (asymptotically) efficient weighting scheme, but employs in-
stead pre-specified weights Ag.? In practice A9 = (1,...,1)" is the default option,

but any other granual weighting scheme is possible. This gives rise to a modified

transformation,
Yit — A Tp(Xo) = B [@ie — AT Te(Xo)] + wir — A} We(Ao), (6)
where
o T
> im1 Ao

is required to drop the factor from the model. Note that if A\o; = A; for all ¢,
then Af = \; and the transformation is equivalent to (3). Furthermore, if Ag; =1
then \¥ = )\;/A, where A = N~! Zf\il Ai. By reorganizing (6), we obtain the

cross-section augmented regression equation,

Yir = B'xi + N7, (Ao) + YT (Xo) + vt (7)
where v; = =A@ and vy = e — Af€;(Ao). In practice, the nonlinear restriction
~; = —\i[3 is ignored and, therefore, ~; is treated as an additional parameter.?

2.3 The HNR and ALS approach

While the CCE and PC approach replace the unobserved factor by (weighted) av-
erages of Yy, ..., yne and @y, ..., TNy, the approaches suggested by Holtz-Eakin
et al. (1988) (HNR) and Ahn et al. (2013) (ALS) replace the unknown factor

3This does not imply, however, that the CCE estimator is always inefficient whenever A # Xq.
As shown by Westerlund et al. (2019) the CCE estimator is asymptotically efficient if r = k+1
and wu;; is i.i.d. across 7 and t.

4The restricted version of the CCE estimator is considered in Everaert and De Groote (2016).
In our experience, imposing the nonlinear restriction does not result in an important gain in
efficiency. In the model with » > 1 the restriction cannot be imposed anyway.



loadings by linear combinations of y;1, ...,y and x;q, ..., T;r:

1 1
HNR:  —(yigo1 — B'®ip1) = N+ —uig (8)
t—1 ft—l
1 1
ALS: _(sz — ,BI.CCZ'T) = )\z + —ur . (9)
fr fr

The main difference between these two approaches is that in (8) the linear combi-
nation is time dependent whereas in (9) the linear combination is the same for all
time series. As we do not see any advantage in using the variant HNR (and in our
simulations the HNR estimator tends to perform worse than the ALS estimator),
we focus on the ALS variant in the following analysis.

Inserting (9) in the model (1) yields

ALS: vy =B'xy + Oyir — 08 +vy  fort=1,....T—1, (10)

where 6, = f;/fr and v;; = uy — 6yu; . Note that this approach involves T — 1
additional parameters 6y, ..., 071, whereas the CCE approach involves N (k+ 1)
additional parameters, which may be a much larger number of parameters, in
particular if N is large relative to T'.

Equation (10) can be estimated as a linear equation by ignoring the nonlinear
relationship 4; = 6,3 and treating d; as additional parameters, cf. Hayakawa
(2012). Furthermore, as the regressor y;r is correlated with the errors, an
instrumental variable approach is required for estimating the coefficients effi-
ciently. Since it is assumed that x; is strictly exogenous, we employ observa-
tions of all time periods to construct the Tk x 1 instrumental variable vector
z; = (X}, &}y, ..., xlp)". The first stage regression yields y;r = 7'z;, where 7'z;

is the fitted value from a regression of y;r on z;. The second stage regression is
Yie = B'eiy + 09 — 08 iz + vy

Estimating the latter equation by OLS yields the two-stage least squares (2SLS)
estimator. Since the error term v is autocorrelated (due to the common com-
ponent 6;u;r), a GMM estimator based on the moment condition E(v; ® z;) =0

with v; = (v, ..., )" is more efficient, in general.



2.4 The RS estimator

The GMM estimator of Robertson and Sarafidis (2015) results from multiplying
the original model by the vector of instruments z; (e.g. the instruments of the
ALS estimator) such that

ziyi = (zi%yy) B+ (2i\i) [i + ziug
Yi = XiB +ife + wi (11)
where y; = 2y, )A(/Z = z; &}y, vi = z;\i, and w; = z;u;. The transformed model
(11) results in a new factor model with m = dim(z;) = kT observations in N
cross section units. In this model ~; and f; are treated as unknown parameters

and the GMM estimator results from minimizing the criterion function
N . ! N .

Q(IB7717‘ e a’YNvfl)' . '7fT> - (Zg’b - XZIB _7’Lft> WN (Zgz - XZIB _7th) )
i=1 i=1

-1
where Wy is a consistent estimator of the optimal weighting matrix [E (% % w;u, } :
Robertson and Sarafidis (2015) propose to minimize the function Q(-) by zz;pl)ply—
ing a sequential least-squares (SLS) estimator. Let f{ denote some starting value.
Replacing f; by f the parameters 3 and «; can be estimated by OLS from (11).
Replacing ~; by the respective OLS estimator, we can obtain an updated estima-
tor for f; from running 7' cross-section regressions (11) for t =1,...,7T. A linear
variant of this estimation approach is proposed by Juodis and Sarafidis (2020).

It is important to notice that the first order condition of the SLS estimator
is invariant to some scaling factor ¢, such as f; = cf; and A\f = \;/c. The
PC estimator implies ¢ = 1/4/ Z;‘le f# and the original ALS estimator imposes
¢ = 1/ fr. The objective function of the least-squares estimator does not impose
any normalization of the factors. There exists a unique minimum for the product
~: ft, but the decomposition into v; and f; is somewhat arbitrary and depends on

the starting value of iterative algorithm.



3 Asymptotic properties for fixed T

The asymptotic properties of the PC and CCE estimators are typically derived by
adopting a joint limit theory, where 7" and N tend to infinity (e.g. Pesaran 2006,
Bai 2009, Greenaway-McGrevy et al. 2012 and Westerlund and Urbain 2015).
The asymptotic analysis revealed that the PC and CCE estimators are v/ NT-
consistent whenever T /N — 0 and v/N/T — 0. This requirement is fulfilled
if for some fixed constant, 0 < a < oo, the paths of the sample sizes admit the
inequality a7%%t¢ < N < aT? ¢ for some € > (. Statistical inference based on
these estimators suffers from an asymptotic bias whenever T/N — x > 0. This
bias does not show up in the asymptotic analysis of Pesaran (2006), as he assumes
that the coefficient vector 3; = 3+ v; is individual specific, where v; is a random
error that prevents the estimator from achieving the usual v/ NT convergence
rate. In the literature cited above, bias-corrected estimators are suggested that
remove the asymptotic bias from the limiting distribution.

For fixed T and N — oo the CCE estimator of the factors is consistent as
€;(Ag) converges in probability to cf;, where ¢ is some scale factor that is different
from zero. Therefore, the errors-in-variable problem vanishes for N — oo and
fixed T' (cf. Westerlund et al. 2019).

For the asymptotic analysis of the PC estimator, it is usually assumed that
min(N,7T) — oo (cf. Bai 2009) and, therefore, the PC estimator may be inconsis-
tent if 7" is fixed and N — oo (see Remark 1 of Bai 2009). Under more restrictive
assumptions it is however possible to show that the PC estimator of the factors
is consistent if T is fixed and N — oo. To focus on the main issues assume
that B is known. Furthermore, we assume that the vectors f = (fi,..., fr)
and A = (A1,...,Ax)" are parameter vectors to be estimated. The PC estimator

solves the first order conditions:

—
=2

N (ei — ?/):Z)XZ =0 where €e;, = (eil, ey eiT)' (12)

2

Il
—

(e, — ﬁ:\\)ft =0 where e; = (eyy,...,ent), (13)

el
[M] =

“
Il
—



subject to T—' Y1, 2= T_I?/? = 1. Since \; = T‘l./f\/ei, we obtain

1< 1 ~r 1 N
N Z <ei — Tff/ei) e;f = MfA (N Ze,e;) f =0, (14)
i=1 i=1

where Mz = Iy — T-'ff with Mff: 0. For N — oo we have

N

1

Nzez‘e; = 3 ff + 2,
i=1

where 03 = plim N ! Zf\il A2 %, = plim N7! Zfil wul, and w; = (wir, ..., wir).
N—o00 N—o00
Assume that uy is i.i.d. with 3, = E(u?)Ir. As N — oo the moment condition is

solved by letting f = f and, therefore, the PC estimator for f is consistent (up to
a scaling factor). If u; is heteroskedastic or autocorrelated, then M¢¥, f # 0 in
general and, therefore, the PC estimator is inconsistent as N — oo. On the other
hand, if both N and T tend to infinity, the PC estimator is consistent no matter
of a possible heteroskedasticity or (weak) autocorrelation (cf. Chamberlain and
Rothschild 1983).

The asymptotic theory for the HNR and ALS estimators assumes that T’
is fixed and N tends to infinity. The GMM estimator is based on kT(T — 1)
moment conditions with £ 4+ 7" — 1 unknown parameters. Therefore, no problem
arises if T is fixed and N tends to infinity. Accordingly, the estimators are
asymptotically normally distributed and centered around zero. Of course the
problem of instrument proliferation arises if 7" gets large and the asymptotic
theory breaks down if T3/N — r > 0 (cf. Bekker 1994 and Lee et al. 2017).5

4 Identification

All estimation approaches require some normalization of the factors or loadings

some of which may be problematical in empirical practice. The CCE and ALS

A practical solution is to reduce the set of instruments (cf. Juodis and Sarafidis 2018) or
applying other methods of dimensionality reduction (Breitung 2015, Section 15.2.3).



approaches are based on the following conditions:

N
1
CCE: ; AoiNi # 0, (15)
ALS:  fr#0, (16)

whereas the restriction for the PC estimator 7! Zthl f? = 1 is unproblematic
in practice. The violation of the restrictions (15) and (16) may result in poor
distributional properties of the estimator. If, for example, N™! >~ X\g;\; = 0, then
the cross section mean €;(Ag) does not depend on the factor and, therefore, the
CCE estimator is biased whenever x;; and \; f; are correlated (cf. Westerlund and
Urbain 2013). Similarly, if fr = 0, then y;7 = B'@;r + u;r and the instruments
are not able to identify the parameters 6; and d;.

One may argue that the chance that (15) or (16) is exactly zero is negligible,
so that problems only occur in rare cases (if at all). Unfortunately, this is not
true, as the problems already arise whenever N71Y" \g;\; = O,(N~'/2). For
illustration, let us assume \g; = 1, such that 7,(Xg) = ¥, and A = O,(N~/2).
Including the cross-section averages ¥, and x; is equivalent to augmenting with

€; and ;. Furthermore,

where f¥ = f; + (u;/)\). Since in our case u; /A = O(1), it follows that the factor
fi is different from f;. In this case, €, does not represent the true factor and
the CCE estimator of 3 is inconsistent whenever the factor is correlated with the
regressors.

To sidestep this difficulty, we follow the analysis of Mundlak (1978) and de-
compose the factor loadings into a systematic component related to the ordinary

average x; and the projection error &;:
Ai =% +NTi + &, (17)

where T; = T* Zthl x;; and &; is uncorrelated with @;. In this specification ] x;

represents a possible linear dependence of \; on the regressors that gives rise to

10



an endogeneity bias. Inserting (17) in (1) yields
Yir = B'xi + N i + e}y

where I = o+, €, = & fir +ui and E(ey|x;) = 0. This estimation equation
is related to the projection approach of Hayakawa (2012), who considers a pro-
jection of \; on the vector z; = vec(Xj;), also known as Chamberlain projection.
A second difference to the Hayakawa (2012) approach is that he employs the pro-
jection for GMM estimation of ALS, whereas we employ the Mundlak projection
in the context of CCE estimation.

The weighting scheme for the CCE estimator results as

1 N
yt<)‘ ) = sz)\iyit

¥ =1
1 & 1 &
_ ~ . . ~/ —_— _. .
=" (N ;%t) +71 (N ;w2y1t>
where 7 = 70/)\_,% and v, = ’Yl/)‘_»%

and \2 = % SV (AH)2. Since 7 and F; are unknown, we augment the regression

by the following (k + 1) cross section averages:

N N N
1 1 1
N E Yit N E L1t , N ‘ Tt
=1 =1 =1
N N N
1 _ 1 _ 1 _
N E T1:Yit N E L1,iT16t 5 *°° N : X1kt
=1 =1 =1
N N N
1 _ 1 _ 1 _
N g T,ilYit N E Trillit , ", N : Lk iLkit -
=1 =1 =1

This estimator is referred to as CCE(M).°
Similar normalization problems arise for the HNR and ALS approaches, but

these estimators apply a normalization to the factors. For example, if fr is zero,

6This estimator can be seen as a special case of the combination-CCE estimator proposed
by Karabiyik et al. (2019).

11



then the linear combination of y;7 and x;7 is not able to identify the factor and,
therefore, the ALS approach is biased whenever fr = 0 and x;; is correlated with
Ai fi. If T'is small then one may try out all possible time periods for normalization
and select the normalization that minimizes the GMM objective function. For
a large number of time series this approach is rather time consuming. In such
cases the normalization may be selected by estimating the factor by the PC
approach. Then, the normalization period with the largest factor (in absolute
value) is selected as the normalization period.

In the appendix of Ahn et al. (2013) a more flexible approach is proposed,
which we refer to as ALS*. Let H denote the T'x (T'— 1) orthogonal complement
of f=1(f1,..., fr) such that H'f = 0. To obtain (10) we let

0 -6
0 -6,

HJIALSZ .
00 0 -1 —6pr_4

To avoid normalizing 7" — 1 elements to unity, we transform the equations for
unit ¢ by using a more general matrix with property H' f = 0, such that H'e; =
H'(y; — X;3), where y; = (yi1, - .., vir)'s Xi = (Ti1, ..., xi7)', € = H'e;. Given
B, the estimator of H is based on the moment condition E(H'e;z]) = 0, where

z; = vec(X;). Accordingly, a GMM estimator for H can be obtained as

—

H = argmin {tr (H'Q..Q_Q.H)} st. HH=Ir_,,
H

where Q.. = N3N e;2/ and Q.. = N"' -V 2,2, Accordingly, the estima-
tor H is obtained as the matrix of eigenvectors corresponding to the smallest
T — 1 eigenvalues of the matrix Q.,Q; Q... Given H , the estimator for 3 is

z

obtained from the OLS regression
ﬁ/yi = ﬁ/Xi/B + €.

This estimation step yields an updated estimator for 3 that can be used to obtain
a new estimator of H, until convergence. A drawback of this variant of the ALS

estimator is that no standard errors for 3 are readily available, as the respective

12



estimation step is affected by the estimation error in H.
It is interesting to compare this approach to the PC estimator of Bai (2009),
which can be obtained by solving the problem

—~

H = argmin {tr (H'Q..H)} st. HH = I;_,,
H

where Q.. = N~} Zf\il e;e.. Accordingly, the difference between the PC and
ALS/RS approaches is that the former extracts the factors from the residual
vector e;, whereas the ALS/RS approach first projects the residuals on the space
spanned by the vector of instruments z;. Accordingly, the latter approach requires
that the factors are correlated with the regressors, whereas the PC approach does
not.

Robertson and Sarafidis (2015) show that their estimator considered in Sec-
tion 2.4 is asymptotically equivalent to ALS* if the error w is i.i.d. If uy is
heteroskedastic and/or serially correlated, then the weighting matrix W,, results

in an asymptotic efficiency gain.

5 Multiple factors

So far we assumed that there is only a single factor. It is not difficult to see that
for a panel data model with a vector of » > 1 factors f; and the conformable

r x 1 loading vector A;, the estimation equation (3) is given by
v = N (A) = B [ = MK (A)] + e — At (A), (18)

where A = (A,...,Ay)" and

N -1 N
y;(A) = (Z Ai)‘g) Z AiYit
i=1 i=1

-1 N

N
and X, (A) = (Z AJQ) > i,
=1 =1

and the 7 x 1 vector u;(A) is constructed in a similar manner. This shows that

efficient estimation requires r linear independent weighting schemes applied to

Y = (xlh . ,yNt), and Xt = (l’llt, . ,:I:’Nt)’.

13



To show consistency of the modified CCE estimator, CCE(M), a different
reasoning is required. For the ease of exposition assume k& = 2 regressors and

r = 2 factors. We obtain 2 different weighting schemes:

N N
—(1 —(1 1 — —(1 1 —
Wy Zwl L DI S DI

=1 =1

N N
_(2) T2,iYit ) = i To X1 it ) = i T9;T2t
§ Y 1t = E REAR; 29 = § 22,

’ N “ - ’ N “ -

1= 1=

—(1 —(1 —(1 1 1

7" z m)\ L, (&) &V [ fu O(NV?
o -0 o= @ +0p(N77)
Yi L1t Loy & 2 fau

where =, = N1 Zf\;l TyiMk,i- Accordingly, if the matrix

e el
- <f§2’ 55”)

is invertible, we can obtain the linear combinations that represent the factors as

_(
fiz _ =1 yg ) =1 Igt)
fou y( ) fgt)

Thus, the common component Ay ;fi: + A2, for can be (asymptotically) repre-

sented by a linear combination of the 6 means y§ ), @?), fﬁ?, Eglt), 5(122 , and,

—(2) 7
IQ’t .

[1]

1

’ > B+ 0,(N'?)

)

g

[1]

8|
BN N

(
2
(
2

6 Determining the number of factors

As argued by Pesaran (2006), the CCE estimator is consistent if the actual num-

ber of factors r is not larger than k + 1. This requires however that r — 1 factors

"The alert reader may have noticed that the linear combination does not involve the ordinary
cross-section averages N ! > Yits N1 > T1,i¢ and N1 > ; T2, that are employed in the
CCE estimator. These additional means are not required for identification but often improve
the statistical properties of the estimator. They may also help to escape the problems resulting
from a (nearly) singular matrix =.

14



are correlated with the k regressors. This is due to the fact that one factor can
be identified by the cross-section average €;(Xg) = 7,(Ag) — B'@(Ao), whereas the
identification of the other factors requires some relationship to the cross-section
averages of the regressors @;. Furthermore, the correlation pattern needs to be
sufficiently informative for identifying the factors.

It is often argued that the CCE approach is attractive, as we do not need
to select the number of factors, whereas for all other approaches, the number of
factors needs to be known (or determined from the data). If the number of factors
is smaller than k£ + 1 and the normalization requirements are satisfied, then the
CCE estimator is consistent, but the small sample properties may suffer from
including many cross-section averages. This is comparable to applying the PC
estimator with r» = k+ 1 factors. As shown by Moon and Weidner (2015), under
some additional assumptions,® the PC estimator is robust against over-specifying
the number of factors. A similar result is obtained by Westerlund et al. (2019)
for the CCE estimator. Since under certain conditions the CCE estimator for
B is as efficient as the OLS estimator using the true factors, there is no gain in
(asymptotic) efficiency by changing the weighting scheme or imposing nonlinear
restrictions to the auxiliary parameters that are implied by knowing the number
of factors. It is however not clear whether this result provides a good guidance
for empirical applications in finite samples.

In practice, it may therefore be interesting to estimate the number of factors.
To this end we may invoke the criteria proposed by Bai and Ng (2002) and Ahn
and Horenstein (2013). Both approaches are based on the eigenvalues of the
residual covariance matrix. Denote by fi; > --- > [r the ordered eigenvalues
of the T' x T sample covariance matrix ﬁee =N Zfil e;€e,, where the residual
vector e; is obtained by estimating the model with maximum number of factors

r*. Furthermore, let

1 N T 1 T
=1 =1 j=r+1

where u;; denotes the residual from estimating the model with r factors. Bai and

8The proof of Moon and Weidner (2015) requires T — oo and is based on the i.i.d. assump-
tion but they note that it appears that their results extend to a less restrictive setting.
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Ng’s (2002) criterion ICpy minimizes

N
BN(r) = log(a2(r)) +r 1 log(min[N,T)),
NT
for r € {0,1,...,7*}, whereas the criterion proposed by Ahn and Horenstein

(2013) maximizes the eigenvalue ratios
AH(r) = [ /ftj1 forre{1,2,...,r"}

and the mock eigenvalue jig = <Z;‘.F:1 ﬁj> /log(T'). Let o denote the true number
of factors. If B* — B =0,(1/VNT), we have

| DT LN 1
WZZ Yir — ﬁmzt G?t—QﬁZZeltmzt(lB ,B)+O (NT)

i=1 t=1 i=1 t=1

»
»s

N
1 , 1

— 40, [ ——).
N & t p( /NT)

N
v
=1
Accordingly, the BN and AH criteria include an additional term of order
O,((NT)~'/2) that does not affect the asymptotic properties as N and 7T tend to
infinity.
Let us consider the asymptotic properties of the respective estimators 7 if T’

is fixed and N — oo. In this case limy_,o, P(F" < r9) = 0 is ensured by (cf. Bai
and Ng 2002)

N+T
NT

¢(N,T) = log(min[N,T]) — 0. (19)

As condition (19) is not satisfied for fixed T', the BN criterion may select some

7 <o, even if N — oo. The requirement limy_,o, P(77 > 19) = 0 implies

]\}13(1)0 P ((r —ro)c(N,T) +log(2(r)) —log(c5(re)) >0) =1  for all r > ro.
(20)

Since log(a2(rg)) —log(02(r)) = Op(N™1) 4+ On(T) for r > 1 (cf. Lemma 4 of
Bai and Ng 2002), it may happen that for small T', condition (20) is violated as

well. Hence, the BN criterion may not be consistent for fixed T'. In practice it is
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nevertheless possible that the BN criterion selects the number of factors consis-
tently, if the eigenvalues iy, . . ., fi,,—1 are sufficiently large and fi, 11, ..., i+ are
sufficiently small relative to ji,,.

Since for fixed T', 1, is O,(1) for all r = 1,..., T, it follows that the eigenvalue
ratio AH(r) is O,(1) for fixed T and all r € {1,...,r*}. Therefore, the AH
criterion cannot be shown to be a consistent selection rule for fixed T'. It may
nevertheless perform well, if the slope of the eigenvalue function is sufficiently
steep at r = ry.

A possibility to sidestep these problems is to adopt the BIC selection criteria
of Ahn et al. (2013) and Robertson and Sarafidis (2015). These criteria are based
on the Sargan-Hansen specification test for GMM estimators. If the number of
factors is too small, then the remaining cross-correlation among the residuals
results in a large value of the test statistic. The penalty function is constructed
such that the sum of the test statistic and the penalty function obtains a minimum

at the correct number of factors as N tends to infinity.

7 Monte Carlo Simulations

In this section we assess the performance of alternative estimation methods in
various settings and highlight some favorable and problematic aspects of alterna-
tive estimation methods. The simulation results in Sections 7.1 — 7.2 are based

on the following simple data-generating process

Yie = B + Nife + wi (21)
T =+ Nfi + N+ fi +eu (22)

with = 0.5 and r = 1. Hence, the regressor is correlated with the loadings, the
factor and the product of both. The regression error u; and the idiosyncratic
component of the regressor, ¢;;, are independent standard normal random vari-
ables. The constant p is drawn from a U[0, 1] distribution. The DGPs in Sections
7.1 to 7.2 differ with respect to the distributional assumptions on the factors and
their loadings.

The (near) violation of the normalization restrictions for the CCE and ALS

estimators are examined in Section 7.1. In Section 7.2, we compare the PC and
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CCE estimator with regard to their different weighting schemes. In Section 7.3
we address the estimation of the number of factors, r, for the PC, ALS* and RS
approaches. There, we consider a similar DGP as in (21) and (22) for r = 1 and
r = 2. The last subsection 7.4 considers the relative performance of the CCE, PC,
ALS* and RS, estimation approaches in more general settings that are based on
the DGPs considered by Bai (2009), Chudik et al. (2011) and Ahn et al. (2013).

7.1 Normalization failure

As argued in Section 4, the CCE and ALS/HRN approaches may suffer from a
violation of their normalization conditions. The performance already deteriorates
if the parameters approach the v/N-vicinity of the problematic subspace. In
a model with a single factor, the normalization of the equally weighted CCE
estimator (\o; = 1) requires that A = N~ Zf\il Ai # 0. We have argued that
whenever \ = ¢/ VN, the factor cannot be represented by a linear combination
of y, and x; as N — oc.

Sarafidis and Wansbeek (2012) and Westerlund and Urbain (2013) analyze the
performance of the CCE estimator when the normalization condition is violated.
In order to study the performance of the CCE estimator when X is different but
close to zero, we consider the model in (21) and (22), where we generate the

factor loadings as
DGP1: A ~ N(uy, 1) for py € [0,1] and f; ~ N(0,1).

Hence, the loadings are normally distributed with expectation that ranges from
0 to 1.

Figures 1 (a) — (d) present the absolute bias for the original CCE, the Mundlak
type CCE(M) estimator suggested in Section 4, and the PC estimator for N = 100
and N = 500 with a small (7" = 10) and moderate (7" = 50) number of time
periods. The PC estimator of Bai (2009) is obtained by a sequential estimation
procedure using the pooled OLS estimator as starting value for 5 (see Section
2.1). It turns out that the CCE estimator is severely biased even if the mean of
A; is substantially different from zero. This is due to the fact that a bias already
occurs whenever iy = O(N~'/2). This reasoning predicts that for fixed uy the

bias gets smaller if NV increases. Indeed, this is what we observe when comparing

18



panel (a) and (c) as well as (b) and (d). Note that 1/100/v/500 =~ 0.44 and,
therefore, we expect that the bias reduces to a value less than one half which is
a good approximation for py > 0.1. The other two estimators, PC and CCE(M),
are virtually unbiased, which is expected as the estimators do not rely on the
assumption py # 0.

In a similar manner, the normalization of the ALS estimator may be prob-
lematic if the factors approach the problematic subspace. The ALS estimator
requires fr # 0. To examine the consequences of an (approximate) violation of
this normalization condition, we consider the model in (21) and (22) where the

factors are generated as:
DGP2: f, ~ N(0,1) fort=1,..,T —1and fr ~ N(ur,0.5) for ur € [0,1]

and the factor loadings are standard normally distributed. As the final value of
the factor is crucial, we generate it by a distribution with expectation ranging
from 0 to 1.

Figures 1 (e) — (f) present the bias for the ALS estimator when 7" = 5 and
N = 100 or N = 500, respectively. As expected, the ALS estimator is severely
biased whenever pr = E(fr) is small. But even for moderate values of ur the
bias remains substantial and decreases only gradually for larger values of pr. It
should be noted that if the regression includes an individual specific intercept,
then the factors are demeaned and, therefore, assuming a nonzero mean appears
inappropriate.

Figures 1 (e) — (f) also present the bias of two estimators that circumvent the
problems with the normalization of the original ALS estimator. The estimator
ALS* refers to the GMM estimator that estimates the matrix H that is used
to remove the factors (see Section 4).? Our simulation results suggest that this
estimator performs quite well in terms of bias, as it is virtually unbiased for
all values of pr. Another approach to escape the normalization problem is the
GMM,,,. estimator, where in a first step the factor is estimated using the PC
approach. In the second step, the time period for the normalization is chosen
according to the maximum absolute value of the estimated factor and the original
ALS estimator is adapted, where the time period with the largest factor is shifted

to the end of the sample. Both estimators are able to reduce the bias dramatically.

9Following Ahn et al. (2013), we use 3 = 0 as starting value for the iterative ALS* procedure.
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The figures also include the RS estimator, which corresponds to the FIVU
estimator of Robertson and Sarafidis (2015). This estimator does not require
fr # 0 for normalization (see Section 2.4) and thus the bias does not depend on
the value of pp. The RS estimator has a slight advantage in terms of bias when
N = 100. With N = 500, the bias of the ALS*, GMM,,.. and RS estimators is
nearly zero.

To summarize, our findings confirm earlier evidence that the normalization
applied for the original CCE or ALS/HNR estimators may be problematical,
whenever the factors or loadings approach a normalization failure. It is however
easy to adjust the estimators such that they perform well for all values of the
parameter space. Our Monte Carlo exercise indicates that the PC and CCE(M)
estimators as well as ALS*, GMM,,,., and RS are very robust against a possible

normalization failure.

7.2 Fixed versus data driven weights

From the reasoning of Section 2, it turns out that the CCE estimator is expected
to outperform the PC estimator whenever the weighting scheme Ay comes close
to the actual set of loadings A, see also Westerlund and Urbain (2015). For equal
weights with A\g; = 1 for all 4, the CCE estimator performs well, whenever (i) the
absolute value of the mean of the loadings is large (to avoid the normalization
failure) and (ii) the variance of the loadings is small. Our DGP3 represents
such a scenario, whereas the DGP4 favors the PC estimator by generating factor

loadings with large variance,

DGP3: \; ~ N (1,0.1), f, ~N(0,1)

The remaining details of the simulation setup are identical to the model in (21)
and (22).

The results reported in Table 1 clearly confirm our assertion that the CCE
estimator outperforms the PC estimator in DGP3, whereas the PC estimator
performs better for DGP4. This finding suggests to find a weighting scheme that
comes close to the actual distribution of the loadings. This is the notion behind

the Mundlak type CCE variant that employs the individual specific means 7;
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and T;, since a linear combination of these averages can be seen as (CCE type)
estimates of the loadings \;. Therefore, we hope to improve the original CCE
estimator by applying weights that are correlated with the loadings. Our results
from the simple Monte Carlo experiment suggest that the CCE(M) approach of
choosing a data driven weighting scheme performs similar to the best estimator
in the respective situation. Furthermore, as shown in the previous subsection,
the CCE(M) estimator sidesteps the risk of a normalization failure. Provided
that this estimator is similarly easy to compute as the original CCE estimator, it
appears as if this estimator is a robust and efficient variant of the original CCE

estimator.

7.3 Selecting the number of factors

In practice, it is necessary to select the number of factors for the PC and GMM
estimation procedures. The choice is important, since misspecifying the number
of factors can have severe consequences: Overspecifying the number of factors
can have adverse effects on the sampling properties of the estimators, while an
underspecification may lead to inconsistent estimates if the ignored factors are
correlated with the regressors. One possibility for selecting the number of fac-
tors is simply to specify the number according to some ad hoc rule, for instance
r =k + 1, as usually advocated for the CCE approach. Another option is to use
a consistent criterion for the number of factors, such as the ones proposed by Bai
and Ng (2002) (hereafter: BN) and Ahn and Horenstein (2013) (AH). Note that
these selection criteria were developed for the pure factor model without regres-
sors. Furthermore, the asymptotic theory underlying these approaches requires
T — oo (see Section 6). It is therefore interesting to investigate the performance
of these criteria that were not initially developed for a small number of time pe-
riods. For the GMM estimators, the number of factors can be estimated using
model information criteria, such as the Schwarz Criterion (BIC) considered by
Ahn et al. (2013) and Robertson and Sarafidis (2015).

In order to study the performance of these selection criteria, we consider a
similar model as in (21) and (22) with » = 1 and r = 2. For the loadings and

factors, we assume the following DGP,

DGP5: A\;; ~ N(0,1), fir ~N(0,1) for j=1,2.
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As reported in Table 2, the hit rates for a single factor, r = 1, are nearly 100%
for the BN and AH criteria whenever 17" > 10. For T' = 5 the BN criterium does
not work and nearly always picks the maximum number of factors. On the other
hand the AH criterion works remarkably well, even for a number of time periods
as small as T = 5.1 The hit rates for the BIC criteria exceed 90% in all but one
case. For r = 2 the hit rates for the AH criterion are substantially lower, but
the estimators are still quite accurate, even if 7' = 10 and N is large. For the
BIC criteria, the hit rates decrease by only a small amount and do not seem to
be very sensitive to the number of factors, in particular if N > 100.

In Table 3, we report bias and RMSE for the PC, ALS* and RS estimators
based on the true number of factors (r = 1 and r = 2) as a benchmark. In
addition we assess the performance of the estimators, when the number of factors
is estimated based on selection criteria.!! As expected, using the AH method for
r = 1 in order to estimate the number of factors for the PC estimator produces
bias and RMSE results that are of similar magnitude as the true number of
factors. Applying the BIC criterion to estimate the number of factors for the
GMM estimators produces very accurate estimates when N > 100, accordingly.

For r = 2, the performance of the PC estimator using the AH criterion shows
a considerable bias, in particular if 7" is as small as 5. In contrast, bias and RMSE
of the GMM estimators applying the BIC criterion are similar to the estimators
based on the true number of factors when N > 100. When T increases to 10,
there is still a substantial performance gap between the PC estimator using the
AH method and the PC estimator based on the true number of factors, whereas
the GMM estimators based on the BIC criterion perform much better. This is
surprising as Table 2 suggests that the hit rates of the BIC criterion are only
slightly better in these cases. The reason is that the AH criterion tends to
underestimate the number of factors whereas the BIC criterion overestimates the
number of factors in case the correct number of factors is not found.

Consider, for instance, 7' = 10 and N = 500. The BIC estimator finds the

10The performance is similar to the case where 3 is known (not shown). Therefore, the
estimation of 8 does not seem to have an important effect on the performance of the BN and
AH selection criteria. Furthermore, the growth ratio statistic of Ahn and Horenstein (2013)
performs similar to the eigenvalue ratio statistic. For reasons of space we do not show the
respective results.

' To save space, we do not show results for the estimators based on the BN criterion, since
the hit rates are either 0% or (close to) 100%.
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correct number of factors (r = 2) in more than 95% of the cases and overestimates
the number in the other (< 5%) cases. The AH estimator finds the correct value
of r = 2 in 89.8% of the cases, however underestimates the number in all other
cases. Since the estimator is biased if the number of factors is too small, the
AH criterion tends to produce a large negative bias in some cases, whereas the
BIC criterion tends to produce unbiased estimators with a slightly larger variance

than estimating with the correct number of factors in some very rare cases.

7.4 Performance in more general setups

So far the DGPs considered in this paper were simplified versions of the ones
considered in the literature and focus on the particular features of these models.
In the following, we study the relative performance of the CCE, PC, ALS* and
RS approaches in more sophisticated simulation setups, similar to the simulation
experiments of Bai (2009), Chudik et al. (2011) and Ahn et al. (2013). The
details of these data generating processes are presented in the online appendix
to this paper. The Monte Carlo design of Bai (2009) employs two regressors
that are correlated with two factors, their loadings and the product of both.
The idiosyncratic error is i.i.d. across individuals and time periods. We refer to
this model as DGP6. DGPT refers to the factor model of Chudik et al. (2011)
that includes two regressors and three factors. A special feature of this DGP
is that the factor loadings of the regressors are independent of the loadings in
the errors e;;. Accordingly, no endogeneity bias arises from estimating the model
by a pooled OLS estimator. The factors are generated by independent AR(1)
processes and the idiosyncratic component u; is heteroskedastic but mutually
and serially uncorrelated. DGPS8 corresponds to the Monte Carlo design of Ahn
et al. (2013), which includes two regressors and two factors. The first regressor
is correlated with the first factor and the second regressor is correlated with the
second factor. The idiosyncratic error is autocorrelated but the variances are
identical across panel units and time periods.

The results in Table 4 indicate that the relative performance of the estimators
depends quite sensitively on the DGP considered. The first panel of Table 4
presents the results for DGP6. The CCE estimator is not consistent in this
setting, since the rank condition is violated and both factor and loading vectors

are correlated with both regressors. The other three estimators are consistent in
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this setting, where the RS estimator is the least biased when T' = 5 and the ALS*
exhibits the lowest bias for T > 10. The latter performs best in terms of RMSE
with only slight advantages over the PC estimator when 7" > 10.

The second panel of Table 4 reports the results for DGP7. The CCE estimator
is the favored one in this setting. It has a very small bias and exhibits the lowest
RMSE for nearly all considered (N,T’) combinations, in particular if 7" is as
small as 5. Comparing the PC and GMM estimators, the results slightly favor
the PC estimator in terms of RMSE. The difference between the PC and the CCE
estimator is negligible when 7' = 15 and N = 500. With regard to the GMM
estimators, the RS estimator has a marginally lower RMSE when 7' = 5 and N
is large, while the results indicate small advantages for the ALS* estimator when
T > 10.

The third panel of Table 4 presents the results for DGP8. The GMM estima-
tors are the least biased estimators in this setting. The ALS* estimator exhibits
the smallest RMSE for all (N,T') combinations with only slight advantages over
the RS estimator. For example, for "= 10 and N = 500, the RMSE of the ALS*
estimator is about 40% lower than the RMSE of the PC estimator and more
than 60% lower than the RMSE of the CCE estimator. The CCE estimator is
problematic in this setting, since the expectation of the loadings is equal to zero.
The PC estimator is problematic in this small 7" setting. However, the RMSE is
lower for larger samples with 7" = 15 and N = 500.

8 Conclusion

In this paper we compare three existing approaches for estimating factor aug-
mented panel data models. We argue that the PC estimator can be seen as an
estimated analog of the optimal transformation for eliminating the common fac-
tors from the data. The CCE estimator applies a data transformation that has
the important advantage that the weighting scheme is fixed and does not involve
any sampling error. This ensures that the estimator is consistent even if T is fixed,
whereas the PC estimator requires much more restrictive assumptions (such as
i.i.d. errors) if T is fixed. The third estimation approach is the nonlinear GMM
estimators of Ahn et al. (2013) and Robertson and Sarafidis (2015). In contrast
to the PC and CCE estimators, this estimator treats the T' observations of the
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factor as parameters, whereas the factor loadings are substituted out. Therefore
the number of parameters involved by this approach does not depend on N.

An important difference between the PC estimator and all other approaches
is that the PC estimator does not require that the factors are correlated with
the regressors. In contrast, the ALS/RS approaches and the CCE estimator
(for 7 > 1) rely on the assumption that the factors are linearly related to the
regressors (that is, the instruments are relevant). Accordingly, if some factors are
uncorrelated (or weakly correlated) with the regressors, one can expect the PC
estimator to be more efficient.

In this paper we focus on the typical micro panel data setup where 7T is small
compared to V. Since for an approximate factor model the consistency of the PC
estimator requires T — oo, it is interesting to investigate how large T needs to be
for ensuring the PC estimator to be approximately unbiased. Our Monte Carlo
experiments indicate that for all data generating mechanisms considered in this
paper T' = 10 is already sufficient to achieve reasonable small sample properties
of the PC estimator. Sometimes the CCE and ALS* estimators perform slightly
better than the PC estimator, but in other Monte Carlo setups the PC estimator
clearly outperforms all other competitors. Furthermore, we show that for small
T the selection criteria for the number of factors proposed by Bai and Ng (2002)
and Ahn and Horenstein (2013) may be inconsistent, whereas the BIC criteria of
Ahn et al. (2013) and Robertson and Sarafidis (2015) perform well.
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Figure 1: Normalization failure for CCE (DGP1) and ALS (DGP2)
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Table 1: Fixed versus data driven weights

Bias*100 RMSE*100
N T PC CCE CCE(M) PC CCE CCE(M)
DGP3
50 10 123 000  0.19 6.43 512  5.93
100 10 056 0.6 021 394 356  4.04
100 20 0.10 —0.14  —0.09 243 233 242
100 50 0.09 —0.04  0.02 149 148 151
100 100 0.08 —0.03  0.02 1.06 106  1.08
500 500 0.05 —0.01  —0.01 020 020  0.20
DGP4
50 10 0.18 —2.31 0.19 465 6.62 597
100 10 024 —1.09 022 326 4.05  4.17
100 20 0.01 —1.30  —0.08 215 3.05 245
100 50 0.08 —1.22 001 134 236 151
100 100 0.10 —1.20  0.01 097 200  1.08
500 500 0.08 —0.24  —0.01 020 036  0.20

This table reports the simulation results generated with DGPs 3 and 4. The results
are based on 1000 replications.
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Table 2: Hit rates for selection criteria

r=1 r=2
N T BNpe AHpes BlICarg- BICgg BNpe AHpe BIC4rs- BICprg
100 5 0.0 94.6 91.7 83.0 0.0 46.8 86.4 76.6
250 5 0.0 96.2 96.9 96.7 0.0 50.8 93.2 89.5
500 5 0.0 96.9 08.8 98.3 0.0 52.1 96.3 94.1
250 10 100.0 99.9 90.6 97.0 99.6 86.4 89.7 92.9
500 10 99.9 99.9 96.7 98.4 99.4 89.8 95.9 96.9
500 15 100.0 100.0 92.3 99.6 100.0 97.9 92.9 98.8
Table 3: Selecting the number of factors
r=1 r=2
Bias*100 RMSE*100 Bias*100 RMSE*100
N T PC, PCan PC, PCain PC, PCain PC, PCan
100 5 0.20 0.31 5.10 5.30 0.67 5.47 6.83 11.06
250 5 0.12 0.24 3.22 3.51 0.29 4.89 4.14 10.13
500 5 0.14 0.30 2.25 2.66 0.22 4.54 3.04 9.13
250 10 0.07 0.08 2.04 2.04 0.17 1.51 2.20 4.79
500 10 0.09 0.10 1.42 1.44 0.06 1.07 1.55 3.93
500 15 0.07 0.07 1.06 1.06 0.11 0.28 1.18 1.81
ALSy ALSj,» ALS: ALSyo ALS: ALSj,» ALS: ALSho
100 5 0.14 0.15 6.22 6.84 —-0.33 —0.65 7.46 8.15
250 5 —0.01 0.04 3.69 3.83 0.08 0.10 4.33 4.53
500 5 0.23 0.23 2.62 2.64 0.04 —0.01 3.08 3.26
250 10 —0.02 —0.02 2.25 2.36 0.00 —0.02 2.23 2.32
500 10 0.10 0.10 1.59 1.61 —0.06 —0.06 1.58 1.59
500 15 0.04 0.03 1.20 1.22 0.03 0.03 1.18 1.20
RS, RS RS,  RSpre RS, RSgre RS,  RSgie

100 5 —0.58 0.74 6.01 7.93 -0.92 —-0.26 7.88 9.00
250 5 —0.17 —=0.12 3.65 3.76 —0.21 —0.14 4.72 4.99
500 5 0.11 0.10 2.60 2.66 —0.07 —=0.10 3.58 3.59
250 10 —-0.40 —-0.29 2.42 2.68 —0.86 —-0.73 3.20 3.21
500 10 —0.10 —0.10 1.66 1.66 —0.44 —0.41 2.16 2.11
500 15 -0.17  —-0.17 1.29 1.29 —-0.65 —0.62 2.05 2.00

This table reports bias and RMSE results for DGP5 with » = 1 and r = 2 for the PC, ALS* and
RS estimators with the true number of factors and estimated number of factors based on selection
criteria. The results are based on 1000 replications.
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Supplemental Material

Details of the data generating processes used in Section 7.4

DGP6, (Bai, 2009)
We consider the following model with two regressors, £ = 2, and r = 2 unobserved
factors:

Yit = P1x1at + Poxoie + N fr + Wi, (23)

with 51 =1, B2 =3, Ai = (A4, A2i)’ and fi = (fi4, f2r)'. The two regressors are

generated as

L1t = M1 + )\;ft + L/)\Z‘ + L/ft + M.t (24)
Tt = po + Nife + UNi + U fr + ot (25)

with ¢/ = (1,1). Hence, both regressors are correlated with the loadings, the
factors and the product of both. The unobserved factors and loadings follow

standard normal distributions,
Fir B N(0,1) for j = 1,2,

i1d
Aji ™~

(0,1) for j = 1,2,
where j = 1,2 denotes the factor subscript. The regression error is generated as
iid
Wit ™~ N(O, 4)
and the idiosyncratic components of the regressors are generated as
iid

77[72‘,5 ~ N(O, 1) fOl“ l = 1, 2,

where [ indicates the regressor and pu; =1 for [ = 1, 2.
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DGP7, (Chudik et al., 2011)
This simulation setup is based on a model with two regressors and three unob-
served factors,

Yit = P11 + Baxou + XS+ ui (26)

where 1 = B2 = 1, A; = (A4, A2y As)" and fir = (fie, for, f54)'. The regressors

are generated according to

T1it = ’7L¢ft + Mt (27)
o4t = 7é,ift + M2t (28)

where ~;; and ,; denote r-dimensional vectors of loadings for the regressors
that are independent of the loadings in the DGP of the dependent variable, \;.

The unobserved factors are generated as independent AR(1) processes,

fir= 05f 1 +vs,, j=1,2,3; t =—49,..,0,1,..,T

vp, S N(0,1-0.5%), f; 50 =0.

In order to reduce the effect of the initial value, the first 50 observations of f;;
are discarded. The factor loadings in the DGP of y;, are generated as

itd

Aii S N(0,1) for j =1,2,3

and are independently distributed from the factor loadings in the DGPs of the

regressors,
Ygi M N(0,1) for I =1,2; j=1,2,3

where [ denotes the index for the regressor z;;. The regression errors exhibit

mild heteroskedasticity and are generated as

(I %N(O, 0?), where o7 Z'rivdbl(().5, 1.5).
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The idiosyncratic components of the regressors are generated according to

Myt = PuyMat—1 + Vg for 1 =1,2; = —-49,..,0,1,.T

Vit~ N(0,1 = 02 ), M50 = 0, puy, ~ U(0.05,0.95) for I =1,2.

The first 50 observations of 1;; are discarded as “burn-in” period.

DGPS8, (Ahn et al, 2013):
For this DGP, we consider a model with £ =2 and r = 2,
Vit = 1214 + Boxau + N fr + wit (29)

where 1 = [y = 1, Aj = (M4, A2i) and fy = (fie, for). The regressors are
generated by

i = Mifie + A+ fie + e + pa (30)
Tt = Aoifor + Ao+ for + Mo + o (31)

DGP9 differs from DGP7 in that the regressor x;; for [ = 1,2 is only correlated
with one factor f;;, the loadings A;; and the product A;;f;; for j = 1,2, but is
independent of the other factor and loadings. The unobserved factors follow a

uniform distribution,

Fin CU(0,2) for j = 1,2,
and the loadings follow a normal distribution,

A " N(0,4) for j=1,2.

The regression errors are generated by an AR(1) process,

Uit = PUGt—1 + Vi for t = —49, cory 0, 1, T,
where p = 0.5, vy ~ N (0,1) and u; 50 = 0.
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The first 50 time observations of u;; are discarded. The idiosyncractic components

of the regressors are

i S N(0,1) and ;24 N(0,1) for [ = 1,2.
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