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Abstract

It is well known that the conventional cumulative sum (cusum) test, suffers from
low power and large detection delay. In order to improve the power of the test, we
propose two alternative statistics. The backward cusum detector considers the re-
cursive residuals in reverse chronological order, whereas the stacked backward cusum
detector sequentially cumulates a triangular array of backward cumulated residuals.
The existing invariance principle for partial sums of recursive residuals is extended to
a multivariate version, and the limiting distributions of the test statistics are derived
under suitable sequences of alternatives. In the retrospective context, the local power
of the tests is shown to be substantially higher than that for the conventional cusum
test if a break occurs in the middle or at the end of the sample. When applied to
monitoring schemes, the detection delay of the stacked backward cusum is shown to
be much shorter than that of the conventional monitoring cusum procedure. Fur-
thermore, we propose an estimator of the break date based on the backward cusum
detector and show that in monitoring exercises this estimator tends to ourperform
the usual maximum likelihood estimator. Finally, an application to Covid-19 data is
presented.
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1 Introduction

Cumulative sums have become a standard statistical tool for testing and monitoring struc-

tural changes in time series models. The cusum test was introduced by Brown et al. (1975)

as a test for structural breaks in the coefficients of a linear regression model yt = x′tβt + ut

with time index t, where βt denotes the coefficient vector, xt is the vector of regressor

variables and ut is a zero mean error term. Under the null hypothesis, there is no struc-

tural change in βt, while, under the alternative hypothesis, the coefficient vector changes

at unknown time T ∗ ≤ T .

Sequential tests, such as the cusum test, consist of a detector statistic and a critical

boundary function. The cusum detector sequentially cumulates standardized one-step

ahead forecast errors, which are also referred to as recursive residuals. The detector is

evaluated for each time point within the testing period, and, if its path crosses the boundary

function at least once, the null hypothesis is rejected. A variety of retrospective structural

break tests have been proposed in the literature (for reviews, see Perron, 2006; Aue and

Horváth, 2013).

Since the seminal work of Chu et al. (1996), increasing interest has been focused on

monitoring structural stability in real time. Sequential monitoring procedures consist of

a detector statistic and a boundary function that are evaluated for periods beyond some

historical time span. The monitoring time span with t > T can either have a fixed endpoint

M <∞ or an infinite horizon. In the fixed endpoint setting, the monitoring period starts

at T + 1 and ends at M , while the boundary function depends on the ratio m = M/T . In

case of an infinite horizon, the monitoring time span does not need to be specified before

the monitoring procedure starts. These two monitoring schemes are also referred to as

closed-end and open-end procedures (see Kirch and Kamgaing, 2015). The null hypothesis

of no structural change is rejected whenever the path of the detector crosses some critical

boundary function for the first time. Monitoring procedures for a fixed endpoint were

proposed in Leisch et al. (2000), Zeileis et al. (2005), Wied and Galeano (2013), and Dette

and Gösmann (2019), whereas Chu et al. (1996), Horváth et al. (2004), Aue et al. (2006),

Fremdt (2015), and Gösmann et al. (2019) considered an infinite monitoring horizon.
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Figure 1: Retrospective testing and monitoring
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A drawback of the conventional retrospective cusum test is its low power, whereas the

conventional monitoring cusum procedure exhibits large detection delays. This is due to

the fact that the pre-break recursive residuals are uninformative, as their expectation is

equal to zero up to the break date, while the recursive residuals have a non-zero expectation

after the break. Hence, the cumulative sums of the recursive residuals contain a large

number of uninformative residuals that only add noise to the statistic. In contrast, if one

cumulates the recursive residuals backwards from the end of the sample to the beginning,

the cumulative sum collects the informative residuals first, and the likelihood of exceeding

the critical boundary will typically be larger than when cumulating residuals from the

beginning onwards. In this paper, we show that such backward cusum tests may indeed

have a much higher power and lower detection delay than the conventional forward cusum

tests.

Another way of motivating the backward cusum testing approach is to consider the

simplest possible situation, where, under the null hypothesis, it is assumed that the process

is generated as yt = µ + ut, with µ and σ2 = V ar(ut) assumed to be known. To test the

hypothesis that the mean changes at T ∗, we introduce the dummy variable D∗t , which is

unity for t ≥ T ∗ and zero elsewhere. The uniform most powerful test statistic is the t-

statistic of the hypothesis δ = 0 in the regression (yt − µ) = δD∗t + ut, which is given by

σ−1(T − T ∗ + 1)−1/2
∑T

t=T ∗(yt − µ). If µ is unknown, we may replace it by the full sample

mean y, resulting in the backward cumulative sum of the OLS residuals from period T

through T ∗. If T ∗ is unknown, the test statistic is computed for all possible values of T ∗,

whereas the starting point T of the backward cumulative sum remains constant. Since the
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sum of the OLS residuals is zero, it follows that the test is equivalent to a test based on

the forward cumulative sum of the OLS residuals. In contrast, if we replace µ with the

recursive mean µt−1 = (t− 1)−1
∑t−1

i=1 yt, we obtain a test statistic based on the backward

cumulative sum of the recursive residuals (henceforth, backward cusum). In this case,

however, the test is different from a test based on the forward cumulative sum of the

recursive residuals (henceforth, forward cusum). This is due to the fact that the sum of

the recursive residuals is an unrestricted random variable. Accordingly, the two versions of

the test may have quite different properties. In particular, it turns out that the backward

cusum is much more powerful than the standard forward cusum at the end of the sample.

Accordingly, this version of the cusum test procedure is better suited for the purpose of

real-time monitoring, where it is crucial to be powerful at the end of the sample.

An additional problem of the conventional cusum test is that it has no power against

alternatives that do not affect the unconditional mean of yt (see Krämer et al., 1988). We

extend the existing invariance principle for recursive residuals to a multivariate version and

consider a vector-valued cusum process. For both retrospective testing and monitoring, we

propose a vector-valued sequential statistic in the fashion of the score-based cumulative sum

statistic of Hansen (1992). The maximum vector entry of the multivariate statistic yields

a detector and a sequential test that has power against a much larger class of structural

breaks than when using conventional cusum detectors.

We also suggest a new estimator for break date based on backwardly cumulated recursive

residuals. This estimator outperforms the conventional estimator constructed by the sum

of squared residuals whenever the break occurs close to the end of the sample, which is the

relevant scenario for on-line monitoring.

This paper is organized as follows. In Section 2, the limiting distribution of the mul-

tivariate cusum process is derived under both the null hypothesis and local alternatives.

Section 3 introduces the the backward cusum and the stacked backward cusum tests for

both retrospective testing and monitoring. While the backward cusum is only defined for

t ≤ T and can thus be implemented only for retrospective testing, the stacked backward

cusum cumulates recursive residuals backwardly in a triangular scheme and is therefore
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suitable for real-time monitoring. The local powers of the tests are compared in Section 4.

In the retrospective setting, the powers of the backward cusum and the stacked backward

cusum tests are substantially higher than that of the the conventional forward cusum test

if a single break occurs after one third of the sample size. In the case of monitoring, the

detection delay of the stacked backward cusum under local alternatives is shown to be

much lower than that of the monitoring cusum detector by Chu et al. (1996). In Section

5 we present a strong invariance principle for the multivariate cusum process and propose

an infinite horizon monitoring procedure. Section 6 considers the estimation of the break

date based on backward cumulated recursive residuals. We present an estimator, which is

more accurate than the conventional maximum likelihood estimator if the break is located

at the end of the sample. Section 7 presents simulated critical values and Monte Carlo

simulation results, in Section 8 we provide a real-data example on monitoring Covid-19

infections, and Section 9 concludes.

2 The multivariate CUSUM process

We consider the multiple linear regression model

yt = x′tβt + ut, t ∈ N,

where yt is the dependent variable, and xt = (1, xt2, . . . , xtk)
′ is the vector of regressor

variables including a constant. The k×1 vector of regression coefficients βt depends on the

time index t, and ut is an error term. The time point T divides the time horizon into the

retrospective time period t ≤ T and the monitoring period t > T . We impose the following

assumptions on the regressors and the error term.

Assumption 1. The regressors xt are stationary and ergodic with E(xtx
′
t) = C, where C

is positive definite. The error process ut is a stationary martingale difference sequence with

respect to Ft, the σ-algebra generated by {(x′i+1, ui)
′, i ≤ t}, where E(u2

t | Ft−1) = σ2 > 0.

Further, there exists κ > 2 such that E(|xtj|κ) < ∞ and E(|ut|κ) < ∞, for all t ∈ N and

j = 2, . . . , k.
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Recursive residuals for linear regression models were introduced by Brown et al. (1975) as

standardized one-step ahead forecast errors, and are defined as

wt =
yt − x′tβ̂t−1(

1 + x′t(
∑t−1

i=1 xix
′
i)
−1xt)1/2

, t ≥ k + 1,

and wt = 0 for t = 1, . . . , k, where β̂t−1 = (
∑t−1

i=1 xix
′
i)
−1
∑t−1

i=1 xiyi. For testing against

structural changes in the retrospective time period, the conventional univariate cusum

statistic is given by St,T = σ̂−1
T T−1/2

∑t
i=1wi, where σ̂2

T denotes the sample variance of

{wk+1, . . . , wT} (see Brown et al., 1975; Krämer et al., 1988). Under the null hypothesis

H0 : βt = β0 for all t, the underlying process SbrT c,T converges weakly and uniformly to a

standard Brownian motion W (r), r ∈ [0, 1] (see Sen, 1982). The null hypothesis is rejected

if the path of |St,T | exceeds the linear critical boundary function bt = λαdlin(t/T ) for at

least one time index t = 1, . . . , T , where

dlin(r) = 1 + 2r. (1)

The critical value λα is the (1− α) quantile of sup0≤r≤1 |W (r)|/dlin(r) and determines the

significance level α of the sequential test. In the monitoring context, Chu et al. (1996)

considered the radical type boundary function

brad(r) = (r)1/2(log(r)− log(α2))1/2,

which is derived from the boundary crossing probability for a Brownian motion (see Robbins

and Siegmund, 1970). The null hypothesis is rejected, if the detector statistic |St,T −

ST,T | exceeds bt = brad(t/T ) for some t > T . Ploberger and Krämer (1990) studied local

alternatives of the form βt = β0 + T−1/2g(t/T ), where g : R → Rk is piecewise constant

and bounded. Let π = plimT→∞(x1, . . . , xk)
′ be the mean regressor, where xj is the sample

mean of the j-th component of the regressors, and let

h(r) =
1

σ

∫ r

0

g(z) dz − 1

σ

∫ r

0

∫ z

0

1

z
g(v) dv dz. (2)

The authors showed that SbrT c,T converges weakly and uniformly to W (r) + π′h(r), which

implies that the conventional univariate cusum tests have no power if the break vector
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g(r) is orthogonal to π. To sidestep this difficulty, we consider the multivariate statistic

QT (r) =
1

σ̂T
√
T
C
−1/2
T

brT c∑
t=1

xtwt, r ≥ 0,

where CT = T−1
∑T

t=1 xtx
′
t. Let m < ∞. For r ∈ [0,m] the process QT (r) is an element

of the k-fold product space D([0,m])k = D([0,m])× . . .×D([0,m]), where D([0,m]) is in

the space of càdlàg functions on [0,m]. The space is equipped with the Skorokhod metric

(see Billingsley, 1999), and the symbol “⇒” denotes weak convergence with respect to this

metric.

Theorem 1. Let g(r) be piecewise constant and bounded, and let βt = β0 + T−1/2g(t/T )

for all t ∈ N. Then, under Assumption 1 and for any fixed and positive m <∞,

QT (r)⇒ W (k)(r) + C1/2h(r), r ∈ [0,m],

as T →∞, where W (k)(r) is a k-dimensional standard Brownian motion.

Note that g(r) is constant if and only if βt is constant. If βt = β0 for all t ∈ N, we have

C1/2h(r) = 0. By contrast, under a local alternative with a non-constant break function

g(r), it follows that h(r) is non-zero, and, consequently, C1/2h(r) is non-zero, since C1/2 is

positive definite. Therefore, sequential tests that are based on QT (r) have power against a

larger class of alternatives than the tests of Brown et al. (1975) and Chu et al. (1996).

As an extension of the univariate cusum detector St,T we consider the multivariate

cusum detector Qt,T = QT (t/T ). Let ‖x‖ = maxi=1,...,k xi, x ∈ Rk, denote the maximum

norm. The general retrospective forward cusum test rejectsH0 if the path of ‖Qt,T‖ exceeds

the boundary function bt = b(t/T ) for at least one index t = 1, . . . , T . The general forward

cusum for fixed endpoint monitoring rejects H0 if the path of ‖Qt,T − QT,T‖ exceeds the

boundary function bt = b((t − T )/T ) for at least one index t = T + 1, . . . , bmT c, where

1 < m <∞. We make the following assumption on the general boundary function:

Assumption 2. The boundary is of the form b(r) = λαd(r), where λα denotes the critical

value for significance level α, and d(r) is continuous and strictly increasing with d(0) > 0.
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A sequential tests can be equivalently expressed as a one-shot test, where H0 is rejected

if the corresponding maximum statistic exceeds the critical value λα, which is the (1− α)

quantile of its limiting distribution under H0. Under Assumption 2 and the conditions of

Theorem 1, the continuous mapping theorem yields

QT = max
t=1,...,T

‖Qt,T‖/d(t/T )→ sup
0≤r≤1

‖W (k)(r) + C1/2h(r)‖/d(r),

QT,m = max
t=T+1,...,bmT c

‖Qt,T −QT,T‖
d((t− T )/T )

→ sup
0≤r≤m−1

‖W (k)(r) + C1/2(h(r + 1)− h(1))‖
d(r)

,

in distribution, as T →∞.

3 Backward CUSUM tests

An alternative approach is to cumulate the recursive residuals in reversed order. Suppose

there is a single break in βt at time t = T ∗. Then, {wt, t < T ∗} are the residuals from

the pre-break period, and {wt, t ≥ T ∗} are those from the post-break period. The pre-

break residuals do not contain any information about the break and have mean zero. The

partial sum process T−1/2
∑t

j=1wj has a random walk behaviour for the pre-break period

t < T ∗, and cumulating those residuals brings nothing but noise to the detector statistic. In

contrast, the post-break residuals have nonzero mean and reveal relevant information about

a possible break. In order to focus on the post-break residuals, we consider backwardly

cumulated partial sums of the form T−1/2
∑t−1

j=0wT−j. We define the retrospective backward

cusum detector as

BQt,T = QT (1)−QT

(
t−1
T

)
=

1

σ̂T
√
T
C
−1/2
T

T∑
j=t

xjwj (t = 1, . . . , T ).

The null hypothesis is rejected if ‖BQt,T‖ exceeds the boundary bt = b((T − t− 1)/T ) for

at least one time index t.

Theorem 2. Let g(r) be piecewise constant and bounded, and let βt = β0 + T−1/2g(t/T )

for all t ∈ N. Then, under Assumptions 1 and 2,

BQT = max
t=1,...,T

‖BQt,T‖/d
(
T−t+1
T

)
→ sup

0≤r≤1
‖W (k)(r) + C1/2(h(1)− h(1− r))‖/d(r)

in distribution, as T →∞.
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Figure 2: Illustrative example for the backward cusum with a break in the mean

Note: The process yt = µt + ut, t = 1, . . . , T , is simulated for T = 100 with µt = 0 for t < 75, µt = 1 for
t ≥ 75, and i.i.d. standard normal innovations ut. The bold solid line paths are the trajectories of ‖Qt,T ‖
and ‖BQt,T ‖, where the detectors are univariate such that the norm is just the absolute value. In the
background, the recursive residuals are plotted. The dashed lines correspond to the linear boundary (1)
with significance level α = 5% and critical value λα = 0.948.

The limiting distributions of QT and BQT coincide under H0 and differ under the

alternative. A simple illustrative example of the detector paths together with the linear

boundary of Brown et al. (1975) are depicted in Figure 2, in which a process with k = 1

and a single break in the mean at 3/4 of the sample is simulated.

Unlike the forward cusum detector, the backward cusum detector is not measurable

with respect to the filtration of available information at time t and is therefore not suitable

for a monitoring procedure. The path of ‖BQt,T‖ is only defined for t ≤ T , as its endpoint

T is fixed.

To combine the advantages of BQt,T with the measurability properties of Qt,T , we resort

to an inspection scheme, which goes back to Page (1954) and involves a triangular array

of residuals. Let BQT (t) = maxs=1,...,t ‖QT (t/T )−QT ((s− 1)/T )‖/d((t− s+ 1)/T ) be the

backward cusum statistic with endpoint t. The idea is to compute this statistic sequentially

for each time point, yielding BQT (1), . . . ,BQT (T ). The stacked backward cusum statistic

is the maximum among this sequence of backward cusum statistics. An important feature

of this sequence is that it is measurable with respect to the filtration of information at time

t, so that BQT (t) is itself a sequential statistic. Stacking all backward cusum statistics on

one another leads to triangular array structure. The stacked backward cusum detector is
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defined as

SBQs,t,T = QT

(
t
T

)
−QT

(
s−1
T

)
=

1

σ̂T
√
T
C
−1/2
T

t∑
j=s

xjwj (t ∈ N, s = 1, . . . , t).

We reject H0 if ‖SBQs,t,T‖ exceeds the two-dimensional boundary bs,t = b((t − s + 1)/T )

for some t = 1, . . . , T and s = 1, . . . , t. Equivalently, H0 is rejected if the double maximum

statistic

SBQT = max
t=1,...,T

BQT (t) = max
t=1,...,T

max
s=1,...,t

‖SBQs,t,T‖/d( t−s+1
T

)

exceeds λα. The triangular detector can also be monitored on-line across all the time points

t > T . The null hypothesis is rejected if ‖SBQs,t,T‖ exceeds bs,t = b((t− s+ 1)/T ) at least

once for some t ≥ T + 1 and s = T + 1, . . . , t. Analogously to the retrospective case, let

SBQT,m = max
t=T+1,...,bmT c

max
s=T+1,...,t

‖SBQs,t,T‖/d( t−s+1
T

)

be the maximum statistic for fixed endpoint monitoring.

Theorem 3. Let g(r) be piecewise constant and bounded, let βt = β0 +T−1/2g(t/T ) for all

t ∈ N, and let m <∞ be a positive constant. Then, under Assumptions 1 and 2,

SBQT → sup
0≤r≤1

sup
0≤s≤r

‖W (k)(r)−W (k)(s) + C1/2[h(r)− h(s)]‖/d(r − s)

SBQT,m → sup
0≤r≤m−1

sup
0≤s≤r

‖W (k)(r)−W (k)(s) + C1/2[h(r + 1)− h(s+ 1)]‖/d(r − s)

in distribution, as T →∞.

Remark 1. In practice one is often interested in breaks in certain coefficients or directions.

Partial or one-sided tests can be beneficial in terms of a more powerful test. For testing the

partial hypothesis H0 : H ′βt = H ′β0, where H is an orthonormal k× l matrix, consider the

partial cusum process Q∗T (t/T ) = Q∗t,T = σ̂−1
T T−1/2(H ′CTH)−1/2H ′

∑t
j=1 xjwj. Then, H0

is rejected if ‖Q∗t,T − Q∗s,T‖ (partial SBQ test) or ‖Q∗T,T − Q∗t,T‖ (partial BQ test) exceeds

the respective boundary. Note that the critical values for the l-dimensional cusum test

from Tables 1 and 2 can be applied for the partial test, since Q∗T (r) ⇒ W (l)(r) under

H0. When testing against the one-sided alternative H ′βt > H ′β0, we reject if p(H ′BQt,T )

or p(H ′SBQs,t,T ) exceeds the respective boundary function, where p(x) = maxi=1,...,l xi,
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x ∈ Rl. The critical value coincides with the (1−2α) quantile of the respective l-dimensional

limiting process. For instance, when testing for positive breaks in the intercept with α =

5%, the retrospective stacked backward cusum rejects if p(H ′SBQs,t,T ) exceeds 1.112 ·

d((t− s+ 1)/T ).

4 Local power

In order to illustrate the advantages of the backward cusum tests, we consider the simple

local break model βt = β0+T−1/2g(t/T ) with g(r) = c1{r≥τ∗}, where c ∈ Rk, and τ ∗ denotes

the break location. From (2) it follows that

h(r) = cσ−1
(∫ r

τ∗
dz −

∫ r

0

∫ z

τ∗

1

z
dv dz

)
= cσ−1τ ∗(ln(r)− ln(τ ∗))1{r≥τ∗}. (3)

Simulated asymptotic local power curves of QT , BQT , and SBQT under the limiting

distribution for the case k = 1 are presented in Figure 3, where the linear boundary (1)

is implemented. The plots show that for a single break that is located after 15% of the

sample size, the backward cusum and the stacked backward cusum clearly outperform

the forward cusum in terms of power. The local power curves of QT,m and SBQT,m for a

break at τ ∗ ∈ (1, 2) with fixed endpoint m = 2 coincide with those of QT and SBQT in the

upper six panels, except that τ ∗ is shifted by 1 to the right. Hence, the power of SBQT,m
is higher than that of QT,m if τ ∗ ≥ 1.15.

The more important performance measure for monitoring detectors is the delay between

the actual break and the detection time point, since every fixed nontrivial alternative will

be detected if the monitoring horizon is long enough. Let Td be the stopping time of the

time point of the first boundary crossing, and let E(Td/T | τ ∗ ≤ Td/T ≤ m) − τ ∗ be the

mean local relative delay. The bottom panels of Figure 3 present the simulated mean local

relative delay curves for the fixed endpoint m = 4 for SBQT,4 with the linear boundary

and for QT,4 with both the linear and the radical boundary. The mean local relative delay

of SBQT,4 is much lower than that of QT,4. Furthermore, the mean local relative delay is

constant across break locations with τ ∗ > 1.15.
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Figure 3: Asymptotic local power curves
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Note: The plots show simulated asymptotic local power curves for retrospective tests (upper six panels) and mean local
relative delay curves for fixed endpoint monitoring with m = 4 (bottom three panels) under a single break in the mean
(k = 1) for QT and QT,4 (solid), BQT (dashed) and SBQT and SBQT,4 (dotted), under the linear boundary (1), as well
as the test by Chu et al. (1996) (dash-dotted). Brownian motions are approximated on a grid of 1,000 equidistant points
and rejection rates are obtained from 100,000 Monte Carlo repetitions using size-adjusted 5% critical values.

Remark 2. While, for one-shot tests, the critical value determines the type I error, se-

quential testing involves two degrees of freedom. Besides the test size, which is controlled

asymptotically by an appropriately chosen value for λα, the shape of the boundary deter-

mines the distribution of potential relative crossing time points r. As already noted by

Brown et al. (1975), the forward cusum with the linear boundary (1) puts more weight on

detecting breaks that occur early in the sample (c.f. Figure 3). In Figure 4 we present the

distributions of the first boundary crossing under the null hypothesis, which is also referred

to as the “distribution of the size” (see Anatolyev and Kosenok, 2018). The results indicate

that for the stacked backward cusum the size is much more evenly distributed than that

for the forward cusum, which is right-skewed. There is no consensus on which distribution
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Figure 4: Size distributions of the retrospective and monitoring detectors
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Note: The frequencies of the location of the first boundary exceedance under the null hypothesis are shown for
a significance level of 5% for the model with k = 1. The frequencies are based on random draws under the
limiting null distribution of the maximum statistics. The retrospective cases is considered for the upper three
histograms and the fixed endpoint monitoring case with m = 10 for the lower three. The linear boundary (1) is
considered in the first five plots and the radical boundary by Chu et al. (1996) is used in the last plot.

should be preferred, as whether one wishes to put more weight on particular regions of time

points of rejection depends on the particular application. However, Zeileis et al. (2005) and

Anatolyev and Kosenok (2018) argue that if no further information is available, one might

prefer a uniform distribution to a skewed one. However, in the context of infinite horizon

monitoring the size can never be uniformly distributed.

5 Infinite horizon monitoring

The functional central limit theorem given by Theorem 1 is not suitable for analysing the

asymptotic behaviour of an infinite horizon monitoring statistic, since the variance of QT (r)

is unbounded as r →∞, and supr≥1 ‖QT (r)−W (k)(r)‖ might not converge in general. For

an i.i.d. random process vt, t ∈ N, with E[v1] = 0, E[v2
1] = σ2, and E[vκ1 ] <∞, where κ > 2,

Komlós et al. (1975) showed that there exists a standard Brownian motion W (r), such that
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σ−1
∑T

t=1 vt = W (T ) + o(T 1/κ), a.s., as T →∞. This almost sure invariance principle was

employed by Horváth (1995) to derive the limiting distribution of the infinite horizon

statistic supt>T |St,T − ST,T |/d(t/T ) for an appropriate boundary function d(r). Wu et al.

(2007) and Berkes et al. (2014) extended this invariance principle to more general classes

of dependent random processes, which can be used to formulate the following stochastic

approximation result:

Theorem 4. Let βt = β0 for all t ∈ N. Then, under Assumption 1, there exists a k-

dimensional standard Brownian motion W (k)(r), such that

sup
r≥1

r−1/2‖QT (r)−W (k)(r)‖ → 0,

in probability, as T →∞.

This result is the key tool to establish the limiting distributions of infinite horizon mon-

itoring statistics under H0 and indicates the need of further restrictions on the boundary

function.

Theorem 5. Let βt = β0 for all t ∈ N, and let supr≥0(r + 1)1/2/d(r) < ∞. Then, under

Assumptions 1 and 2,

QT,∞ = max
t≥T+1

‖QT (t/T )−QT (1)‖/d( t−1
T

)→ sup
0≤r≤1

‖B(k)(r)‖/((1− r)d( r
1−r )),

SBQT,∞ = max
t≥T+1

max
s=1,...,t

‖QT (t/T )−QT ((s− 1)/T )‖/d( t−s+1
T

)

→ sup
0≤r≤1

sup
0≤s≤r

‖(1− s)B(k)(r)− (1− r)B(k)(s)‖/((1− r)(1− s)d( r−s
1−r−s+rs)),

in distribution, as T →∞, where B(k)(r) is a k-dimensional standard Brownian bridge.

6 Estimation of the breakpoint location

As soon as the testing procedure has indicated a structural instability in the coefficient

vector, the next step is to locate the break point. In the single break model with βt =

β0 + δ1{t≥T ∗}, where δ 6= 0, Horváth (1995) suggested to estimate the relative break date

τ ∗ = T ∗/T by the relative time index for which the likelihood ratio statistic is maximized.
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As an asymptotically equivalent estimator, Bai (1997) proposed the maximum likelihood

estimator

τ̂ ret
ML = T−1 · argmin

t=1,...,T
{R1(t) +R2(t)}, (4)

where R1(t) is the OLS residual sum of squares when using observations until time point

t and R2(t) is the OLS residual sum of squares when using observations from time t + 1

onwards. In case of monitoring, Chu et al. (1996) considered

τ̂mon
ML = T−1 · argmin

t=T+1,...,Td

{R1(t) +R2(t)} (5)

to estimate τ ∗mon = T ∗/Td, where Td denotes the detection time point, which is the stopping

time at which the detector statistic exceeds the boundary function for the first time. The

maximum likelihood estimator is very accurate if the breakpoint is located in the middle

of the sample. However, by construction, the true breakpoint T ∗ tends to be close to the

stopping time Td, and R2(T ∗) is computed from very few observations, which may lead to

a large finite sample estimation error for the maximum likelihood estimator.

To bypass this problem, we use backwardly cumulated recursive residuals to estimate

the relative break location. In the single break model, ‖BQbrT c,T‖ is asymptotically pro-

portional to ‖h(1)− h(r)‖, which is constant in the pre-break period and decreases to zero

in the post-break period. When scaled by its asymptotic standard deviation, the detector

is asymptotically proportional to ‖h(1)− h(r)‖/
√

1− r, which is in turn proportional to

(
− ln(τ ∗)1{r<τ∗} − ln(r)1{r≥τ∗}

)
/
√

1− r,

where the maximum is attained at r = τ ∗ (see equation (3)). Accordingly, we consider

τ̂ret =
1

T
· argmax
t=1,...,T

‖BQt,T‖√
T − t+ 1

, τ̂mon =
1

T
· argmax
t=T+1,...,Td

‖BQt,Td‖√
T − d+ t− 1

. (6)

Theorem 6. Let βt = β0 + δ1{t/T≥τ∗}, where δ 6= 0, and let Assumption 1 hold true. If

τ ∗ ∈ (0, 1], then τ̂ret → τ ∗, in probability, as T →∞; if τ ∗ ∈ (1, Td/T ], then τ̂mon → τ ∗, in

probability, as T →∞.

This result implies that the breakpoint estimators (6) are consistent, as T →∞.

15



Table 1: Asymptotic critical values for BQT
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

α = 1% 1.143 1.219 1.260 1.287 1.307 1.323 1.338 1.349

α = 5% 0.945 1.032 1.081 1.114 1.139 1.160 1.176 1.189

α = 10% 0.847 0.941 0.993 1.029 1.056 1.077 1.095 1.110

Note: Asymptotic critical values are reported for BQT , d(r) = 1 + 2r, based on 100,000
Monte Carlo replications, where the Wiener process is approximated on a grid of 10,000
equidistant points.

Table 2: Asymptotic critical values for SBQT,m
k = 1 k = 2 k = 3 k = 4

m \ α 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

1.2 0.782 0.859 1.024 0.859 0.935 1.092 0.902 0.975 1.129 0.932 1.003 1.152

1.4 0.941 1.030 1.208 1.028 1.111 1.277 1.076 1.156 1.320 1.108 1.185 1.345

1.6 1.026 1.113 1.292 1.111 1.192 1.365 1.158 1.238 1.406 1.189 1.269 1.432

1.8 1.077 1.162 1.344 1.161 1.244 1.411 1.208 1.286 1.452 1.240 1.317 1.476

2 1.113 1.198 1.374 1.196 1.277 1.442 1.244 1.321 1.481 1.275 1.350 1.506

4 1.262 1.339 1.500 1.336 1.410 1.564 1.378 1.450 1.599 1.407 1.478 1.621

10 1.367 1.440 1.588 1.437 1.503 1.644 1.475 1.540 1.677 1.500 1.565 1.703

∞ 1.450 1.514 1.648 1.512 1.573 1.703 1.547 1.606 1.736 1.570 1.629 1.760

k = 5 k = 6 k = 7 k = 8

m \ α 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

1.2 0.954 1.023 1.170 0.972 1.041 1.186 0.987 1.054 1.198 1.000 1.065 1.206

1.4 1.133 1.208 1.366 1.152 1.225 1.381 1.167 1.241 1.396 1.181 1.253 1.409

1.6 1.214 1.293 1.452 1.235 1.311 1.466 1.251 1.325 1.477 1.265 1.339 1.488

1.8 1.265 1.340 1.496 1.283 1.357 1.511 1.300 1.372 1.525 1.315 1.385 1.537

2 1.299 1.372 1.526 1.317 1.388 1.541 1.333 1.404 1.556 1.347 1.418 1.566

4 1.429 1.497 1.638 1.446 1.513 1.651 1.461 1.527 1.665 1.473 1.539 1.679

10 1.520 1.584 1.718 1.536 1.599 1.732 1.551 1.612 1.744 1.562 1.623 1.752

∞ 1.589 1.647 1.775 1.604 1.661 1.788 1.617 1.673 1.799 1.627 1.683 1.807

Note: Asymptotic critical values are reported for SBQT,m, d(r) = 1 + 2r, based on 100,000 Monte Carlo replications,
where the Wiener process is approximated on a grid of 10,000 equidistant points.
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Table 3: Empirical sizes of the retrospective tests

T = 100 T = 200 T = 500

QT BQT SBQT QT BQT SBQT QT BQT SBQT

Model I 3.9 4.2 2.9 4.2 4.3 3.5 4.6 4.6 4.1

Model II 3.8 4.4 3.3 4.2 4.6 3.6 4.5 4.8 4.1

Note: Empirical sizes of the retrospective tests with d(r) = 1 + 2r are presented in percentage
points. The results are based on 100,000 Monte Carlo repetitions, using the 5% critical values
from Tables 1 and 2

Table 4: Size-adjusted powers of the retrospective tests

Model I Model II

QT BQT SBQT supW QT BQT SBQT supW

τ∗ = 0.1 46.7 27.8 40.8 26.3 33.8 19.7 27.2 21.2

τ∗ = 0.2 63.6 64.6 71.2 74.1 48.9 49.2 53.9 59.5

τ∗ = 0.3 67.2 83.9 84.0 87.0 52.6 71.4 69.8 75.3

τ∗ = 0.4 63.9 91.4 88.9 91.6 48.9 82.5 77.0 82.1

τ∗ = 0.5 53.9 93.6 89.5 92.6 39.9 86.0 78.1 84.2

τ∗ = 0.6 39.5 93.3 86.8 91.6 27.8 84.4 73.2 82.3

τ∗ = 0.7 23.1 88.9 77.1 86.9 16.4 76.4 60.7 75.3

τ∗ = 0.8 10.5 67.7 49.1 68.5 8.1 52.2 36.7 54.1

τ∗ = 0.9 5.4 24.6 11.4 21.3 5.1 21.3 12.4 17.8

Note: Size-adjusted powers of the retrospective tests with d(r) = 1 + 2r are reported
for a significance level of 5% and a sample size of T = 100, based on 100,000 Monte
Carlo repetitions. The sup-Wald test by Andrews (1993) with trimming parameter 0.15
is denoted as supW.

Table 5: Empirical sizes of the infinite horizon monitoring detectors

Model I Model II

T = 100 T = 500 T = 100 T = 200 T = 500

horizon SBQ Q CSW SBQ Q CSW SBQ Q SBQ Q SBQ Q

m = 1.5 0.1 2.8 0.0 0.0 3.0 0.0 0.2 3.8 0.1 3.3 0.1 3.2

m = 2 0.3 4.3 0.1 0.2 4.4 0.1 0.7 5.6 0.4 4.9 0.3 4.7

m = 4 1.0 4.9 1.0 0.8 4.8 0.8 2.7 6.2 1.6 5.4 1.3 5.2

m = 10 3.2 4.9 2.4 2.7 4.8 2.0 8.0 6.2 4.9 5.4 4.1 5.2

Note: Empirical sizes of the monitoring detectors using infinite horizon 5% critical values are reported based
100,000 Monte Carlo repetitions. While SBQ corresponds the infinite horizon stacked backward cusum with
linear boundary (1) and Q is the infinite horizon multivariate forward cusum with linear boundary (1), the
univariate infinite horizon monitoring by Chu et al. (1996) is denoted as CSW.
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Table 6: Empirical mean detection delays of the monitoring detectors

Model I Model II Model I Model II

breakpoint SBQ Q CSW SBQ Q breakpoint SBQ Q CSW SBQ Q

τ∗ = 1.5 37.7 39.5 52.3 52.5 49.9 τ∗ = 3 32.9 99.4 69.8 44.3 124.8

τ∗ = 2 35.0 59.6 58.7 48.0 74.7 τ∗ = 5 31.6 179.0 88.2 41.2 223.0

τ∗ = 2.5 33.6 79.6 64.6 45.8 99.9 τ∗ = 10 30.6 377.1 123.2 39.6 461.9

Note: Size-adjusted empirical mean detection delays (α = 5%) of the monitoring detectors, with T = 100 and m = 20
are reported based on 100,000 Monte Carlo repetitions. While SBQ corresponds the infinite horizon stacked backward
cusum with linear boundary (1) and Q is the infinite horizon multivariate forward cusum with linear boundary (1), the
univariate infinite horizon monitoring by Chu et al. (1996) is denoted as CSW.

Table 7: Bias and MSE of breakpoint estimators

T = 100 T = 200

Bias MSE Bias MSE

τ∗ BQ ML BQ ML BQ ML BQ ML

0.5 −0.03 0.01 0.02 0.01 −0.02 0.01 0.01 0.00

0.65 −0.03 0.00 0.02 0.01 −0.02 0.00 0.01 0.00

0.8 −0.03 −0.04 0.02 0.03 −0.01 −0.01 0.01 0.01

0.85 −0.04 −0.07 0.03 0.05 −0.02 −0.02 0.01 0.01

0.9 −0.06 −0.13 0.04 0.09 −0.03 −0.04 0.02 0.03

0.95 −0.10 −0.25 0.06 0.18 −0.05 −0.14 0.03 0.11

0.97 −0.13 −0.33 0.08 0.25 −0.08 −0.24 0.05 0.18

0.99 −0.20 −0.44 0.13 0.33 −0.15 −0.40 0.09 0.31

Note: The bias and mean squared error (MSE) for the breakdate estimators (4) and (6) are
reported based on 100,000 Monte Carlo repetitions, where model (Model I) is simulated for
t = 1, . . . , T . BQ denotes the backward cusum estimator (6), and ML denotes the maximum
likelihood estimator (4).

7 Finite sample performance

Tables 1 and 2 present critical values for the retrospective and monitoring detectors using

the linear boundary (1). The critical values for SBQT coincide with those for SBQT,2.

Empirical sizes in Table 3 indicate that the retrospective tests have only minor size distor-

tions in finite samples. The empirical powers of the retrospective tests are compared with

that of the sup-Wald test of Andrews (1993), where the trimming parameter is r0 = 0.15.

The sup-Wald test has weak optimality properties in the sense that, in the case of a single

structural break, its asymptotic local power curve approaches the power curve from the
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infeasible point optimal maximum likelihood test asymptotically, as the significance level

tends to zero. Note that the sup-Wald test is not suitable for monitoring, since its statistic

is not measurable with respect to the filtration of information at time t.

We illustrate the finite sample performance for the models,

yt = µt + ut, µt = 2 + 0.8 · 1{t/T≥τ∗}, (Model I)

yt = µt + γtxt + ut, µt = 2, γt = 1 + 0.8 · 1{t/T≥τ∗} (t = 1, . . . , T ), (Model II)

where ut and xt are i.i.d. standard normal. Table 4 presents the size-adjusted power re-

sults. First, we observe that BQT and SBQT outperform QT , except for the case τ ∗ = 0.1.

Second, while QT has much lower power than the sup-Wald test, the reversed order cumu-

lation structure in the backward cusum scheme seems to compensate for this weakness of

the forward cusum test. The backward cusum performs equally well than the sup-Wald

test, which is remarkable since, as discussed previously, the latter test has weak optimality

properties. Finally, while the sup-Wald statistic and the backward cusum detector are not

suitable for monitoring, SBQT is much more powerful than QT , and its detector statistic

is therefore well suited for real-time monitoring.

In order to evaluate the finite sample performances of the monitoring detectors, we

consider the same models for the time points t = T + 1, . . . , bmT c. We simulate the

series up to different fixed endpoints m, while the critical values for the case m = ∞ are

implemented. For QT,∞ with the linear boundary, the 5% critical values are given by 0.957

for k = 1 and 1.044 for k = 2. Table 5 presents the empirical sizes. The tests are undersized

by construction, as not all of the size is used up to the time point mT . For k ≥ 2, we

observe some size distortions for small sample sizes. The results in Table 6 show that the

mean delay for SBQT,m is much lower than that of QT,m and is almost constant across the

breakpoint locations.

To compare the breakpoint estimator in equation (6) with its maximum likelihood

benchmark in (4) and (5), we present Monte Carlo simulation results in Table 7. If the

break τ ∗ is located after 85% of the sample, the estimator based on backwardly cumulated

recursive residuals has a much lower bias and mean squared error than the maximum

likelihood estimator, which is due to the fact that the post-break sample consists of too
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few observations for an accurate maximum likelihood estimation.

8 Real-data example

We consider the daily time series of Covid-19 new infections for the US. In order to control

for a second wave of infections we estimate the following model for the time after the first

peak (April 10):

yt = φ0 + φ1yt−1 + φ7yt−7 + ut = x′tβ + ut (7)

with xt = (1, yt−1, yt−7)′ and β = (φ0, φ1, φ7)′. The parameters φ1 and φ7 control for the

observed persistence and seasonality in the series. According to the Ljung-Box statistics

with 8 lags, no serial correlation is left in the residuals for the first T = 28 observations

(April 10 – May 8), which is used as a pre-monitoring training sample.

We are interested in detecting positive changes in the intercept φ0 and apply one-

sided infinite horizon monitoring statistics with a significance level of 5%, which implies

α = 0.1 (see Remark 1). We consider the univariate one-sided forward cusum statistic

T−1/2σ̂−1
T

∑t
j=T+1 wt, which rejects if its path exceeds the boundary of Chu et al. (1996) for

α = 0.1, and the one-sided stacked backward cusum statistic for a break in the intercept,

which is T−1/2σ̂−1
T maxs=T+1,...,t(1 + 2(t− s)/T )

∑t
j=swt and rejects if its path exceeds 1.45.

Figure 5 presents the detectors, which are scaled by their boundary.

Both monitoring procedures find an indication for a rise in Covid-19 infections in the

US at the end of June. According to the panels in the first column of Figure 5, also for

Arizona, Florida, Nevada, and Texas the tests indicate a second wave of infection. The

stacked backward cusum detects the break much earlier and becomes significant between

2 and 8 days before the forward cusum becomes significant. This confirms our theoretical

analysis and shows that precious time can be saved by applying the backward monitoring

scheme.
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Figure 5: Monitoring daily new Covid-19 infections in the US
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Note: The plots in the first column presents daily new Covid-19 infections, where the shaded areas represent the pre-
monitoring training period, the solid vertical line represents the detection time point of the stacked backward cusum, the
dashed line is the backward cusum breakpoint estimator given by equation (6), and the dotted vertical line is the detection
time point of the forward cusum. The detectors in the plots of the third column are scaled by their boundary function,
where the solid line represents the one-sided stacked backward cusum and the dotted line is the one-sided forward cusum
of Chu et al. (1996). The horizontal dashed line represents the critical boundary of the scaled detectors.
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9 Conclusion

In this paper we propose two alternatives to the conventional cusum detectors by Brown

et al. (1975) and Chu et al. (1996). It has been demonstrated that cumulating the recursive

residuals backwardly result in much higher power than using forwardly cumulated recursive

residuals, in particular if the break is located at the end of the sample. Accordingly, the

backward scheme is especially attractive for on-line monitoring. To this end, the stacked

triangular array of backwardly cumulated recursive residuals is employed and we find that

this approach yields a much lower detection delay than the monitoring procedure by Chu

et al. (1996). Due to the multivariate nature of our tests, they also have power against

structural breaks that do not affect the unconditional mean of the dependent variable.
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A Appendix: Technical proofs

A.1 Auxiliary lemmas

We first present some auxiliary lemmas which we require for the proofs of the main theo-

rems.

Lemma 1. Under Assumption 1, there exists a k-dimensional standard Brownian motion

W (k)(r), such that the following statements hold true: (a) for any fixed m <∞, as T →∞,

1√
T

brT c∑
t=1

xtut ⇒ σC1/2W (k)(r), r ∈ [0,m],

where “⇒” denotes weak convergence on the k-fold càdlàg space D([0,m])k with respect to

the Skorokhod metric; (b)

lim
t→∞

‖
∑t

j=1 xjuj − σC1/2W (k)(t)‖
√
t

= 0 (a.s.).

Proof. For (a), note that a direct consequence of the functional central limit theorem for

multiple time series on the space D([0, 1])k given by Theorem 2.1 in Phillips and Durlauf

(1986) is that M−1/2
∑bsMc

t=1 xtut ⇒ σC1/2W (k)(s), s ∈ [0, 1], as M → ∞ (see also Lemma

3 in Krämer et al. 1988). Then, on the space D([0,m])k,

1√
T

brT c∑
t=1

xtut =

√
m√
M

b(r/m)Mc∑
t=1

xtut ⇒
√
mσC1/2W (k)(r/m)

d
= σC1/2W (k)(r), r ∈ [0,m].

To show (b), note that {xtut}t∈N is a stationary and ergodic martingale difference sequence

with E(xtut) = 0 and E[(xtut)(xtut)
′] = σ2C. We apply the strong invariance principle

given by Theorem 3 in Wu et al. (2007). Then,

lim
t→∞

‖σ−1C−1/2
∑t

j=1 xjuj −W (k)(t)‖
t1/q
√

ln(t)(ln(ln(t)))1/4
<∞, (a.s.),

where q = min{κ, 4} (see also Strassen 1967), and the assertion follows from the fact that

lim
t→∞

t1/q
√

ln(t)(ln(ln(t)))1/4/
√
t = 0
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Lemma 2. Let {(xt, ut)}t∈N satisfy Assumption 1, let βt = β0 for all t ∈ N, and let m <∞.

Let Xt =
∑t

j=1 xjwj, Yt =
∑t

j=1 xjuj, and Zt =
∑t−1

j=1

∑j
i=1 j

−1xiui. Then, as T →∞,

sup
1≤t≤mT

‖Xt − (Yt − Zt)‖√
T

= oP (1), and sup
T<t<∞

‖Xt − (Yt − Zt)‖√
t

= oP (1).

Proof. First, note that wt = 0 for t ≤ k. For t > k let ft = (1 + (t − 1)−1x′tC
−1
t−1xt)

1/2 be

the denominator of wt. Then,

ftwt = yt − x′tβ̂t−1 = ut − x′t
( t−1∑
j=1

xjx
′
j

)−1( t−1∑
j=1

xjuj

)
= ut − x′tC−1

t−1

( 1

t− 1

t−1∑
j=1

xjuj

)
.

Furthermore, let Ỹt =
∑t

j=k+1 f
−1
j xjuj, and Z̃t =

∑t−1
j=k

∑j
i=1 j

−1f−1
j−1xj+1x

′
j+1C

−1
j xiui.

Then, Xt =
∑t

j=k+1 f
−1
j xj(uj − (j− 1)−1x′jC

−1
j−1

∑j−1
i=1 xiui) = Ỹt− Z̃t. Hence, it remains to

show, that

sup
1≤t≤mT

‖Ỹt − Yt‖√
T

= oP (1), and sup
T<t<∞

‖Ỹt − Yt‖√
t

= oP (1), (8)

and that

sup
1≤t≤mT

‖Z̃t − Zt‖√
T

= oP (1), and sup
T<t<∞

‖Z̃t − Zt‖√
t

= oP (1). (9)

To show (8) and (9), we apply Abel’s formula of summation by parts, which is given by

n∑
t=1

Atbt =
n∑
t=1

Atbn +
n−1∑
t=1

t∑
j=1

Aj(bt − bt+1), At ∈ Rk×k, bt ∈ Rk, n ∈ N. (10)

Let ψT =
√
T ((fT − 1)1{T>k} − 1{T≤k}), which is OP (1), since

√
T (fT − 1) = OP (1), as

T → ∞, and let at = t−1/2
∑t

j=1 ψjxjuj, where ‖aT‖ = OP (1). Furthermore, note that

j−1/2 − (j + 1)−1/2 < j−3/2. Then,

Ỹt − Yt =
t∑

j=1

(ψjxjuj)j
−1/2 = at +

t−1∑
j=1

(
ajj

1/2
[
j−1/2 − (j + 1)−1/2

])
< at +

t−1∑
j=1

1

j
aj,

which implies that

sup
1≤t≤mT

‖Ỹt − Yt‖√
T

< sup
1≤t≤mT

(‖at‖√
T

+
m

T 1/4

t−1∑
j=1

‖aj‖
j5/4

)
= oP (1),
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and

sup
T<t<∞

‖Ỹt − Yt‖√
t

< sup
T<t<∞

(‖at‖√
T

+
1

T 1/4

t−1∑
j=1

‖aj‖
j5/4

)
= oP (1).

To show (9), let Z∗t =
∑t−1

j=1

∑j
i=1 j

−1xj+1x
′
j+1C

−1xiui, Ãj = f−1
j−1C

−1
j 1{j≥k} − C−1, and

ãj = j−1/2
∑j

i=1 xj+1x
′
j+1Ãjxiui, such that Z̃t−Z∗t =

∑t−1
j=1 j

−1/2ãj. Since {xt}t∈N is ergodic,

we have ‖ÃT‖M = oP (1), as T → ∞, where ‖ · ‖M denotes the matrix norm induced by

‖ · ‖, and ‖ãT‖ = oP (1). Moreover, there exists some ε > 0 and some random variable ξ,

such that ‖ãj‖ ≤ j−εξ. Thus,

sup
1≤t≤mT

‖Z̃t − Z∗t ‖√
T

≤ mξ

T ε

∞∑
j=1

1

j1+ε
= oP (1), sup

T<t<∞

‖Z̃t − Z∗t ‖√
t

≤ ξ

T ε

∞∑
j=1

1

j1+ε
= oP (1).

Finally, with A∗j = xj+1x
′
j+1C

−1 − IK and b∗t = t−1
∑t

j=1 xjuj, (10) yields

Z∗t − Zt =
t−1∑
j=1

A∗jb
∗
j =

t−1∑
j=1

A∗jb
∗
t−1 +

t−2∑
j=1

j∑
i=1

A∗i
[
b∗j − b∗j+1

]
= (t− 1)B∗t−1b

∗
t−1 +

t−2∑
j=1

jB∗j

[ 1

j + 1
b∗j+1 +

1

j
xj+1uj+1

]
,

where B∗t = t−1
∑t

j=1 A
∗
j . Since ‖B∗T‖M = oP (1) and ‖b∗T‖ = OP (T−1/2), there exists some

γ > 0 and some random variable ζ, such that ‖B∗t b∗t‖ ≤ t−1/2−γζ, ‖B∗t b∗t+1‖ ≤ t−1/2−γζ, and

‖
∑t

j=1B
∗
jxj+1uj+1‖ ≤ t1/2−γζ, which yields

‖Z∗t − Zt‖ ≤ ζ
[
(t− 1)t−1/2−γ +

t−2∑
j=1

j1/2−γ

j + 1
+ (t− 2)1/2−γ

]
≤ ζ
[
2t1/2−γ + t1/2−γ/2

t−2∑
j=1

1

j1+γ/2

]
≤ ζKt1/2−γ/2

for some constant K <∞. Consequently,

sup
1≤t≤mT

‖Z∗t − Zt‖√
T

= oP (1), and sup
T<t<∞

‖Z∗t − Zt‖√
t

= oP (1),

and (9) follows by the triangle inequality.

Lemma 3. Let W (k)(r) be a k-dimensional standard Brownian motion and let B(k)(r) be

a k-dimensional standard Brownian bridge. Then,
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(a) W (k)(r)−
∫ r

0
z−1W (k)(z) dz

d
= W (k)(r), for r ≥ 0,

(b) W (k)(r/(1− r)) d
= B(k)(r)/(1− r), for r ∈ (0, 1).

Proof. Let Wj(r) and Bj(r) be the j-th component of W (k)(r) and B(k)(r), respectively. We

show the identities for each j = 1, . . . , k, separately. Using Cauchy-Schwarz and Jensen’s

inequalities, we obtain
∫ r

0
z−1E[|Wj(z)|] dz <∞ as well as

∫ r
0
z−1E[|Wj(r)Wj(z)|] dz <∞,

which justifies the application of Fubini’s theorem in the subsequent steps. Since both

Wj(r) and F (Wj(r)) = Wj(r) −
∫ r

0
z−1Wj(z) dz are Gaussian with zero mean, it remains

to show that their covariance functions coincide. Let w.l.o.g. r ≤ s. Then,

E[F (Wj(r))F (Wj(s))]− E[Wj(r)Wj(s)]

=

∫ r

0

∫ s

0

E[Wj(z1)Wj(z2)]

z1z2

dz2 dz1 −
∫ s

0

E[Wj(r)Wj(z2)]

z2

dz2 −
∫ r

0

E[Wj(s)Wj(z1)]

z1

dz1

= (2r + r ln(s)− r ln(r))− (r + r ln(s)− r ln(r))− r = 0,

and (a) has been shown. The second result follows from the fact that both processes are

Gaussian with zero mean and

E

[
Bj(r)

1− r
Bj(s)

1− s

]
=

min{r(1− s), s(1− r)}
(1− r)(1− s)

= min
{ r

1− r
,

s

1− s

}
= E

[
Wj(

r
1−r )Wj(

s
1−s)

]
.

Lemma 4. Let {(xt, ut)}t∈N satisfy Assumption 1, let βt = β0 for all t ∈ N, and let

m ∈ (0,∞). Then, as T →∞,

1√
T

brT c∑
t=1

xtwt ⇒ σC1/2W (k)(r), r ∈ [0,m],

where W (k)(r) is a k-dimensional standard Brownian motion.

Proof. From Lemma 2, we have supr∈[0,m] T
−1/2‖XbrT c − (YbrT c − ZbrT c)‖ = oP (1). Let

F (YbrT c) = YbrT c −
∫ r

0
z−1YbzT c dz. Then, limT→∞ ‖(YbrT c − ZbrT c) − F (YbrT c))‖ = 0, and

supr∈[0,m] ‖T−1/2XbrT c − F (T−1/2YbrT c)‖ = oP (1). Lemma 1(a) and the continuous map-

ping theorem imply F (T−1/2YbrT c) ⇒ F (σC−1/2W (k)(r)) = σC−1/2F (W (k)(r)). Further-

more, from Lemma 3, it follows that F (W (k)(r))
d
= W (k)(r). Consequently, T−1/2XbrT c ⇒

σC1/2W (k)(r).
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Lemma 5. Let ‖ · ‖M be the induced matrix norm of ‖ · ‖. Let h be a Rk-valued func-

tion of bounded variation, and let {At}t∈N be a sequence of random (k × k) matrices with

supr∈[0,m] ‖T−1
∑brT c

t=1 (At − A)‖M = oP (1), where m ∈ (0,∞). Then, as T →∞,

sup
r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(At − A)h( t
T

)
∥∥∥ = oP (1).

Proof. By the application of Abel’s formula of summation by parts, which is given in (10),

it follows that

brT c∑
t=1

(At − A)h( t
T

) =

brT c∑
t=1

(At − A)h( brT c
T

) +

brT c−1∑
t=1

t∑
j=1

(Aj − A)(h( t
T

)− h( t+1
T

)).

The fact that h(r) is of bounded variation yields

sup
r∈[0,m]

‖h(r)‖ = O(1), sup
r∈[0,m]

∥∥∥ brT c−1∑
t=1

t

T
(h( t

T
)− h( t+1

T
))
∥∥∥ = O(1).

Consequently,

sup
r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(At − A)h( brT c
T

)
∥∥∥ ≤ sup

r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(At − A)
∥∥∥
M

∥∥∥h( brT c
T

)
∥∥∥ = oP (1)

and

sup
r∈[0,m]

∥∥∥ 1

T

brT c−1∑
t=1

t∑
j=1

(Aj − A)(h( t
T

)− h( t+1
T

))
∥∥∥

≤ sup
r∈[0,m]

brT c−1∑
t=1

t

T

∥∥∥1

t

t∑
j=1

(Aj − A)
∥∥∥
M

∥∥∥h( t
T

)− h( t+1
T

)
∥∥∥ = oP (1).

Then, by the triangle inequality, the assertion follows.

A.2 Proof of Theorem 1

Let w∗t = f−1
t (y∗t − x′tβ̂

∗
t−1), which are recursive residuals from a regression without any

structural break, where ft = (1 + (t− 1)−1x′tC
−1
t−1xt)

1/2,

y∗t = x′tβ0 + ut, and β̂∗t−1 =
( t−1∑
j=1

xjx
′
j

)−1( t−1∑
j=1

xjy
∗
j

)
.
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Then, yt = x′tβt + ut = y∗t + T−1/2x′tg(t/T ), and

β̂t−1 = β̂∗t−1 +
1√

T (t− 1)
C−1
t−1

t−1∑
j=1

xjx
′
jg(j/T ).

Furthermore, wt = w∗t + f−1
t T−1/2x′tg(t/T )− f−1

t T−1/2(t− 1)−1C−1
t−1

∑t−1
j=1 xjx

′
jg(j/T ). We

can decompose the partial sum process as T−1/2
∑brT c

t=1 xtwt = S1,T (r) + S2,T (r) + S3,T (r),

where

S1,T (r) =
1√
T

brT c∑
t=1

xtw
∗
t , S2,T (r) =

1

T

brT c∑
t=1

f−1
t xtx

′
tg( t

T
), (11)

S3,T (r) = − 1

T

brT c∑
t=1

1

ft(t− 1)
xtx
′
tC
−1
t−1

t−1∑
j=1

xjx
′
jg( j

T
). (12)

Let ‖ · ‖M be the induced matrix norm of ‖ · ‖. Lemma 4 yields S1,T (r) ⇒ σC1/2W (k)(r).

For the second term, note that, from Assumption 1 and the fact that
√
T (f−1

T −1) = OP (1),

it follows that

sup
r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(f−1
t xtx

′
t − C)

∥∥∥
M

= oP (1). (13)

Since g(r) is piecewise constant and therefore of bounded variation, Lemma 5 yields

sup
r∈[0,m]

∥∥∥S2(r)−
∫ r

0

Cg(s) ds
∥∥∥ = sup

r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(f−1
t xtx

′
t − C)g( t

T
)
∥∥∥ = oP (1). (14)

For the third term, let

p1(r) =
1

brT c
C−1
brT c

brT c∑
j=1

xjx
′
jg( j

T
), p2(r) =

1

brT c
C−1
brT c

brT c∑
j=1

Cg( j
T

),

p3(r) =
1

brT c

brT c∑
j=1

g( j
T

).

From Assumption 1, it follows that supr∈[0,m] ‖p2(r)−p3(r)‖M = oP (1). Furthermore, from

Lemma 5 and from the fact that supr∈[0,m] ‖ 1
brT c

∑brT c
t=1 (xtx

′
t−C)‖M = oP (1), it follows that

supr∈[0,m] ‖p1(r)− p2(r)‖ = oP (1). Thus, supr∈[0,m] ‖p1(r)− p3(r)‖ = oP (1). Consequently,

sup
r∈[0,m]

∥∥∥S3,T (r) +
1

T

brT c∑
t=1

f−1
t xtx

′
th3( t−1

T
)
∥∥∥

≤ sup
r∈[0,m]

1

T

brT c∑
t=1

‖f−1
t xtx

′
t‖M‖p1( t−1

T
)− p3( t−1

T
)‖, (15)
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which is oP (1). Since p3 is a partial sum of a piecewise constant function, it is of bounded

variation, and, together with (13), we can apply Lemma 5. Then,

sup
r∈[0,m]

∥∥∥ 1

T

brT c∑
t=1

(f−1
t xtx

′
t − C)p3( t−1

T
)
∥∥∥ = oP (1),

which yields

sup
r∈[0,m]

∥∥∥S3,T (r) +

∫ r

0

∫ s

0

1

s
Cg(v) dv ds

∥∥∥
= sup

r∈[0,m]

∥∥∥S3,T (r) +
1

T
C

brT c∑
t=1

p3( t−1
T

)
∥∥∥+ oP (1) = oP (1).

Finally, Slutsky’s theorem implies that S1,T (r)+S2,T (r)+S3,T (r)⇒ σC1/2W (k)(r)+σCh(r),

which yields

QT (r) = σ̂−1
T C

−1/2
T (S1,T (r) + S2,T (r) + S3,T (r))⇒ W (k)(r) + C1/2h(r),

since σ̂2
T is consistent for σ2 (see Krämer et al. 1988).

A.3 Proof of Theorem 2

Theorem 1 and the continuous mapping theorem imply that

BQT = sup
r∈(0,1)

‖QT (1)−QT (r)‖
d(1− r)

d−→ sup
r∈(0,1)

‖W (k)(1) + C1/2h(1)−W (k)(r)− C1/2h(r)‖
d(1− r)

d
= sup

r∈(0,1)

‖W (k)(r) + C1/2(h(1)− h(1− r))‖
d(r)

.

A.4 Proof of Theorem 3

Analogously to the proof of Theorem 2, Theorem 1 and the continuous mapping theorem

imply that

SBQT
d−→ sup

r∈(0,1)

sup
s∈(0,r)

‖W (k)(r)−W (k)(s) + C1/2[h(r)− h(s)]‖
d(r − s)
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and

SBQT,m
d−→ sup

r∈(1,m)

sup
s∈(1,r)

‖W (k)(r)−W (k)(s) + C1/2[h(r)− h(s)]‖
d(r − s)

d
= sup

r∈(0,m−1)

sup
s∈(0,r)

‖W (k)(r)−W (k)(s) + C1/2[h(r + 1)− h(s+ 1)]‖
d(r − s)

A.5 Proof of Theorem 4

Lemma 2 yields

sup
t≥T

‖
∑t

j=1 xjwj −
∑t

j=1(xjuj − j−1
∑j

i=1 xiui)‖√
t

= oP (1).

Let W (k)(r) be the k-dimensional standard Brownian motion given by Lemma 1(b). Then,

AT = sup
t≥T

‖
∑t

j=1 xjuj − σC1/2W (k)(t)‖
√
t

= oP (1),

Furthermore, ‖
∑t

j=1 xtut −W (k)(t)‖ ≤ ξt1/2−ε, for some ε > 0 and some random variable

ξ, for all t ∈ N. It follows that

sup
t≥T

‖(
∑t

j=1 xjuj − j−1
∑j

i=1 xiui)− σC1/2(W (k)(t)−
∑t

j=1 j
−1W (k)(j))‖

√
t

≤ AT + sup
t≥T

t∑
j=1

‖
∑j

i=1 xiui −W (k)(j)‖
j
√
t

≤ AT + ξ ·
(

sup
t≥T

t∑
j=1

j1/2−ε

j
√
t

)
= oP (1),

since

sup
t≥T

t∑
j=1

j1/2−ε

j
√
t
≤ sup

t≥T

t∑
j=1

1

j1+εT ε
≤ 1

T ε

∞∑
j=1

1

j1+ε
= oP (1).

Consequently,

sup
t≥T

‖
∑t

j=1 xjwj − σC−1/2(W (k)(t)−
∑t

j=1 j
−1W (k)(j))‖

√
t

= oP (1).

From the fact that T−1/2W (k)(t)
d
= W (k)(t/T ) it follows that there exists some k-dimen-

sional standard Brownian motion W
(k)
1 (t), such that

sup
r≥1

‖T−1/2
∑brT c

j=1 xjwj − σC−1/2(W
(k)
1 (r)−

∑brT c
j=1 j

−1W
(k)
1 (j/T ))

√
t

= oP (1).
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Moreover, from Lemma 3 and limT→∞
∑brT c

j=1 j
−1W

(k)
1 (j/T ) =

∫ r
0
z−1W

(k)
1 (z) dz, there exists

some k-dimensional standard Brownian motion W
(k)
2 (t), such that

sup
r≥1

‖T−1/2
∑brT c

j=1 xjwj − σC1/2W
(k)
2 (r)‖

√
r

= oP (1),

and, therefore,

sup
r≥1

‖σ−1C−1/2T−1/2
∑brT c

j=1 xjwj −W
(k)
2 (r)‖

√
r

= oP (1).

Since σ̂ is consistent for σ (see Krämer et al. 1988) and {xt}t∈N is ergodic, we have

‖σ̂−1C
−1/2
T − σ−1C−1/2‖M = oP (1),

where ‖ · ‖M denotes the matrix norm induced by ‖ · ‖. Consequently,

sup
r≥1

‖QT (r)−W (k)
2 (r)‖√

r
= oP (1).

A.6 Proof of Theorem 5

For the first result, Theorem 4 and Assumption 2 imply

sup
r>1

‖QT (r)−QT (1)‖
d(r − 1)

− sup
r>1

‖W (k)(r)−W (k)(1)‖
d(r − 1)

≤ sup
r>1

‖QT (r)−QT (1)− (W (k)(r)−W (k)(1))‖
d(r − 1)

≤ sup
r>1

‖QT (r)−W (k)(r)‖
d(r − 1)

+ sup
r>1

‖QT (1)−W (k)(1)‖
d(r − 1)

≤ sup
r>1

(
‖QT (r)−W (k)(r)‖√

r
·
√
r

d(r − 1)

)
+ ‖QT (1)−W (k)(1)‖ · sup

r>1

1

d(r − 1)

≤
(

sup
r>1

2
√
r

d(r − 1)

)
·
(

sup
r>1

‖QT (r)−W (k)(r)‖√
r

)
= oP (1)

for some k-dimensional standard Brownian motion W (k)(r). Then,

QT,∞ = sup
r∈(1,∞)

‖QT (r)−QT (1)‖
d(r − 1)

d−→ sup
r∈(1,∞)

‖W (k)(r)−W (k)(1)‖
d(r − 1)

.

We transform the supremum to a supremum over a subset of the unit interval. Consider

the bijective function g : (0, 1) → (0,∞) that is given by g(η) = η/(1 − η). Furthermore,
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note that W (k)(g(η))
d
= B(k)(η)/(1− η), which follows from Lemma 3. Consequently,

sup
r∈(1,∞)

‖W (k)(r)−W (k)(1)‖
d(r − 1)

d
= sup

r∈(0,∞)

‖W (k)(r)‖
d(r)

= sup
η∈(0,1)

‖W (k)(g(η))‖
d(g(η))

d
= sup

η∈(0,1)

‖B(k)(η)‖
(1− η)d

(
η

1−η

) .
For the second result, Theorem 2 and Assumption 2 imply

sup
r∈(1,∞)

sup
s∈(1,r)

‖QT (r)−QT (s)‖
d(r − s)

− sup
r∈(1,∞)

sup
s∈(1,r)

‖W (k)(r)−W (k)(s)‖
d(r − s)

≤ sup
r∈(1,∞)

sup
s∈(1,r)

‖QT (r)−QT (s)− (W (k)(r)−W (k)(s))‖
d(r − s)

≤ sup
r∈(1,∞)

sup
s∈(1,r)

‖QT (r)−W (k)(r)‖
d(r − s)

+ sup
r∈(1,∞)

sup
s∈(1,r)

‖QT (s)−W (k)(s)‖
d(r − s)

≤ sup
r∈(1,∞)

‖QT (r)−W (k)(r)‖
d(r − 1)

+ sup
r∈(1,∞)

sup
s∈(1,r)

‖QT (s)−W (k)(s)‖
d(r − 1)

≤
(

sup
r∈(1,∞)

2
√
r

d(r − 1)

)
·
(

sup
r∈(1,∞)

‖QT (r)−W (k)(r)‖√
r

)
= oP (1)

for some k-dimensional standard Brownian motion W (k)(r). Then,

SBQT,∞ = sup
r∈(1,∞)

sup
s∈(1,r)

‖QT (r)−QT (s)‖
d(r − s)

d−→ sup
r∈(1,∞)

sup
s∈(1,r)

‖W (k)(r)−W (k)(s)‖
d(r − s)

.

Consider again the bijective function from above. With Lemma 3(b), we have

sup
r∈(1,∞)

sup
s∈(1,r)

‖W (k)(r)−W (k)(s)‖
d(r − s)

d
= sup

r∈(0,∞)

sup
s∈(0,r)

‖W (k)(r)−W (k)(s)‖
d(r − s)

= sup
η∈(0,1)

sup
s∈(0,g(η))

‖W (k)(g(η))−W (k)(s)‖
d(g(η)− s)

= sup
η∈(0,1)

sup
ζ∈(0,η)

‖W (k)(g(η))−W (k)(g(ζ))‖
d(g(η)− g(ζ))

d
= sup

η∈(0,1)

sup
ζ∈(0,η)

‖B(k)(η)/(1− η)−W (k)(ζ)/(1− ζ)‖
d
(

η
1−η −

ζ
1−ζ

)
= sup

η∈(0,1)

sup
ζ∈(0,r)

‖(1− ζ)B(k)(η)− (1− η)B(k)(ζ)‖
(1− η)(1− ζ)d

(
η−ζ

(1−η)(1−ζ)

) .

A.7 Proof of Theorem 6

Adopting the notation of the local break in Theorem 1, we have βt = β0 + T−1/2g(t/T )

with g(t/T ) = T 1/2δ1{t≥T ∗}. Unlike in Theorem 1, the alternative does not converge to the
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null as the sample size grows. Following equations (11)–(15), we have

1

T

brT c∑
t=1

xtwt =
1

T 1/2

(
S1,T (r) + S2,T (r) + S3,T (r)

)
,

where supr∈[0,1] ‖T−1/2S1,T (r)‖ = oP (1), and

sup
r∈[0,1]

∥∥∥∥S2,T (r) + S3,T (r)− C
(∫ r

0

g∗(z) dz −
∫ r

0

∫ z

0

1

z
g∗(v) dv dz

)∥∥∥∥ = oP (1),

where g∗(r) = δ1{r≥τ∗}. Note that∫ r

0

g∗(z) dz −
∫ r

0

∫ z

0

1

z
g∗(v) dv dz = δ

∫ r

0

(
1{s≥τ∗} −

∫ s

0

1

s
1{v≥τ∗}

)
ds

= δ

∫ r

τ∗

(
1− s− τ ∗

s

)
ds = δ

∫ r

τ∗

1

s
ds = τ ∗δ

(
ln(r)− ln(τ ∗)

)
1{r≥τ∗},

which implies that σT−1/2QT (r)⇒ τ ∗C1/2δ
(

ln(r)− ln(τ ∗)
)
1{r≥τ∗}. Then,

τ̂ret =
1

T
· argmax

1≤t≤T

∥∥∥ σ̂T
√
T√

T − t+ 1

(
QT (1)−QT ( t+1

T
)
)∥∥∥,

τ̂mon =
1

T
· argmax
T<t≤Td

∥∥∥ σ̂T
√
T d√

Td − t+ 1

(
QTd(1)−QTd(

t+1
Td

)
)∥∥∥,

and supr∈[0,1] ‖QTd(r)−QT (rτd)‖ = oP (1), where τd = Td/T . If r ∈ [τ ∗, 1), the continuous

mapping theorem yields

plim
T→∞

τ̂ret = argsup
0<r<1

1√
1− r

((
ln(1)− ln(τ ∗)

)
1{1≥τ∗} −

(
ln(r)− ln(τ ∗)

)
1{r≥τ∗}

)
= argsup

0<r<1

1√
1− r

(
− ln(r)1{r≥τ∗} − ln(τ ∗)1{r<τ∗}

)
= τ ∗,

since − ln(τ ∗)/
√

1− r is strictly increasing for r ∈ (0, τ ∗) and − ln(r)/
√

1− r is strictly

decreasing for r ∈ [τ ∗, 1). Analogously, if τ ∗ ∈ (1, τd],

plim
T→∞

τ̂mon = argsup
1<r<τd

1√
τd − r

((
ln(τd)− ln(τ ∗)

)
1{τd≥τ∗} −

(
ln(r)− ln(τ ∗)

)
1{r≥τ∗}

)
= argsup

1<r<τd

1√
τd − r

(
ln(τd)− ln(r)1{r≥τ∗} − ln(τ ∗)1{r<τ∗}

)
= τ ∗.
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