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Abstract

In this paper we compare alternative estimation approaches for factor aug-

mented panel data models. Our focus lies on panel data sets where the

number of panel groups (N) is large relative to the number of time peri-

ods (T ). The Principal Component (PC) and Common Correlated Effects

(CCE) estimators were originally developed for panel data with large N

and T , whereas the GMM approaches of Ahn et al. (2013) and Robert-

son and Sarafidis (2015) assumes that T is small (that is T is fixed in

the asymptotic analysis). Our comparison of existing methods addresses

three different issues. First, we analyze the possibility of an inappropriate

normalization of the factor space (the so-called normalization failure). In

particular we propose a variant of the CCE estimator that avoids the nor-

malization failure by adapting a weighting scheme inspired by the analysis

of Mundlak (1978). Second, we demonstrate how the design of the Monte

Carlo simulations favors some estimators, which explains the conflicting

findings from existing Monte Carlo experiments. Third, we analyze the

effects of estimating versus fixing the number of factors in advance.
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1 Introduction

The seminal work of Holtz-Eakin et al. (1988) has provided two important contri-

butions to the statistical analysis of panel data. First, it proposes a GMM frame-

work for estimating dynamic panel data models that were further developed and

popularized by Arellano and Bond (1991). This approach has become standard

in the dynamic analysis of panel data. The second contribution, the introduction

of time varying individual effects, was less influential and went largely unnoticed

for many years. For example, the excellent monograph of Baltagi (2005) – as

all other textbooks on panel data analysis of the early 2000s – does not consider

time varying individual effects or any other factor structure. Bai (2009) pointed

out that time varying individual effects are just a special case of a factor struc-

ture and provided a general framework for estimating a panel data model with

“interactive fixed effects”, which is also referred to as the factor-augmented panel

data model.

With the work of Ahn et al. (2001, 2013), Pesaran (2006), and Bai (2009) the

interest in models that account for time varying heterogeneity and cross-section

correlation surged considerably and the 25th International Conference on Panel

Data in Vilnius 2019 included a large number of papers dealing with factor-

augmented panel data models. In empirical practice, the Common Correlated

Effects (CCE) approach proposed by Pesaran (2006) has recently become very

popular among empirical researchers. This is due to the fact that this estimator is

easy to understand and implement, a STATA routine (xtmg) and a Gretl add-on

(xtcsd) is available and it performs well in Monte Carlo studies. It is however not

clear, whether the CCE approach is similarly attractive in empirical applications

where the number of time periods T is small (say 5 – 15). Ahn et al. (2013)

and Robertson and Sarafidis (2015) proposed a GMM approach that is shown to

be consistent for finite T , whereas the CCE and the Principal Component (PC)

estimator were developed for samples with large T and N . Su and Jin (2012)

and Westerlund et al. (2019) showed that the CCE approach is consistent and

asymptotically (mixed) normal if T is fixed and N →∞, whereas the consistency

of the PC estimator requires quite restrictive assumptions (such as i.i.d. errors

across time) in this case. It is however not clear how large T should be in order

to ensure reliable estimation and inference.

An important assumption for the CCE estimator is that the (weighted) mean
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of the factor loadings is different from zero. This assumption is difficult to verify

as the factors loadings are typically unknown. Furthermore, we show that the

CCE estimator is already biased if the mean of the factor loadings is O(N−1/2).

To escape such a “normalization failure”, we suggest a data dependent weighting

scheme that is inspired by the Mundlak (1978) approach. In our Monte Carlo

simulations we show that this simple weighting scheme performs well, whenever

the original CCE estimator suffers from a normalization failure.

The rest of the paper is organized as follows. Section 2 compares the exist-

ing estimation methods and Section 3 reviews and complements the asymptotic

results for fixed T and N → ∞. Possible problems with the normalization of

the estimators are analyzed in Section 4. An extension to multiple factors is

considered in Section 5 and empirical approaches for selecting the number of

common factors are examined in Section 6. We argue that popular selection

rules for the number of factors are generally inconsistent if T is fixed. The small

sample properties of alternative estimation procedures are investigated in Section

7. Specifically, we illustrate the detrimental effect of a normalization failure and

demonstrate the robustness of the Mundlak type CCE estimator. Furthermore,

we investigate the effects of estimating the number of factors on the performance

of the estimation procedures. Finally, we employ three general model setups from

the literature in order to compare the competing methods in more challenging

and realistic scenarios. Section 8 concludes.

2 Existing estimation approaches

Consider the factor augmented panel data model:1

yit = β′xit + eit (1)

with eit = λift + uit , (2)

where xit and β are k × 1 vectors. For the ease of exposition we first consider a

single factor with r = 1, that is, ft and λi are scalars. The extension to multiple

factors is considered in Section 5.

1The model may include further terms such as γ′idt, where dt is some observed strictly
exogenous regressor, cf. Pesaran (2006). As such additional terms are easily accounted for
without affecting the main results, these extensions are ignored.
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We adopt a “classical” panel data framework where the coefficient vector β

is the same for all cross-section units (homogeneous panel). Furthermore, we

assume that T may be small relative to N , which is typical for many panel

data applications. It should be noted that the asymptotic framework of Pesaran

(2006) and Bai (2009) assumes that N and T tend to infinity, whereas Ahn et al.

(2013) and Robertson and Sarafidis (2015) suppose that T is small and fixed.

Furthermore, the latter approach treats ft as parameters and thereby avoids

making any assumptions on these parameters, whereas Pesaran (2006) and Bai

(2009) assume that the factors are weakly correlated random variables and the

loadings are treated as parameters (or also as random variables). We make the

assumption that uit is independent (strictly exogenous) of xit, ft and λi. This

rules out dynamic specifications.2

It is well known that in the two way panel data model the individual and time

specific effects (which result as special cases of the factor model with constant

factor and loading, respectively) can be removed by a simple data transformation,

where the variables are adjusted by the individual and time specific averages. It

is not difficult to see that a similar transformation exists for the model with

interactive fixed effects, which is given by

yit − λiyt(λλλ) = β′ [xit − λixt(λ)] + uit − λiut(λ), (3)

where λλλ = (λ1, . . . , λN)′ and

yt(λλλ) =
1

Nλ2

N∑
i=1

λiyit

with λ2 = N−1
∑N

i=1 λ
2
i . The weighted averages xt(λ) and ut(λ) are constructed

in an analogous manner. Note that et(λλλ) = yt(λλλ)−β′xt(λ) = ft+ut(λ) serves as

an estimate of ft. Estimating the transformed regression (3) is equivalent to the

least-squares estimator, treating β and f1, . . . , fT as parameters and xit and λi

as regressors. Accordingly, the resulting estimator is efficient if uit
iid∼ N (0, σ2).

2In panels with individual specific parameters and fixed T , including weakly dependent
regressors (such as lagged dependent variables) result in a bias of order 1/T (the incidental
parameter problem). The GMM based estimators of Section 2.3 are able to cope with this bias
by introducing time dependent vectors of instruments. In this paper we abstract from such
complications. The reader interested in dynamic models is referred to Juodis and Sarafidis
(2018).
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2.1 The PC estimator

For the PC approach suggested by Bai (2009), equation (3) is replaced by the

feasible version

yit − λ̂iyt(λ̂λλ) = β′
[
xit − λ̂ixt(λ̂λλ)

]
+ eit − λ̂iet(λ̂λλ), (4)

where eit = yit−β′xit = λift + uit and λ̂i denotes the PC estimator of the factor

loading λi, which is equivalent to the eigenvector associated with the largest

eigenvalue of the sample covariance matrix Ωee(β) = T−1
∑T

t=1 et(β)et(β)′ with

et(β) = (yi1−β′xi1, . . . , yiT−β′xiT )′. As shown by Moon and Weidner (2015) the

sum of squared residuals can be obtained by minimizing the objective function

β̂ = argmin

{
µmin

[
N∑
i=1

(yi −Xiβ) (yi −Xiβ)′
]}

(5)

where yi = (yi1, . . . , yiT )′ and Xi = (xi1, . . . ,xiT )′ and µmin{A} denotes the

smallest eigenvalue of the matrix A. The minimum can be obtained by standard

numerical methods, whereas Bai (2009) proposed to compute the (nonlinear)

least-squares estimator of (4) sequentially by starting with the pooled OLS or

within-group estimator of β (that is by ignoring the factor structure in the errors).

The first principal component of the residual eit(β̂) yields a first estimator of the

common factor and the associated loadings are used to obtain the estimated

analog of the weighted averages in (4). The estimation procedure is iterated until

the estimators converge to the least-squares estimators of β and λ.

Moon and Weidner (2019) pointed out that the least-squares objective func-

tion may exhibit several local minima and therefore it is possible that the gradient

based minimization based algorithm fails to find the global minimum. To cope

with this problem, Moon and Weidner (2019) propose a nuclear norm penalty

that results in a convex optimization problem. Another possibility is to initialize

the minimization algorithm by a
√
NT -consistent initial estimator. In this case

it is sufficient to assume convexity in the 1/
√
NT vicinity around the true value.
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2.2 The CCE Estimator

In contrast to the PC estimator, the CCE approach proposed by Pesaran (2006)

does not adopt an (asymptotically) efficient weighting scheme, but employs in-

stead pre-specified weights λ0.
3 In practice λ0 = (1, . . . , 1)′ is the default option,

but any other granual weighting scheme is possible. This gives rise to a modified

transformation,

yit − λ∗i yt(λλλ0) = β′ [xit − λ∗i xt(λλλ0)] + uit − λ∗i ut(λλλ0), (6)

where

λ∗i = λi

∑N
i=1 λ

2
0,i∑N

i=1 λ0,iλi

is required to drop the factor from the model. Note that if λ0,i = λi for all i,

then λ∗i = λi and the transformation is equivalent to (3). Furthermore, if λ0,i = 1

then λ∗i = λi/λ, where λ = N−1
∑N

i=1 λi. By reorganizing (6), we obtain the

cross-section augmented regression equation,

yit = β′xit + λ∗i yt(λλλ0) + γ ′ixt(λλλ0) + vit , (7)

where γi = −λ∗iβ and vit = eit − λ∗i et(λλλ0). In practice, the nonlinear restriction

γi = −λ∗iβ is ignored and, therefore, γi is treated as an additional parameter.4

2.3 The HNR and ALS approach

While the CCE and PC approach replace the unobserved factor by (weighted) av-

erages of y1t, . . . , yNt and x1t, . . . ,xNt, the approaches suggested by Holtz-Eakin

et al. (1988) (HNR) and Ahn et al. (2013) (ALS) replace the unknown factor

3This does not imply, however, that the CCE estimator is always inefficient whenever λ 6= λ0.
As shown by Westerlund et al. (2019) the CCE estimator is asymptotically efficient if r = k+ 1
and uit is i.i.d. across i and t.

4The restricted version of the CCE estimator is considered in Everaert and De Groote (2016).
In our experience, imposing the nonlinear restriction does not result in an important gain in
efficiency. In the model with r > 1 the restriction cannot be imposed anyway.
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loadings by linear combinations of yi1, . . . , yiT and xi1, . . . ,xiT :

HNR:
1

ft−1
(yi,t−1 − β′xi,t−1) = λi +

1

ft−1
ui,t−1 (8)

ALS:
1

fT
(yiT − β′xiT ) = λi +

1

fT
uiT . (9)

The main difference between these two approaches is that in (8) the linear combi-

nation is time dependent whereas in (9) the linear combination is the same for all

time series. As we do not see any advantage in using the variant HNR (and in our

simulations the HNR estimator tends to perform worse than the ALS estimator),

we focus on the ALS variant in the following analysis.

Inserting (9) in the model (1) yields

ALS: yit = β′xit + θtyiT − θtβ′xiT + νit for t = 1, . . . , T − 1, (10)

where θt = ft/fT and νit = uit − θtui,T . Note that this approach involves T − 1

additional parameters θ1, . . . , θT−1, whereas the CCE approach involves N(k+ 1)

additional parameters, which may be a much larger number of parameters, in

particular if N is large relative to T .

Equation (10) can be estimated as a linear equation by ignoring the nonlinear

relationship δt = θtβ and treating δt as additional parameters, cf. Hayakawa

(2012). Furthermore, as the regressor yi,T is correlated with the errors, an

instrumental variable approach is required for estimating the coefficients effi-

ciently. Since it is assumed that xit is strictly exogenous, we employ observa-

tions of all time periods to construct the Tk × 1 instrumental variable vector

zi = (x′i1,x
′
i2, . . . ,x

′
iT )′. The first stage regression yields ŷiT = π̂′zi, where π̂′zi

is the fitted value from a regression of yiT on zi. The second stage regression is

yit = β′xit + θtŷiT − θtβ′xiT + νit.

Estimating the latter equation by OLS yields the two-stage least squares (2SLS)

estimator. Since the error term νit is autocorrelated (due to the common com-

ponent θtuiT ), a GMM estimator based on the moment condition E(νi ⊗ zi) = 0

with νi = (νi1, . . . , νiT )′ is more efficient, in general.
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2.4 The RS estimator

The GMM estimator of Robertson and Sarafidis (2015) results from multiplying

the original model by the vector of instruments zi (e.g. the instruments of the

ALS estimator) such that

ziyit = (zix
′
it)β + (ziλi) ft + ziuit

ỹi = X̃iβ + γift + ũi (11)

where ỹi = ziyit, X̃i = zix
′
it, γi = ziλi, and ũi = ziuit. The transformed model

(11) results in a new factor model with m = dim(zi) = kT observations in N

cross section units. In this model γi and ft are treated as unknown parameters

and the GMM estimator results from minimizing the criterion function

Q(β,γ1, . . . ,γN , f1, . . . , fT ) =

(
N∑
i=1

ỹi − X̃iβ − γift

)′
WN

(
N∑
i=1

ỹi − X̃iβ − γift

)
,

whereWN is a consistent estimator of the optimal weighting matrix

[
E
(

1
N

N∑
i=1

ũiũ
′
i

)]−1
.

Robertson and Sarafidis (2015) propose to minimize the function Q(·) by apply-

ing a sequential least-squares (SLS) estimator. Let f 0
t denote some starting value.

Replacing ft by f 0
t the parameters β and γi can be estimated by OLS from (11).

Replacing γi by the respective OLS estimator, we can obtain an updated estima-

tor for ft from running T cross-section regressions (11) for t = 1, . . . , T . A linear

variant of this estimation approach is proposed by Juodis and Sarafidis (2020).

It is important to notice that the first order condition of the SLS estimator

is invariant to some scaling factor c, such as f ∗t = cft and λ∗i = λi/c. The

PC estimator implies c = 1/
√∑T

t=1 f
2
t and the original ALS estimator imposes

c = 1/fT . The objective function of the least-squares estimator does not impose

any normalization of the factors. There exists a unique minimum for the product

γift, but the decomposition into γi and ft is somewhat arbitrary and depends on

the starting value of iterative algorithm.
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3 Asymptotic properties for fixed T

The asymptotic properties of the PC and CCE estimators are typically derived by

adopting a joint limit theory, where T and N tend to infinity (e.g. Pesaran 2006,

Bai 2009, Greenaway-McGrevy et al. 2012 and Westerlund and Urbain 2015).

The asymptotic analysis revealed that the PC and CCE estimators are
√
NT -

consistent whenever
√
T/N → 0 and

√
N/T → 0. This requirement is fulfilled

if for some fixed constant, 0 < a < ∞, the paths of the sample sizes admit the

inequality aT 0.5+ε < N < aT 2−ε for some ε > 0. Statistical inference based on

these estimators suffers from an asymptotic bias whenever T/N → κ > 0. This

bias does not show up in the asymptotic analysis of Pesaran (2006), as he assumes

that the coefficient vector βi = β+vi is individual specific, where vi is a random

error that prevents the estimator from achieving the usual
√
NT convergence

rate. In the literature cited above, bias-corrected estimators are suggested that

remove the asymptotic bias from the limiting distribution.

For fixed T and N → ∞ the CCE estimator of the factors is consistent as

et(λ0) converges in probability to cft, where c is some scale factor that is different

from zero. Therefore, the errors-in-variable problem vanishes for N → ∞ and

fixed T (cf. Westerlund et al. 2019).

For the asymptotic analysis of the PC estimator, it is usually assumed that

min(N, T )→∞ (cf. Bai 2009) and, therefore, the PC estimator may be inconsis-

tent if T is fixed and N →∞ (see Remark 1 of Bai 2009). Under more restrictive

assumptions it is however possible to show that the PC estimator of the factors

is consistent if T is fixed and N → ∞. To focus on the main issues assume

that β is known. Furthermore, we assume that the vectors fff = (f1, . . . , fT )′

and λλλ = (λ1, . . . , λN)′ are parameter vectors to be estimated. The PC estimator

solves the first order conditions:

1

N

N∑
i=1

(eeei − f̂ff λ̂i)λ̂i = 0 where ei = (ei1, . . . , eiT )′ (12)

1

T

T∑
t=1

(eeet − f̂tλ̂λλ)f̂t = 0 where et = (e1t, . . . , eNt)
′, (13)
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subject to T−1
∑T

t=1 f̂
2
t = T−1f̂ff

′
f̂ff = 1. Since λ̂i = T−1f̂ff

′
eeei, we obtain

1

N

N∑
i=1

(
ei −

1

T
f̂ f̂ ′ei

)
e′if = Mf̂

(
1

N

N∑
i=1

eie
′
i

)
f̂ = 0, (14)

where Mf̂ = IT − T−1f̂ f̂ ′ with Mf̂ f̂ = 0. For N →∞ we have

1

N

N∑
i=1

eie
′
i

p→ σ2
λff

′ + Σu,

where σ2
λ = plim

N→∞
N−1

∑N
i=1 λ

2
i , Σu = plim

N→∞
N−1

∑N
i=1 uiu

′
i, and ui = (ui1, . . . , uiT )′.

Assume that uit is i.i.d. with Σu = E(u2it)IT . As N →∞ the moment condition is

solved by letting f̂ = f and, therefore, the PC estimator for f is consistent (up to

a scaling factor). If uit is heteroskedastic or autocorrelated, then MfΣΣΣufff 6= 0 in

general and, therefore, the PC estimator is inconsistent as N →∞. On the other

hand, if both N and T tend to infinity, the PC estimator is consistent no matter

of a possible heteroskedasticity or (weak) autocorrelation (cf. Chamberlain and

Rothschild 1983).

The asymptotic theory for the HNR and ALS estimators assumes that T

is fixed and N tends to infinity. The GMM estimator is based on kT (T − 1)

moment conditions with k + T − 1 unknown parameters. Therefore, no problem

arises if T is fixed and N tends to infinity. Accordingly, the estimators are

asymptotically normally distributed and centered around zero. Of course the

problem of instrument proliferation arises if T gets large and the asymptotic

theory breaks down if T 3/N → κ > 0 (cf. Bekker 1994 and Lee et al. 2017).5

4 Identification

All estimation approaches require some normalization of the factors or loadings

some of which may be problematical in empirical practice. The CCE and ALS

5A practical solution is to reduce the set of instruments (cf. Juodis and Sarafidis 2018) or
applying other methods of dimensionality reduction (Breitung 2015, Section 15.2.3).
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approaches are based on the following conditions:

CCE:
1

N

N∑
i=1

λ0,iλi 6= 0, (15)

ALS: fT 6= 0 , (16)

whereas the restriction for the PC estimator T−1
∑T

t=1 f
2
t = 1 is unproblematic

in practice. The violation of the restrictions (15) and (16) may result in poor

distributional properties of the estimator. If, for example, N−1
∑
λ0,iλi = 0, then

the cross section mean et(λλλ0) does not depend on the factor and, therefore, the

CCE estimator is biased whenever xit and λift are correlated (cf. Westerlund and

Urbain 2013). Similarly, if fT = 0, then yiT = β′xiT + uiT and the instruments

are not able to identify the parameters θt and δt.

One may argue that the chance that (15) or (16) is exactly zero is negligible,

so that problems only occur in rare cases (if at all). Unfortunately, this is not

true, as the problems already arise whenever N−1
∑
λ0,iλi = Op(N

−1/2). For

illustration, let us assume λ0,i = 1, such that yt(λλλ0) = yt and λ = Op(N
−1/2).

Including the cross-section averages yt and xt is equivalent to augmenting with

et and xt. Furthermore,

et = λft + ut

= λf ∗t ,

where f ∗t = ft + (ut/λ). Since in our case ut/λ = O(1), it follows that the factor

f ∗t is different from ft. In this case, et does not represent the true factor and

the CCE estimator of β is inconsistent whenever the factor is correlated with the

regressors.

To sidestep this difficulty, we follow the analysis of Mundlak (1978) and de-

compose the factor loadings into a systematic component related to the ordinary

average xi and the projection error ξi:

λi = γ0 + γ ′1xi + ξi, (17)

where xi = T−1
∑T

t=1 xit and ξi is uncorrelated with xi. In this specification γ ′1xi

represents a possible linear dependence of λi on the regressors that gives rise to
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an endogeneity bias. Inserting (17) in (1) yields

yit = β′xit + λ∗i ft + e∗it ,

where λ∗i = γ0+γ ′1xi, e
∗
it = ξift+uit and E(eit|xit) = 0. This estimation equation

is related to the projection approach of Hayakawa (2012), who considers a pro-

jection of λi on the vector zi = vec(Xi), also known as Chamberlain projection.

A second difference to the Hayakawa (2012) approach is that he employs the pro-

jection for GMM estimation of ALS, whereas we employ the Mundlak projection

in the context of CCE estimation.

The weighting scheme for the CCE estimator results as

yt(λ
∗) =

1

Nλ2∗

N∑
i=1

λ∗i yit

= γ̃0

(
1

N

N∑
i=1

yit

)
+ γ̃ ′1

(
1

N

N∑
i=1

xiyit

)
where γ̃0 = γ0/λ2∗ and γ̃1 = γ1/λ2∗

and λ2∗ = 1
N

∑N
i=1(λ

∗
i )

2. Since γ̃0 and γ̃1 are unknown, we augment the regression

by the following (k + 1)2 cross section averages:

1

N

N∑
i=1

yit ,
1

N

N∑
i=1

x1,it , · · · , 1

N

N∑
i=1

xk,it ,

1

N

N∑
i=1

x1,iyit ,
1

N

N∑
i=1

x1,ix1,it , · · · ,
1

N

N∑
i=1

x1,ixk,it ,

...
...

...

1

N

N∑
i=1

xk,iyit ,
1

N

N∑
i=1

xk,ix1,it , · · · ,
1

N

N∑
i=1

xk,ixk,it .

This estimator is referred to as CCE(M).6

Similar normalization problems arise for the HNR and ALS approaches, but

these estimators apply a normalization to the factors. For example, if fT is zero,

6This estimator can be seen as a special case of the combination-CCE estimator proposed
by Karabiyik et al. (2019).
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then the linear combination of yiT and xiT is not able to identify the factor and,

therefore, the ALS approach is biased whenever fT = 0 and xit is correlated with

λift. If T is small then one may try out all possible time periods for normalization

and select the normalization that minimizes the GMM objective function. For

a large number of time series this approach is rather time consuming. In such

cases the normalization may be selected by estimating the factor by the PC

approach. Then, the normalization period with the largest factor (in absolute

value) is selected as the normalization period.

In the appendix of Ahn et al. (2013) a more flexible approach is proposed,

which we refer to as ALS∗. Let H denote the T × (T −1) orthogonal complement

of f = (f1, . . . , fT )′ such that H ′f = 0. To obtain (10) we let

H ′ALS =


1 0 0 · · · 0 −θ1
0 1 0 · · · 0 −θ2
...

. . .
...

0 0 0 · · · 1 −θT−1

 .

To avoid normalizing T − 1 elements to unity, we transform the equations for

unit i by using a more general matrix with property H ′f = 0, such that H ′ei =

H ′(yi−Xiβ), where yi = (yi1, . . . , yiT )′, Xi = (xi1, . . . ,xiT )′, ẽi = H ′ei. Given

β, the estimator of H is based on the moment condition E(H ′eiz
′
i) = 0, where

zi = vec(Xi). Accordingly, a GMM estimator for H can be obtained as

Ĥ = argmin
HHH

{
tr
(
H ′ΩezΩ

−1
zz Ω′ezH

)}
s.t. H ′H = IT−1,

where Ωez = N−1
∑N

i=1 eiz
′
i and Ωzz = N−1

∑N
i=1 ziz

′
i. Accordingly, the estima-

tor Ĥ is obtained as the matrix of eigenvectors corresponding to the smallest

T − 1 eigenvalues of the matrix ΩezΩ
−1
zz Ω′ez. Given Ĥ , the estimator for β is

obtained from the OLS regression

Ĥ ′yi = Ĥ ′Xiβ + ẽi.

This estimation step yields an updated estimator for β that can be used to obtain

a new estimator of H , until convergence. A drawback of this variant of the ALS

estimator is that no standard errors for β are readily available, as the respective
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estimation step is affected by the estimation error in Ĥ .

It is interesting to compare this approach to the PC estimator of Bai (2009),

which can be obtained by solving the problem

H̃ = argmin
HHH

{tr (H ′ΩeeH)} s.t. H ′H = IT−1,

where Ωee = N−1
∑N

i=1 eie
′
i. Accordingly, the difference between the PC and

ALS/RS approaches is that the former extracts the factors from the residual

vector ei, whereas the ALS/RS approach first projects the residuals on the space

spanned by the vector of instruments zi. Accordingly, the latter approach requires

that the factors are correlated with the regressors, whereas the PC approach does

not.

Robertson and Sarafidis (2015) show that their estimator considered in Sec-

tion 2.4 is asymptotically equivalent to ALS∗ if the error uit is i.i.d. If uit is

heteroskedastic and/or serially correlated, then the weighting matrix Wn results

in an asymptotic efficiency gain.

5 Multiple factors

So far we assumed that there is only a single factor. It is not difficult to see that

for a panel data model with a vector of r ≥ 1 factors fff t and the conformable

r × 1 loading vector λλλi, the estimation equation (3) is given by

yit − λλλ′iyyy∗t (ΛΛΛ) = β′
[
xit − λiXXX

∗
t (Λ)

]
+ uit − λλλiut(ΛΛΛ), (18)

where ΛΛΛ = (λλλ1, . . . ,λλλN)′ and

yyy∗t (ΛΛΛ) =

(
N∑
i=1

λλλiλλλ
′
i

)−1 N∑
i=1

λiyit

and XXX
∗
t (ΛΛΛ) =

(
N∑
i=1

λiλ
′
i

)−1 N∑
i=1

λixxx
′
it

and the r × 1 vector ut(Λ) is constructed in a similar manner. This shows that

efficient estimation requires r linear independent weighting schemes applied to

yyyt = (x1t, . . . , yNt)
′ and XXX t = (x′1t, . . . ,x

′
Nt)
′.
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To show consistency of the modified CCE estimator, CCE(M), a different

reasoning is required. For the ease of exposition assume k = 2 regressors and

r = 2 factors. We obtain 2 different weighting schemes:

y
(1)
t =

1

N

N∑
i=1

x1,iyit x
(1)
1,t =

1

N

N∑
i=1

x1,ix1,it x
(1)
2,t =

1

N

N∑
i=1

x1,ix2,it

y
(2)
t =

1

N

N∑
i=1

x2,iyit x
(2)
1,t =

1

N

N∑
i=1

x2,ix1,it x
(2)
2,t =

1

N

N∑
i=1

x2,ix2,it

that are used to obtain the following relationships:(
y
(1)
t

y
(2)
t

)
−

(
x
(1)
1,t x

(1)
2,t

x
(2)
1,t x

(2)
2,t

)
β =

(
ξ
(1)
1 ξ

(1)
2

ξ
(2)
1 ξ

(2)
2

)(
f1,t

f2,t

)
+Op(N

1/2)

where Ξ
(`)
k = N−1

∑N
i=1 x`,iλk,i. Accordingly, if the matrix

Ξ =

(
ξ
(1)
1 ξ

(1)
2

ξ
(2)
1 ξ

(2)
2

)

is invertible, we can obtain the linear combinations that represent the factors as(
f1,t

f2,t

)
= Ξ−1

(
y
(1)
t

y
(2)
t

)
− Ξ−1

(
x
(1)
1,t x

(1)
2,t

x
(2)
1,t x

(2)
2,t

)
β +Op(N

1/2)

Thus, the common component λ1,if1,t + λ2,if2,t can be (asymptotically) repre-

sented by a linear combination of the 6 means y
(1)
t , y

(2)
t , x

(1)
1,t , x

(1)
2,t , x

(2)
1,t , and,

x
(2)
2,t .

7

6 Determining the number of factors

As argued by Pesaran (2006), the CCE estimator is consistent if the actual num-

ber of factors r is not larger than k+ 1. This requires however that r− 1 factors

7The alert reader may have noticed that the linear combination does not involve the ordinary
cross-section averages N−1

∑
i yit, N

−1∑
i x1,it and N−1

∑
i x2,it that are employed in the

CCE estimator. These additional means are not required for identification but often improve
the statistical properties of the estimator. They may also help to escape the problems resulting
from a (nearly) singular matrix Ξ.
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are correlated with the k regressors. This is due to the fact that one factor can

be identified by the cross-section average et(λ0) = yt(λ0)−β′xt(λ0), whereas the

identification of the other factors requires some relationship to the cross-section

averages of the regressors xt. Furthermore, the correlation pattern needs to be

sufficiently informative for identifying the factors.

It is often argued that the CCE approach is attractive, as we do not need

to select the number of factors, whereas for all other approaches, the number of

factors needs to be known (or determined from the data). If the number of factors

is smaller than k + 1 and the normalization requirements are satisfied, then the

CCE estimator is consistent, but the small sample properties may suffer from

including many cross-section averages. This is comparable to applying the PC

estimator with r = k+ 1 factors. As shown by Moon and Weidner (2015), under

some additional assumptions,8 the PC estimator is robust against over-specifying

the number of factors. A similar result is obtained by Westerlund et al. (2019)

for the CCE estimator. Since under certain conditions the CCE estimator for

β is as efficient as the OLS estimator using the true factors, there is no gain in

(asymptotic) efficiency by changing the weighting scheme or imposing nonlinear

restrictions to the auxiliary parameters that are implied by knowing the number

of factors. It is however not clear whether this result provides a good guidance

for empirical applications in finite samples.

In practice, it may therefore be interesting to estimate the number of factors.

To this end we may invoke the criteria proposed by Bai and Ng (2002) and Ahn

and Horenstein (2013). Both approaches are based on the eigenvalues of the

residual covariance matrix. Denote by µ̂1 ≥ · · · ≥ µ̂T the ordered eigenvalues

of the T × T sample covariance matrix Ω̂ee = N−1
∑N

i=1 êiê
′
i, where the residual

vector êi is obtained by estimating the model with maximum number of factors

r∗. Furthermore, let

σ̂2
u(r) =

1

NT

N∑
i=1

T∑
t=1

û2it =
1

T

T∑
j=r+1

µ̂j

where ûit denotes the residual from estimating the model with r factors. Bai and

8The proof of Moon and Weidner (2015) requires T →∞ and is based on the i.i.d. assump-
tion but they note that it appears that their results extend to a less restrictive setting.
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Ng’s (2002) criterion ICp2 minimizes

BN(r) = log
(
σ̂2
u(r)

)
+ r

N + T

NT
log(min[N, T ]),

for r ∈ {0, 1, . . . , r∗}, whereas the criterion proposed by Ahn and Horenstein

(2013) maximizes the eigenvalue ratios

AH(r) = µ̂j/µ̂j+1 for r ∈ {1, 2, . . . , r∗}

and the mock eigenvalue µ̂0 =
(∑T

j=1 µ̂j

)
/ log(T ). Let r0 denote the true number

of factors. If β̂∗ − βββ = Op(1/
√
NT ), we have

1

NT

N∑
i=1

T∑
t=1

(yit − β̂′∗xit)2 =
1

NT

N∑
i=1

T∑
t=1

e2it − 2
1

NT

N∑
i=1

T∑
t=1

eitx
′
it(β̂ββ∗ − βββ) +Op

(
1

NT

)

=
1

NT

N∑
i=1

T∑
t=1

e2it +Op

(
1√
NT

)
.

Accordingly, the BN and AH criteria include an additional term of order

Op((NT )−1/2) that does not affect the asymptotic properties as N and T tend to

infinity.

Let us consider the asymptotic properties of the respective estimators r̂ if T

is fixed and N → ∞. In this case limN→∞ P (r̂ < r0) = 0 is ensured by (cf. Bai

and Ng 2002)

c(N, T ) =
N + T

NT
log(min[N, T ])→ 0. (19)

As condition (19) is not satisfied for fixed T , the BN criterion may select some

r̂ < r0, even if N →∞. The requirement limN→∞ P (r̂ > r0) = 0 implies

lim
N→∞

P
(
(r − r0)c(N, T ) + log

(
σ̂2
u(r)

)
− log

(
σ̂2
u(r0)

)
> 0
)

= 1 for all r > r0.

(20)

Since log
(
σ̂2
u(r0)

)
− log

(
σ̂2
u(r)

)
= Op(N

−1) +Op(T
−1) for r > r0 (cf. Lemma 4 of

Bai and Ng 2002), it may happen that for small T , condition (20) is violated as

well. Hence, the BN criterion may not be consistent for fixed T . In practice it is
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nevertheless possible that the BN criterion selects the number of factors consis-

tently, if the eigenvalues µ̂1, . . . , µ̂r0−1 are sufficiently large and µ̂r0+1, . . . , µ̂r∗ are

sufficiently small relative to µ̂r0 .

Since for fixed T , µ̂r is Op(1) for all r = 1, . . . , T , it follows that the eigenvalue

ratio AH(r) is Op(1) for fixed T and all r ∈ {1, . . . , r∗}. Therefore, the AH

criterion cannot be shown to be a consistent selection rule for fixed T . It may

nevertheless perform well, if the slope of the eigenvalue function is sufficiently

steep at r = r0.

A possibility to sidestep these problems is to adopt the BIC selection criteria

of Ahn et al. (2013) and Robertson and Sarafidis (2015). These criteria are based

on the Sargan-Hansen specification test for GMM estimators. If the number of

factors is too small, then the remaining cross-correlation among the residuals

results in a large value of the test statistic. The penalty function is constructed

such that the sum of the test statistic and the penalty function obtains a minimum

at the correct number of factors as N tends to infinity.

7 Monte Carlo Simulations

In this section we assess the performance of alternative estimation methods in

various settings and highlight some favorable and problematic aspects of alterna-

tive estimation methods. The simulation results in Sections 7.1 – 7.2 are based

on the following simple data-generating process

yit = βxit + λift + uit (21)

xit = µ+ λift + λi + ft + εit (22)

with β = 0.5 and r = 1. Hence, the regressor is correlated with the loadings, the

factor and the product of both. The regression error uit and the idiosyncratic

component of the regressor, εit, are independent standard normal random vari-

ables. The constant µ is drawn from a U [0, 1] distribution. The DGPs in Sections

7.1 to 7.2 differ with respect to the distributional assumptions on the factors and

their loadings.

The (near) violation of the normalization restrictions for the CCE and ALS

estimators are examined in Section 7.1. In Section 7.2, we compare the PC and
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CCE estimator with regard to their different weighting schemes. In Section 7.3

we address the estimation of the number of factors, r, for the PC, ALS* and RS

approaches. There, we consider a similar DGP as in (21) and (22) for r = 1 and

r = 2. The last subsection 7.4 considers the relative performance of the CCE, PC,

ALS* and RS, estimation approaches in more general settings that are based on

the DGPs considered by Bai (2009), Chudik et al. (2011) and Ahn et al. (2013).

7.1 Normalization failure

As argued in Section 4, the CCE and ALS/HRN approaches may suffer from a

violation of their normalization conditions. The performance already deteriorates

if the parameters approach the
√
N -vicinity of the problematic subspace. In

a model with a single factor, the normalization of the equally weighted CCE

estimator (λ0,i = 1) requires that λ = N−1
∑N

i=1 λi 6= 0. We have argued that

whenever λ = c/
√
N , the factor cannot be represented by a linear combination

of yi and xi as N →∞.

Sarafidis and Wansbeek (2012) and Westerlund and Urbain (2013) analyze the

performance of the CCE estimator when the normalization condition is violated.

In order to study the performance of the CCE estimator when λ is different but

close to zero, we consider the model in (21) and (22), where we generate the

factor loadings as

DGP1: λi ∼ N (µλ, 1) for µλ ∈ [0, 1] and ft ∼ N (0, 1).

Hence, the loadings are normally distributed with expectation that ranges from

0 to 1.

Figures 1 (a) – (d) present the absolute bias for the original CCE, the Mundlak

type CCE(M) estimator suggested in Section 4, and the PC estimator forN = 100

and N = 500 with a small (T = 10) and moderate (T = 50) number of time

periods. The PC estimator of Bai (2009) is obtained by a sequential estimation

procedure using the pooled OLS estimator as starting value for β (see Section

2.1). It turns out that the CCE estimator is severely biased even if the mean of

λi is substantially different from zero. This is due to the fact that a bias already

occurs whenever µλ = O(N−1/2). This reasoning predicts that for fixed µλ the

bias gets smaller if N increases. Indeed, this is what we observe when comparing
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panel (a) and (c) as well as (b) and (d). Note that
√

100/
√

500 ≈ 0.44 and,

therefore, we expect that the bias reduces to a value less than one half which is

a good approximation for µλ > 0.1. The other two estimators, PC and CCE(M),

are virtually unbiased, which is expected as the estimators do not rely on the

assumption µλ 6= 0.

In a similar manner, the normalization of the ALS estimator may be prob-

lematic if the factors approach the problematic subspace. The ALS estimator

requires fT 6= 0. To examine the consequences of an (approximate) violation of

this normalization condition, we consider the model in (21) and (22) where the

factors are generated as:

DGP2: ft ∼ N (0, 1) for t = 1, ..., T − 1 and fT ∼ N (µT , 0.5) for µT ∈ [0, 1]

and the factor loadings are standard normally distributed. As the final value of

the factor is crucial, we generate it by a distribution with expectation ranging

from 0 to 1.

Figures 1 (e) – (f) present the bias for the ALS estimator when T = 5 and

N = 100 or N = 500, respectively. As expected, the ALS estimator is severely

biased whenever µT = E(fT ) is small. But even for moderate values of µT the

bias remains substantial and decreases only gradually for larger values of µT . It

should be noted that if the regression includes an individual specific intercept,

then the factors are demeaned and, therefore, assuming a nonzero mean appears

inappropriate.

Figures 1 (e) – (f) also present the bias of two estimators that circumvent the

problems with the normalization of the original ALS estimator. The estimator

ALS∗ refers to the GMM estimator that estimates the matrix H that is used

to remove the factors (see Section 4).9 Our simulation results suggest that this

estimator performs quite well in terms of bias, as it is virtually unbiased for

all values of µT . Another approach to escape the normalization problem is the

GMMmax estimator, where in a first step the factor is estimated using the PC

approach. In the second step, the time period for the normalization is chosen

according to the maximum absolute value of the estimated factor and the original

ALS estimator is adapted, where the time period with the largest factor is shifted

to the end of the sample. Both estimators are able to reduce the bias dramatically.

9Following Ahn et al. (2013), we use β = 0 as starting value for the iterative ALS∗ procedure.
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The figures also include the RS estimator, which corresponds to the FIVU

estimator of Robertson and Sarafidis (2015). This estimator does not require

fT 6= 0 for normalization (see Section 2.4) and thus the bias does not depend on

the value of µT . The RS estimator has a slight advantage in terms of bias when

N = 100. With N = 500, the bias of the ALS∗, GMMmax and RS estimators is

nearly zero.

To summarize, our findings confirm earlier evidence that the normalization

applied for the original CCE or ALS/HNR estimators may be problematical,

whenever the factors or loadings approach a normalization failure. It is however

easy to adjust the estimators such that they perform well for all values of the

parameter space. Our Monte Carlo exercise indicates that the PC and CCE(M)

estimators as well as ALS∗, GMMmax and RS are very robust against a possible

normalization failure.

7.2 Fixed versus data driven weights

From the reasoning of Section 2, it turns out that the CCE estimator is expected

to outperform the PC estimator whenever the weighting scheme λλλ0 comes close

to the actual set of loadings λλλ, see also Westerlund and Urbain (2015). For equal

weights with λ0,i = 1 for all i, the CCE estimator performs well, whenever (i) the

absolute value of the mean of the loadings is large (to avoid the normalization

failure) and (ii) the variance of the loadings is small. Our DGP3 represents

such a scenario, whereas the DGP4 favors the PC estimator by generating factor

loadings with large variance,

DGP3: λi ∼ N (1, 0.1), ft ∼ N (0, 1)

DGP4: λi ∼ N (1, 3), ft ∼ N (0, 1).

The remaining details of the simulation setup are identical to the model in (21)

and (22).

The results reported in Table 1 clearly confirm our assertion that the CCE

estimator outperforms the PC estimator in DGP3, whereas the PC estimator

performs better for DGP4. This finding suggests to find a weighting scheme that

comes close to the actual distribution of the loadings. This is the notion behind

the Mundlak type CCE variant that employs the individual specific means yi
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and xi, since a linear combination of these averages can be seen as (CCE type)

estimates of the loadings λi. Therefore, we hope to improve the original CCE

estimator by applying weights that are correlated with the loadings. Our results

from the simple Monte Carlo experiment suggest that the CCE(M) approach of

choosing a data driven weighting scheme performs similar to the best estimator

in the respective situation. Furthermore, as shown in the previous subsection,

the CCE(M) estimator sidesteps the risk of a normalization failure. Provided

that this estimator is similarly easy to compute as the original CCE estimator, it

appears as if this estimator is a robust and efficient variant of the original CCE

estimator.

7.3 Selecting the number of factors

In practice, it is necessary to select the number of factors for the PC and GMM

estimation procedures. The choice is important, since misspecifying the number

of factors can have severe consequences: Overspecifying the number of factors

can have adverse effects on the sampling properties of the estimators, while an

underspecification may lead to inconsistent estimates if the ignored factors are

correlated with the regressors. One possibility for selecting the number of fac-

tors is simply to specify the number according to some ad hoc rule, for instance

r = k + 1, as usually advocated for the CCE approach. Another option is to use

a consistent criterion for the number of factors, such as the ones proposed by Bai

and Ng (2002) (hereafter: BN) and Ahn and Horenstein (2013) (AH). Note that

these selection criteria were developed for the pure factor model without regres-

sors. Furthermore, the asymptotic theory underlying these approaches requires

T →∞ (see Section 6). It is therefore interesting to investigate the performance

of these criteria that were not initially developed for a small number of time pe-

riods. For the GMM estimators, the number of factors can be estimated using

model information criteria, such as the Schwarz Criterion (BIC) considered by

Ahn et al. (2013) and Robertson and Sarafidis (2015).

In order to study the performance of these selection criteria, we consider a

similar model as in (21) and (22) with r = 1 and r = 2. For the loadings and

factors, we assume the following DGP,

DGP5: λj,i ∼ N (0, 1), fj,t ∼ N (0, 1) for j = 1, 2.
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As reported in Table 2, the hit rates for a single factor, r = 1, are nearly 100%

for the BN and AH criteria whenever T ≥ 10. For T = 5 the BN criterium does

not work and nearly always picks the maximum number of factors. On the other

hand the AH criterion works remarkably well, even for a number of time periods

as small as T = 5.10 The hit rates for the BIC criteria exceed 90% in all but one

case. For r = 2 the hit rates for the AH criterion are substantially lower, but

the estimators are still quite accurate, even if T = 10 and N is large. For the

BIC criteria, the hit rates decrease by only a small amount and do not seem to

be very sensitive to the number of factors, in particular if N > 100.

In Table 3, we report bias and RMSE for the PC, ALS∗ and RS estimators

based on the true number of factors (r = 1 and r = 2) as a benchmark. In

addition we assess the performance of the estimators, when the number of factors

is estimated based on selection criteria.11 As expected, using the AH method for

r = 1 in order to estimate the number of factors for the PC estimator produces

bias and RMSE results that are of similar magnitude as the true number of

factors. Applying the BIC criterion to estimate the number of factors for the

GMM estimators produces very accurate estimates when N > 100, accordingly.

For r = 2, the performance of the PC estimator using the AH criterion shows

a considerable bias, in particular if T is as small as 5. In contrast, bias and RMSE

of the GMM estimators applying the BIC criterion are similar to the estimators

based on the true number of factors when N > 100. When T increases to 10,

there is still a substantial performance gap between the PC estimator using the

AH method and the PC estimator based on the true number of factors, whereas

the GMM estimators based on the BIC criterion perform much better. This is

surprising as Table 2 suggests that the hit rates of the BIC criterion are only

slightly better in these cases. The reason is that the AH criterion tends to

underestimate the number of factors whereas the BIC criterion overestimates the

number of factors in case the correct number of factors is not found.

Consider, for instance, T = 10 and N = 500. The BIC estimator finds the

10The performance is similar to the case where β is known (not shown). Therefore, the
estimation of β does not seem to have an important effect on the performance of the BN and
AH selection criteria. Furthermore, the growth ratio statistic of Ahn and Horenstein (2013)
performs similar to the eigenvalue ratio statistic. For reasons of space we do not show the
respective results.

11To save space, we do not show results for the estimators based on the BN criterion, since
the hit rates are either 0% or (close to) 100%.
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correct number of factors (r = 2) in more than 95% of the cases and overestimates

the number in the other (< 5%) cases. The AH estimator finds the correct value

of r = 2 in 89.8% of the cases, however underestimates the number in all other

cases. Since the estimator is biased if the number of factors is too small, the

AH criterion tends to produce a large negative bias in some cases, whereas the

BIC criterion tends to produce unbiased estimators with a slightly larger variance

than estimating with the correct number of factors in some very rare cases.

7.4 Performance in more general setups

So far the DGPs considered in this paper were simplified versions of the ones

considered in the literature and focus on the particular features of these models.

In the following, we study the relative performance of the CCE, PC, ALS∗ and

RS approaches in more sophisticated simulation setups, similar to the simulation

experiments of Bai (2009), Chudik et al. (2011) and Ahn et al. (2013). The

details of these data generating processes are presented in the online appendix

to this paper. The Monte Carlo design of Bai (2009) employs two regressors

that are correlated with two factors, their loadings and the product of both.

The idiosyncratic error is i.i.d. across individuals and time periods. We refer to

this model as DGP6. DGP7 refers to the factor model of Chudik et al. (2011)

that includes two regressors and three factors. A special feature of this DGP

is that the factor loadings of the regressors are independent of the loadings in

the errors eit. Accordingly, no endogeneity bias arises from estimating the model

by a pooled OLS estimator. The factors are generated by independent AR(1)

processes and the idiosyncratic component uit is heteroskedastic but mutually

and serially uncorrelated. DGP8 corresponds to the Monte Carlo design of Ahn

et al. (2013), which includes two regressors and two factors. The first regressor

is correlated with the first factor and the second regressor is correlated with the

second factor. The idiosyncratic error is autocorrelated but the variances are

identical across panel units and time periods.

The results in Table 4 indicate that the relative performance of the estimators

depends quite sensitively on the DGP considered. The first panel of Table 4

presents the results for DGP6. The CCE estimator is not consistent in this

setting, since the rank condition is violated and both factor and loading vectors

are correlated with both regressors. The other three estimators are consistent in
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this setting, where the RS estimator is the least biased when T = 5 and the ALS∗

exhibits the lowest bias for T ≥ 10. The latter performs best in terms of RMSE

with only slight advantages over the PC estimator when T ≥ 10.

The second panel of Table 4 reports the results for DGP7. The CCE estimator

is the favored one in this setting. It has a very small bias and exhibits the lowest

RMSE for nearly all considered (N, T ) combinations, in particular if T is as

small as 5. Comparing the PC and GMM estimators, the results slightly favor

the PC estimator in terms of RMSE. The difference between the PC and the CCE

estimator is negligible when T = 15 and N = 500. With regard to the GMM

estimators, the RS estimator has a marginally lower RMSE when T = 5 and N

is large, while the results indicate small advantages for the ALS∗ estimator when

T ≥ 10.

The third panel of Table 4 presents the results for DGP8. The GMM estima-

tors are the least biased estimators in this setting. The ALS∗ estimator exhibits

the smallest RMSE for all (N, T ) combinations with only slight advantages over

the RS estimator. For example, for T = 10 and N = 500, the RMSE of the ALS∗

estimator is about 40% lower than the RMSE of the PC estimator and more

than 60% lower than the RMSE of the CCE estimator. The CCE estimator is

problematic in this setting, since the expectation of the loadings is equal to zero.

The PC estimator is problematic in this small T setting. However, the RMSE is

lower for larger samples with T = 15 and N = 500.

8 Conclusion

In this paper we compare three existing approaches for estimating factor aug-

mented panel data models. We argue that the PC estimator can be seen as an

estimated analog of the optimal transformation for eliminating the common fac-

tors from the data. The CCE estimator applies a data transformation that has

the important advantage that the weighting scheme is fixed and does not involve

any sampling error. This ensures that the estimator is consistent even if T is fixed,

whereas the PC estimator requires much more restrictive assumptions (such as

i.i.d. errors) if T is fixed. The third estimation approach is the nonlinear GMM

estimators of Ahn et al. (2013) and Robertson and Sarafidis (2015). In contrast

to the PC and CCE estimators, this estimator treats the T observations of the
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factor as parameters, whereas the factor loadings are substituted out. Therefore

the number of parameters involved by this approach does not depend on N .

An important difference between the PC estimator and all other approaches

is that the PC estimator does not require that the factors are correlated with

the regressors. In contrast, the ALS/RS approaches and the CCE estimator

(for r > 1) rely on the assumption that the factors are linearly related to the

regressors (that is, the instruments are relevant). Accordingly, if some factors are

uncorrelated (or weakly correlated) with the regressors, one can expect the PC

estimator to be more efficient.

In this paper we focus on the typical micro panel data setup where T is small

compared to N . Since for an approximate factor model the consistency of the PC

estimator requires T →∞, it is interesting to investigate how large T needs to be

for ensuring the PC estimator to be approximately unbiased. Our Monte Carlo

experiments indicate that for all data generating mechanisms considered in this

paper T = 10 is already sufficient to achieve reasonable small sample properties

of the PC estimator. Sometimes the CCE and ALS∗ estimators perform slightly

better than the PC estimator, but in other Monte Carlo setups the PC estimator

clearly outperforms all other competitors. Furthermore, we show that for small

T the selection criteria for the number of factors proposed by Bai and Ng (2002)

and Ahn and Horenstein (2013) may be inconsistent, whereas the BIC criteria of

Ahn et al. (2013) and Robertson and Sarafidis (2015) perform well.
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Figure 1: Normalization failure for CCE (DGP1) and ALS (DGP2)
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Table 1: Fixed versus data driven weights

Bias*100 RMSE*100

N T PC CCE CCE(M) PC CCE CCE(M)

DGP3

50 10 1.23 0.00 0.19 6.43 5.12 5.93
100 10 0.56 0.06 0.21 3.94 3.56 4.04
100 20 0.10 −0.14 −0.09 2.43 2.33 2.42
100 50 0.09 −0.04 0.02 1.49 1.48 1.51
100 100 0.08 −0.03 0.02 1.06 1.06 1.08
500 500 0.05 −0.01 −0.01 0.20 0.20 0.20

DGP4

50 10 0.18 −2.31 0.19 4.65 6.62 5.97
100 10 0.24 −1.09 0.22 3.26 4.05 4.17
100 20 0.01 −1.30 −0.08 2.15 3.05 2.45
100 50 0.08 −1.22 0.01 1.34 2.36 1.51
100 100 0.10 −1.20 0.01 0.97 2.00 1.08
500 500 0.08 −0.24 −0.01 0.20 0.36 0.20

This table reports the simulation results generated with DGPs 3 and 4. The results
are based on 1000 replications.

30



Table 2: Hit rates for selection criteria

r=1 r=2

N T BNPC AHPC BICALS∗ BICRS BNPC AHPC BICALS∗ BICRS

100 5 0.0 94.6 91.7 83.0 0.0 46.8 86.4 76.6
250 5 0.0 96.2 96.9 96.7 0.0 50.8 93.2 89.5
500 5 0.0 96.9 98.8 98.3 0.0 52.1 96.3 94.1
250 10 100.0 99.9 90.6 97.0 99.6 86.4 89.7 92.9
500 10 99.9 99.9 96.7 98.4 99.4 89.8 95.9 96.9
500 15 100.0 100.0 92.3 99.6 100.0 97.9 92.9 98.8

Table 3: Selecting the number of factors

r = 1 r = 2

Bias*100 RMSE*100 Bias*100 RMSE*100

N T PCr PCAH PCr PCAH PCr PCAH PCr PCAH

100 5 0.20 0.31 5.10 5.30 0.67 5.47 6.83 11.06
250 5 0.12 0.24 3.22 3.51 0.29 4.89 4.14 10.13
500 5 0.14 0.30 2.25 2.66 0.22 4.54 3.04 9.13
250 10 0.07 0.08 2.04 2.04 0.17 1.51 2.20 4.79
500 10 0.09 0.10 1.42 1.44 0.06 1.07 1.55 3.93
500 15 0.07 0.07 1.06 1.06 0.11 0.28 1.18 1.81

ALS∗r ALS∗BIC ALS∗r ALS∗BIC ALS∗r ALS∗BIC ALS∗r ALS∗BIC

100 5 0.14 0.15 6.22 6.84 −0.33 −0.65 7.46 8.15
250 5 −0.01 0.04 3.69 3.83 0.08 0.10 4.33 4.53
500 5 0.23 0.23 2.62 2.64 0.04 −0.01 3.08 3.26
250 10 −0.02 −0.02 2.25 2.36 0.00 −0.02 2.23 2.32
500 10 0.10 0.10 1.59 1.61 −0.06 −0.06 1.58 1.59
500 15 0.04 0.03 1.20 1.22 0.03 0.03 1.18 1.20

RSr RSBIC RSr RSBIC RSr RSBIC RSr RSBIC

100 5 −0.58 0.74 6.01 7.93 −0.92 −0.26 7.88 9.00
250 5 −0.17 −0.12 3.65 3.76 −0.21 −0.14 4.72 4.99
500 5 0.11 0.10 2.60 2.66 −0.07 −0.10 3.58 3.59
250 10 −0.40 −0.29 2.42 2.68 −0.86 −0.73 3.20 3.21
500 10 −0.10 −0.10 1.66 1.66 −0.44 −0.41 2.16 2.11
500 15 −0.17 −0.17 1.29 1.29 −0.65 −0.62 2.05 2.00

This table reports bias and RMSE results for DGP5 with r = 1 and r = 2 for the PC, ALS∗ and
RS estimators with the true number of factors and estimated number of factors based on selection
criteria. The results are based on 1000 replications.
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Supplemental Material

Details of the data generating processes used in Section 7.4

DGP6, (Bai, 2009)

We consider the following model with two regressors, k = 2, and r = 2 unobserved

factors:

yit = β1x1,it + β2x2,it + λ′ift + uit, (23)

with β1 = 1, β2 = 3, λi = (λ1,i, λ2,i)
′ and ft = (f1,t, f2,t)

′. The two regressors are

generated as

x1,it = µ1 + λ′ift + ι′λi + ι′ft + η1,it (24)

x2,it = µ2 + λ′ift + ι′λi + ι′ft + η2,it (25)

with ι′ = (1, 1). Hence, both regressors are correlated with the loadings, the

factors and the product of both. The unobserved factors and loadings follow

standard normal distributions,

fj,t
iid∼ N (0, 1) for j = 1, 2,

λj,i
iid∼ N (0, 1) for j = 1, 2,

where j = 1, 2 denotes the factor subscript. The regression error is generated as

uit
iid∼ N (0, 4)

and the idiosyncratic components of the regressors are generated as

ηl,it
iid∼ N (0, 1) for l = 1, 2,

where l indicates the regressor and µl = 1 for l = 1, 2.
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DGP7, (Chudik et al., 2011)

This simulation setup is based on a model with two regressors and three unob-

served factors,

yit = β1x1,it + β2x2,it + λ′ift + uit (26)

where β1 = β2 = 1, λi = (λ1,i, λ2,i, λ3,i)
′ and ft = (f1,t, f2,t, f3,t)

′. The regressors

are generated according to

x1,it = γ ′1,ift + η1,it, (27)

x2,it = γ ′2,ift + η2,it, (28)

where γ1,i and γ2,i denote r-dimensional vectors of loadings for the regressors

that are independent of the loadings in the DGP of the dependent variable, λi.

The unobserved factors are generated as independent AR(1) processes,

fj,t = 0.5fj,t−1 + υfj,t , j = 1, 2, 3; t = −49, ..., 0, 1, ..., T

υfj,t
iid∼ N (0, 1− 0.52), fj,−50 = 0.

In order to reduce the effect of the initial value, the first 50 observations of fj,t

are discarded. The factor loadings in the DGP of yit are generated as

λj,i
iid∼ N (0, 1) for j = 1, 2, 3

and are independently distributed from the factor loadings in the DGPs of the

regressors,

γl,j,i
iid∼ N (0, 1) for l = 1, 2; j = 1, 2, 3

where l denotes the index for the regressor xl,it. The regression errors exhibit

mild heteroskedasticity and are generated as

uit
iid∼ N (0, σ2

i ), where σ2
i
iid∼ U(0.5, 1.5).
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The idiosyncratic components of the regressors are generated according to

ηl,it = ρνl,iηl,it−1 + νj,it for l = 1, 2; t = −49, ..., 0, 1, ...T

νl,it
iid∼ N (0, 1− ρ2νj,i), ηl,i,−50 = 0, ρνl,i

iid∼ U(0.05, 0.95) for l = 1, 2.

The first 50 observations of ηl,t are discarded as “burn-in” period.

DGP8, (Ahn et al, 2013):

For this DGP, we consider a model with k = 2 and r = 2,

yit = β1x1,it + β2x2,it + λ′ift + uit (29)

where β1 = β2 = 1, λi = (λ1,i, λ2,i)
′ and ft = (f1,t, f2,t). The regressors are

generated by

x1,it = λ1,if1,t + λ1,i + f1,t + η1,it + µ1,i (30)

x2,it = λ2,if2,t + λ2,i + f2,t + η2,it + µ2,i (31)

DGP9 differs from DGP7 in that the regressor xl,it for l = 1, 2 is only correlated

with one factor fj,t, the loadings λj,i and the product λj,ifj,t for j = 1, 2, but is

independent of the other factor and loadings. The unobserved factors follow a

uniform distribution,

fj,t
iid∼ U(0, 2) for j = 1, 2,

and the loadings follow a normal distribution,

λj,i
iid∼ N (0, 4) for j = 1, 2.

The regression errors are generated by an AR(1) process,

uit = ρui,t−1 + νit for t = −49, ..., 0, 1, ...T,

where ρ = 0.5, νit ∼ N (0, 1) and ui,−50 = 0.
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The first 50 time observations of uit are discarded. The idiosyncractic components

of the regressors are

ηl,it
iid∼ N (0, 1) and µl,i

iid∼ N (0, 1) for l = 1, 2.
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