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Abstract

In this paper we provide a general framework for linear projection estimators for impulse

responses in structural vector autoregressions (SVAR). An important advantage of our

projection estimator is that for a large class of SVAR systems (that includes the recursive

(Cholesky) identification scheme) standard OLS inference is valid without adjustment for

generated regressors, autocorrelated errors or nonstationary variables. We also provide a

framework for SVAR models that can be estimated by instrumental (proxy) variables. We

show that this class of models (that includes also identification by long-run restrictions)

result in a set of quadratic moment conditions that can be used to obtain the asymptotic

distribution of this estimator, whereas standard inference based on instrumental variable

(IV) projections is invalid. Furthermore, we propose a generalized least squares (GLS)

version of the projections that performs similarly to the conventional (iterated) method

of estimating impulse responses by inverting the estimated SVAR representation into

the MA(∞) representation. Monte Carlo experiments indicate that the proposed OLS

projections perform similarly to Jordà’s (2005) projection estimator but enables us to

apply standard inference on the estimated impulse responses. The GLS versions of the

projections provide estimates with much smaller standard errors and confidence intervals

whenever the horizon h of the impulse responses gets large.
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1 Introduction

The analysis of dynamic effects in vector autoregressive models (VAR) by means of impulse

responses has become a standard tool in empirical macroeconomics. Following Sims (1980)

the dynamic effect to shocks are typically measured by the moving average (MA) coefficients

derived from the finite order VAR representation of the time series. Lütkepohl (1989) provide

asymptotic methods for statistical inference. In recent years it has become popular to estimate

the effects of structural shocks by “local projections” (e.g. Jordà (2005), Jordà, Schularick and

Taylor (2015, 2019), Ramey and Zubairy (2018)). This method is based on a direct repre-

sentation of the time series vector shifted h periods ahead, whereas the traditional method

traces out the impulse responses “iteratively” from the first up to the h-th period. In contrast

to the iterated method, where the MA parameters are nonlinear functions of the underlying

VAR(p) model, the projection method results in a representation that is typically linear in the

parameters. Since the errors of the direct representation are autocorrelated up to the horizon

h−1, the projection estimator is inefficient, in general. On the other hand, the iterated method

provides maximum likelihood (ML) estimators that are asymptotically efficient, whenever the

likelihood function is correctly specified. As pointed out by Plagborg-Moller and Wolf (2019)

“in population, they estimate the same thing, as long as we control flexibly for lagged data”. An

important difference is that the iterated estimator extrapolates longer-term impulse responses

from the first p autocorrelations such that the impulse responses converge to zero as the horizon

h gets large, whenever all roots are outside the unit circle. On the other hand, the estimated

impulse responses of the projection method are functions of the autocorrelations from lag h up

to lag h + p which prevents the impulse responses to converge to zero as h tends to infinity.

Hence, the estimates from the two methods may be quite different even for moderate horizons

h.

In practice the identification of shocks and the estimation of the impulse responses are often

performed in two separate steps. For instance, Romer and Romer (2004, 2010) first construct

“narrative shocks” from a careful analysis of a rich information set, whereas in a second step the

dynamic response of some variables of interest to the shocks is measured by an autoregressive

distributed lag (ADL) regression. More formally the analysis can be characterized by two

different steps:

εj,t = f(xj,t, βj) (1)

yi,t+h = θhijεj,t + z′j,tπ
h
ij + ehij,t (2)

where εj,t denotes the j-th structural shock (j ∈ {1, . . . , k}), xj,t is a vector of time series used to

identify the shocks, f(·) is a (possibly nonlinear) function, βj is a parameter vector, yi,t denotes

the target variable and zj,t is a vector of additional control variables, included to improve the

efficiency of the estimator for θhij. The first equation (1) is used to identify the shocks based

on a set of economic time series such that (i) the shock is unpredictable with respect to some
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information set It that includes the past of xj,t, yt zj,t and (ii) the shocks are “orthogonal” to

all other shocks. Equation (2) is called the projection step, where the parameter θhij measures

the effect of the j-th shock on the i-th variable h-steps ahead. In many applications it is

convenient to estimate the parameter of interest θhij in two steps. In the first step the shocks

result from by estimating βj in (1). In the second step we replace the unobserved shock εj,t by

the estimated analog ε̂j,t = f(xj,t, β̂j). Alternatively it is possible to estimate all parameters

jointly by estimating the equation

yi,t+h = θhijf(xj,t, βj) + z′j,tπ
h
ij + ehij,t . (3)

As a simple example, consider the bivariate VAR(1) model[
y1,t

y2,t

]
=

[
a11 a12

a21 a22

][
y1,t−1

y2,t−1

]
+

[
u1t

u2t

]
where the shocks are identified by the structural model εt = Γut and Γ is a lower triangular

matrix with ones on the leading diagonal. Accordingly the shocks can be written as functions

of x1,t = (y1,t, y
′
t−1)′ and x2,t = (y′t, y

′
t−1)′:

ε1t = u1,t = y1,t − a11y1,t−1 − a12y2,t−1

ε2t = γu1,t + u2,t = y2,t + γy1,t − (a21 + γa11)y1,t−1 − (a22 + γa21)y2,t−1 ,

where γ is the (2, 1)-element of Γ. The first shock can be estimated by running a regression of

y1,t on y1,t−1 and y2,t−1, whereas the second shock results from a regression of y2,t on y1,t, y1,t−1,

y2,t−1. In a second step, the estimated shock is inserted in the projection equation yielding

yi,t+h = θhij ε̂j,t + z′j,tπ
h
ij + ẽhij,t .

In our example it is not necessary to include any control variable as the candidate variables y1,t−1

and y2,t−1 are orthogonal to the estimated shocks. We may nevertheless include the vectors

of control variables z1,t = yt−1 and z2,t = (y1,t, y
′
t−1)′ as otherwise the usual regression based

inference on θ̂hij is invalid (see the next section for more details). Alternatively the impulse

response may be estimated in a single step using (3) which results in estimating the linear

equation

yi,t+h = θhijyj,t + z̃′j,tπ̃
h
ij + ehij,t (4)

with z̃1,t = yt−1 and z̃2,t = (y1,t, y
′
t−1)′.

These projection estimators are similar but not identical to the estimator suggested by Jordà

(2005) which is based on the transformed “h-step ahead” representation of the VAR. For our

simple VAR(1) example this approach results in

yt+h = Ahyt + vht , (5)

= Θhy
∗
t + vht , (6)
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where A is the k × k matrix of VAR coefficients, y∗t = Γyt and Θh = AhΓ−1 is the impulse

response matrix with respect to the vector of structural shocks εt = Γut. In practice the matrix

Γ is unknown and must be replaced by a consistent estimator. Hence, Jordà’s (2005) estimator

of the impulse response of the i-th variable to the j-th shock is obtained from the regression

yi,t+h =
k∑
j=1

θhij ŷ
∗
j,t + ṽhi,t , (7)

where ŷ∗j,t is the j-th element of the vector ŷ∗t = Γ̂yt and Γ̂ is a consistent estimate of Γ.

It should be noted that using an estimated matrix for the transformation of yt involves a

generated-regressor problem that introduces nuisance parameters in limiting distributions of

the estimators. Accordingly, the usual heteroskedasticity and autocorrelation consistent (HAC)

inference on the OLS estimator θ̂hij is invalid and its limiting distribution needs to be adjusted

by the estimation error Γ̂ − Γ (cf. Kilian and Kim (2011)). In contrast, no HAC or other

adjustments are required for valid inference when using regression (4) with suitable control

variables (see Section 2).

The remainder of this paper is structured as follows: Section 2 discusses OLS projection

methods and their asymptotic properties and Section 3 considers IV projections. Section 4

suggests refinements leading to GLS projections. Section 5 presents some Monte Carlo evidence

on the the relative performance of different projection estimators and Section 6 concludes.

2 OLS projections

Let us consider the VAR(p) model

yt = A1yt−1 + · · ·+ Apyt−p + ut , (8)

where yt is a k-dimensional vector of time series and ut is a k× 1 vector of white noise innova-

tions with E(ut) = 0 and E(utu
′
t) = Σ (positive definite). The inclusion of further deterministic

regressors like constants, trends or dummy variables is unproblematic and is therefore sup-

pressed. The vector of structural shocks is related to the vector of innovations (forecast errors)

by

εt = Γut. (9)

If the diagonal elements of Γ (or Γ−1) are unity, (k−1)k/2 additional restrictions are necessary

to identify the matrix Γ. A leading example is the assumption that Γ is a lower triangular

matrix such that it can be determined from a Cholesky decomposition of the covariance matrix

Σ = E(utu
′
t).

The impulse response of the i-th variable yit with respect to the j-th shock h steps ahead

is given by

∂E(yi,t+h|εj,t)
∂εj,t

= θhij +
∂E(z′j,t|εj,t)

∂εj,t
πhij (10)
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and, thus, θhij is an unbiased measure of the impulse response whenever zj,t and εj,t are in-

dependent. Since the shocks are uncorrelated with yt−1, . . . , yt−p, the lags of all variables are

natural candidates for the vector of control variables. In a recursive (triangular) scheme we

may also include the “previous” contemporaneous variable y1,t, . . . , yj−1,t as these variables are

uncorrelated with εj,t as well.

If the shock εj,t was observed, we may just run an OLS regression of the projection equation

(2) to estimate the coefficient θhij consistently. In the more realistic case that the shock is

estimated such that ε̂j,t = f(xj,t, β̂j), then the OLS estimator of θhij remains consistent provided

that β̂j
p→ βj. In general, however, statistical inference is affected by the estimation error

β̂j − βj. For important special cases the following proposition shows that standard regression

inference is valid no matter of the estimation error in ε̂j,t and possible autocorrelation of ehij,t.

Proposition 1. Let yt be generated by the VAR(p) model (8) and the estimated structural

shock is obtained as ε̂j,t = f(xj,t, β̂j), where β̂j is a
√
T -consistent estimator for βj. Assume

that there exists some matrix Cj such that gj,t(βj) = Cjzj,t with

gj,t(βj) =
∂f(xj,t, βj)

∂βj

and E(zj,tεj,t) = 0. Then (i) the OLS estimator θ̂hij of θhij in the regression

yi,t+h = θhij ε̂j,t + z′j,tπ
h
ij + ẽhij,t (11)

is a consistent and asymptotically normally distributed estimator for θhij. (ii) The ordinary OLS

estimator of the standard error of θ̂hij is consistent no matter of the serial correlation of ẽhij,t.

A proof of the results is given in the appendix. This proposition shows that augmenting

the regression by suitable control variables escapes the error-in-variables problem involved by

working with estimated shocks. For illustration, let us first consider a VAR, where the popular

triangular (recursive) identification scheme is applied. Accordingly, the j-th structural results

as

εj,t = γ′j(yt − A1yt−1 − · · · − Apyt−p)

= β′0yt + β′1yt−1 + · · ·+ β′pyt−p

where γ′j is the j-th row of Γ and β′` is the j-th row of −ΓA` for ` = 1, . . . , p and β0 = γj.

Denote by β0,r the r-th element of β0. For a triangular identification scheme we set β0,r = 0 for

r > j. Furthermore, the unit effect normalization implies that the diagonal elements of Γ are

equal to unity which implies β0,j = 1. Accordingly, the derivative with respect to the remaining

parameters β̃ = (β0,1, . . . , β0,j−1, β
′
1, . . . , β

′
p)
′ is given by gj,t(β) = ∂f(xj,t, βj)/∂β̃j = zj,t, where

zj,t = (y1,t, . . . , yj−1,t, y
′
t−1, . . . , y

′
t−p)

′. Thus, the matrix C is the identity matrix and Proposition
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1 applies. It should also be noted that for the triangular identification the regression (3) is

equivalent to

yi,t+h = θhij ε̂j,t + z′j,tπ
h
ij + ehij,t (12)

= θhijyj,t + z′j,tπ̃
h
ij + ehij,t (13)

as ε̂j,t results from a regression of yj,t on zj,t. Accordingly, the sequential two-step estimator of

(1) – (2) is equivalent to the joint estimation based on (3).

Let us compare our projection estimator for the triangular identification scheme with Jorda’s

(2005) projection estimator. First, since εj,t is serially uncorrelated, the product εj,te
h
ij,t is

serially uncorrelated as well and no HAC standard errors are required. Second, the regression

(13) does not involve any errors-in-variable problem that has to be taken into account when

computing standard errors. In contrast, for SVAR models the standard errors of Jordà’s (2005)

projection estimator needs to be adjusted by a (nonlinear) term resulting from the estimation

error (Γ̂ − Γ) (cf. Kilian and Kim (2011)). Another advantage of our projection estimator is

that inference is valid no matter whether the time series are stationary or not. This is due

to the fact that the coefficient of interest θhij is attached to the stationary variable εj,t in (11),

whereas in Jordà’s (2005) version of the projection estimator, the coefficient of interest may be

attached to a nonstationary variable.

3 IV projections

3.1 Proxy VARs

There are different motivations for employing instrumental variables (IV) when estimating im-

pulse response functions. One possibility is to use external shocks as instruments for identifying

the internal shocks within a VAR system. Assume for example that there exists some external

instrument (or proxy) wt that is correlated with the shock ε1,t but exhibit some measurement

error uncorrelated with all other shocks in the system. Accordingly, the relationship between

the external instrument and the structural shock ε1,t is represented by

w1,t = ψε1,t + ηt , (14)

where ηt is a measurement error with E(ηtεt) = 0. We can use wt as an instrument for estimating

the parameters in the identification step. As a simple example consider the bivariate VAR

system (in residuals) with structural equations:

u1,t = α1u2,t + ε1,t (15)

u2,t = α2u1,t + ε2,t . (16)

We are able to estimate the parameter α2 consistently by using wt as an instrument for u1,t in

equation (16). The residual of this equation serves as an estimate of the second shock that can

in turn be used as an instrument for u2,t in (15).
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For estimating the impulse response with respect to the first shock, θhi1, the usual projection

equation is given by (e.g. Stock and Watson (2018))

yi,t+h = θhi1y1,t + lags + ehi1,t (17)

or yi,t+h = θhi1u1,t + lags + ehi1,t (18)

where “lags” represent some linear combination of the vector (y′t−1, . . . , y
′
t−p). If the unit effect

condition is neglected, we can estimate θhi1 by an IV estimator using the proxy variable wt as

instrument for the variable y1,t (resp. u1,t). By solving the system (15) and (16) for the first

structural shock we obtain

u1,t = a1ε1,t + a2ε2,t ,

where a1 = 1/(1−α1α2) and a2 = α1/(1−α1α2). Accordingly, replacing ε1,t by y1,t or u1,t in the

projection equations (17) and (18) implies that the (unit effect) impulse response is multiplied

by the factor 1/a1. This is of no concern for performing standard significants tests on θh21, but

notice that the factor 1/a1 changes the sign of the response whenever a1a2 > 1.

In order to impose the unit-effect normalization we replace (15) by

u1,t = ε∗1,t + a2ε2,t , (19)

where ε∗1,t = a1ε1,t. If ε2,t were observed, we would estimate the shock ε∗1,t as the residual from

an OLS regression of u1,t on ε2,t. Since ε2,t is not observed we may replace it by the residual of

the second equation (16), estimated by using the proxy variable wt as instrument for u2,t. In a

second step we estimate a2 from inserting the residual in (19) and running the OLS regression

u1,t = a2ε̂2,t + ε̃∗1,t , (20)

The corresponding set of moment equations is given by

E[wt(u2,t − α2u1,t)] = 0 (21)

E(u2,t − α2u1,t)[u1,t − a2(u2,t − α2u1,t)] = 0 (22)

E

(
[u1,t − a2(u2,t − α2u1,t)]

lags

)(
yi,t+h − θhi1[u1,t − a2(u2,t − α2u1,t)]− lags

)
= 0. (23)

Again these equation can be solved sequentially. We first estimate the second shock from the IV

regression (16). Second, we replace the unknown shock ε2,t by the residuals of (16) and run an

OLS regression of u1,t on the residuals ε̂2,t. Finally the parameter θhi1 is estimated by OLS after

replacing the shock ε∗1,t by the residual (20) in the projection equation (2). This example shows

that in many cases the two-step estimator is identical to a Method of Moments estimator of the

system (21) – (23). The merit of characterizing the estimator by the corresponding moment

equations is that from these moment conditions the limiting distribution can easily be derived

(see below).
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3.2 AB model

(Internal) instrumental variables are also useful for estimating a so-called “AB-model” (e.g.

Amisano and Giannini (1997) and Breitung, Brüggemann and Lütkepohl (2004)). Let us assume

again a simple example with the following structure:

u1,t = a1u2,t + ε1,1 (24)

u2,t = a2u1,t + ε2,t (25)

u3,t = b1ε1,t + ε3,t (26)

The structural equations can be represented by the equation

Aut = Bεt

where

A =


1 −a1 0

−a2 1 0

0 0 1

 and B =


1 0 0

0 1 0

b1 0 1


and E(εtε

′
t) = diag(σ2

1, σ
2
2, σ

2
3). Since u3,t is uncorrelated with ε2,t we can use u3,t as an instru-

ment1 in equation (25). The residual of this equation serves as an instrument for u2,1 in (24).

The residual of the latter equation is used as regressor in (26) to obtain a consistent OLS esti-

mator for b1. Accordingly we can estimate all parameters in the AB-model consistently using

instrumental variable methods. If the model is just identified, the IV method is asymptotically

efficient (cf. Theil (1971)). It is interesting to note that this model is equivalent to the first

example by letting u3,t = wt. Hence the distinction between internal and external instruments

is not very stringent (see also Plagborg-Moller and Wolf (2019)).

The 2-step projection estimator results from estimating the projection equation

yi,t+h = θhij ε̂j,t + lags + ẽhij,t

where the residual ε̂j,t is obtained by IV estimation of (24) – (26). If the unit-effect normaliza-

tion is imposed, the corresponding moment conditions are equivalent to the moment conditions

presented in section 3.1.

3.3 Long-run restrictions

The final example for the benefit of IV methods is the estimation of structural models identified

by long-run restrictions as proposed by Blanchard and Quah (1989). Let yt = (y1t, y2t)
′ denote

1In practice the vector of VAR innovations ut is not observed but can be replaced by residuals without

affecting the asymptotic properties. This is due to the fact that the estimation error in the VAR residuals does

not affect the asymptotic distribution of the estimated structural parameters.
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a bivariate vector of stationary time series with VAR(p) representation as given in (8). The

identifying restriction is that the cumulated impulse response of the first variable with respect

to the second shock tends to zero, that is,

∞∑
h=0

θh12 = 0.

This implies that the long-run impact matrix Θ̄ =
∑∞

h=0 Θh is a lower triangular matrix which

can be obtained from a Cholesky decomposition of the matrix

Θ̄ Θ̄′ = A(1)−1ΣA(1)′−1, (27)

where A(1) = Ik −
∑p

i=1 Ai. The structural shocks result from εt = Γut. We follow Shapiro

and Watson (1988) and Fry and Pagan (2005) and employ a simple instrumental variable (IV)

estimator for the columns of Γ that is equivalent to the estimator suggested by Blanchard and

Quah (1989).

First, we re-write the model in the error correction format

∆yt = − A(1)yt−1 + ∆lags + ut .

where “∆lags” represent a linear combination of the lagged differences ∆yt−1, . . . ,∆yt−p+1.

Next we multiply the system by the matrix Γ yielding

Γ∆yt = − ΓA(1)yt−1 + ∆lags + εt .

The identifying assumption is that the matrix Θ̄ = A(1)−1Γ−1 is lower triangular and so is its

inverse Θ̄−1 = ΓA(1). By normalizing the diagonal elements of the matrix Γ to unity, the two

equations of the system result as

∆y1,t = −γ12∆y2,t − θ
11
y1,t−1 + ∆lags + ε1,t (28)

∆y2,t = −γ21∆y1,t − θ
21
y1,t−1 − θ

22
y2,t−1 + ∆lags + ε2,t (29)

where θ
ij

denotes the (i, j) element of the matrix Θ̄−1. Note in the system (28) – (29) the error

ε1,t is the permanent shock and ε2,t is the transitory shock. Obviously the size of the shocks

are normalized in terms of a unit effect on y1t and y2t, respectively. By imposing the restriction

that both shocks are orthogonal, the system is just identified and can be consistently estimated

by the IV method. The first equation (28) can be estimated by using y2,t−1 as an instrument

for ∆y2t. For the second equation (29) the (estimated analog of the) residual ε1,t can be used

as an instrument for ∆y1,t. This gives rise to the following moment equations for the impulse

response with respect to the first shock:

E


y1,t−1

y2,t−1

∆lags

 ε1,t = 0 and E

(
ε1,t

lags

)(
yi,t+h − θhi1ε1,t − lags

)
= 0
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where ”lags” represent the lagged levels yt−1, . . . , yt−p and for compactness we do not make

explicit the dependence of ε1,t on the structural parameters (denoted as β1 in (1)). For the

impulse responses of the second shock the set of moment conditions is:

E


y1,t−1

y2,t−1

∆lags

 ε1,t = 0 , E


ε1,t

y1,t−1

∆lags

 ε2,t = 0

and E

(
ε2,t

lags

)(
yi,t+h − θhi2ε2,t − lags

)
= 0.

Since the system is just identified, the estimators are equivalent to the ML estimator as well as

the estimator based on the Cholesky decomposition (27).

3.4 Asymptotic properties of IV projections

In all applications discussed above, the projection estimator can be characterized by solving a

sets of moment equations derived from the structural equation (1) and the projection step (2).

Let θ = (β′j, θ
h
ij, π

h′
ij )
′ denote the vector of all parameters, where the notation suppresses the

dependence on i, j, and h. The vector of moments can typically represented as

∑
t

mt(θ) =


∑
t

m1,t(βj)∑
t

m2,t(βj, θ
h
ij, π

h′
ij )

 ,

where the first set of moments depends linearly on the parameters of the identification step βj.

The projection step typically involves a set of nonlinear moment conditions, where the shock

(that involves βj) enters in terms of instruments. An exception is the linear OLS projection

for the Cholesky VAR considered in Section 2. Note that in spite of the nonlinear nature

of the second moment condition, the projection estimator can be estimated by OLS, where

the unknown shock εj,t is replaced by the residual ε̂j,t = f(xj,t, β̂j). Of course this involves a

“generated regressor” problem but this can easily be coped with by considering the full system

of moment conditions.

As all examples considered above result in a set of just identified moment conditions we

focus on the simple method of moment (MM) estimators.2 The asymptotic distribution of the

MM estimator is given by

√
T (θ̂MM − θ)

d→ N (0,Σθ) (30)

where the asymptotic covariance matrix is given by

Σθ = D(θ)−1V m(θ)D′−1(θ) (31)

2The MM estimator is simpler than the GMM estimator as it does not require a weight matrix.
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with

D(θ) = plim
T→∞

DT (θ) = plim
T→∞

1

T

T∑
t=p+1

∂mt(θ)

∂θ′

V m(θ) = plim
T→∞

V m
T (θ) = plim

T→∞

1

T

T∑
t=p+1

mt(θ)mt(θ)
′

(e.g. Newey and McFadden (1994)). To simplify the notation, we ignore the dependence of mt,

DT and V m
T on i, j, and h. Note further that in the examples considered above the vector of

moments mt(θ) are serially uncorrelated. Whenever (some of) the moments are autocorrelated,

the asymptotic covariance matrix V m(θ) is replaced by the long-run covariance matrix. In

practice Σ̂θ = DT (θ̂)−1V m
T (θ̂)D′−1

T (θ̂) can be used as a consistent estimator of Σθ.

4 GLS projections

It is well known that the iterative VAR estimator for the impulse responses can be much more

efficient than the (direct) projection estimator, in particular for larger values of h (cf. Kilian

and Kim (2011)). In this section we therefore consider GLS type projection estimators for

impulse responses. To simplify the exposition we focus on the simple univariate AR(1) model

yt = αyt−1 + ut which is used to estimate the impulse response θ2 = α2 with respect to the

shock ut, h = 2 steps ahead. The direct representation is given by

yt+2 = θ2yt + ut+2 + αut+1 t = 1, 2, . . . , T − 2. (32)

If ut+1 was observed, we may include it as an additional regressor. In this case the regression

only contains an uncorrelated error term ut+2 and the parameter θ2 can be estimated efficiently

by OLS. Since ut+1 is not observed, it is natural to replace it by the OLS residual from a

regression of yt+1 on yt, yielding ût+1 = yt+1− α̂yt, for t = 1, . . . , T −1. It is important to notice

that ût+1 is by construction orthogonal to yt and, therefore, including ût+1 as an additional

regressor results in the same estimator as running the regression without the additional regressor

ût+1. This reasoning is however not fully correct, as OLS estimation implies
∑T−1

t=1 ût+1yt = 0,

whereas the regression (32) involves the observations t = 1, . . . , T − 2 only. It is not difficult

to see, however, that the difference between the feasible GLS estimator and the OLS estimator

without ût+1 as an additional regressor is Op(T
−1), which is due to the different sample sizes

of the regressions. Since the estimation error is Op(T
−1/2) it follows that both estimators are

asymptotically equivalent and this GLS estimator does not improve asymptotic efficiency of

the projection estimator.3

Another possibility to construct a GLS version of the projection estimator is to consider a

regression equation where we replace the dependent variable yt+2 by

y∗t+2 = yt+2 − ut+2 = θ2yt + vt+1 (33)

3For h ≥ 3 the additional regressors ût+2, . . . , ût+h−1 may result in an efficiency gain, see Lusompa (2019).
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with vt+1 = αut+1. Note that the error in the regression of y∗t+2 on yt is white noise rendering

the OLS estimator asymptotically efficient. Obviously the error ut+2 that enters the dependent

variable y∗t+2 is not observed and has to be replaced by the OLS residual ût+2 = yt+2 − α̂yt+1

yielding

ŷ∗t+2 = yt+2 − (yt+2 − α̂yt+1) = α̂yt+1.

The OLS regression of ŷ∗t+2 on yt yields

θ̂2 =

∑T−2
t=1 α̂yt+1yt∑T−2

t=1 y
2
t

= α̂

(∑T−1
t=1 yt+1yt∑T−1
t=1 y

2
t

+Op(T
−1)

)
= α̂2 +Op(T

−1).

The resulting estimator differs from the iterative estimator α̂2 by an asymptotically negligible

term that is due to the fact that the direct regression (33) is based on T−2 observations instead

of T − 1 observations for the iterated estimator α̂2. Accordingly, the iterative estimator can

be seen as a GLS version of the direct estimator for the impulse response θ2 = α2. Since α̂2 is

the ML estimator for θ2 it turns out that this GLS estimator is asymptotically efficient if the

innovations are normally distributed.

This approach can be adapted to estimate the impulse responses from the projection step

(2). Denote the vector of innovations by ut = yt−E(yt|yt−1, . . . , yt−p). The GLS-type projection

estimator is obtained from the regression

(yi,t+h − ui,t+h) = θhijεj,t + z′j,tπ
h
ij + γ′1ut+h−1 + · · ·+ γ′p−2ut+2 + vhij,t (34)

where in practice the unknown innovations are replaced by their sample analogs (VAR residuals)

and the parameters γ1, . . . , γp−2 are additional coefficient vectors. The error term vhij,t is a linear

combination of all shocks in period t that are not included as regressors and ut+1. Accordingly,

the error term has an MA(1) representation. To remove this autocorrelation, all other shocks at

time t can be included in the vector of control variables, which makes the GLS approach more

efficient but inference is more complicated as the set of moment conditions becomes larger.

Replacing the innovations ut−` by ût−` in (34) involves an additional estimation error that

affects statistical inference. In order to derive the asymptotic distribution of the resulting

estimator we characterize the estimator by the following (just-identified) set of moments:

E (m1t(θ1)) = E
(
∂f(xj,t, βj)

∂βj
εj,t

)
= 0

E (m2t(θ2)) = E
(
Y +
t−1u

′
t

)
= 0

E (m3t(θ3)) = E (Ztvij,t+h) = 0,
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where Y +
t−1 = (y′t−1, . . . , y

′
t−p)

′ and Zt = (εj,t, z
′
j,t, ui,t+h, u

′
t+h−1, . . . , u

′
t+2)′. Compared to the

set of moment conditions considered in Section 3.4 we add the moment conditions m2t(θ2) for

estimating the innovations of the VAR system that enter vij,t+h.

Note also that the three sets of moment conditions are recursive in the sense that the

parameters of the previous moments may enter the subsequent moments but not vice versa.

Hence we can solve the moment conditions by first solving
∑

tm1,t(θ̂1) = 0 and
∑

tm2,t(θ̂2) = 0

and inserting the resulting expressions ε̂j,t and ût in m3t(θ̂3|θ̂1, θ̂2) = 0. As in the previous

section the asymptotic covariance matrix results from adapting (31) accordingly. It should also

be noted that in general the moments m3t are autocorrelated. This is due to the fact that

due to the inclusion of ut+1, . . . , ut+h in Zt the moment condition is no longer a martingale

difference sequence.

It should also be noticed that the set of moment conditions may contain redundant moments,

that is, the covariance matrix of mt(θ) = (m1t(θ1)′,m2t(θ1)′,m3t(θ1)′)′ may be singular. For

example, in the recursive (triangular) identification scheme the first shock is identical to the

first innovation and, thus, the first element of m1t(θ) is identical to the first element of m2t(θ).

In these cases the redundant moment conditions need to be eliminated or a generalized inverse

needs to be applied.

5 Monte Carlo Evidence

In this section we explore the finite sample properties of alternative impulse response estimators

discussed in the previous sections by Monte Carlo simulations. For this purpose, we generate

data from different data generating processes (DGPs) and report the bias, the standard devi-

ation, the empirical coverage and the average length of confidence intervals for the structural

impulse responses θhij.

5.1 Simulations for OLS Projections

We start by presenting simulation results for OLS projections using a recursive (Cholesky)

identification scheme. We compare the conventional iterated estimator based on inverting the

VAR representation (“iterated”), the projection estimator (“Jorda”) based on Jordà (2005),

the “2step” method based on (13), and the “2step-GLS” method given in (34).

The first DGP is a simple bivariate VAR(1)

yt = Ayt−1 + ut, (35)

where ut = Γ−1εt. The contemporaneous impact matrix is set to

Γ−1 =

[
1 0

0.5 1

]
,
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where the structural shocks εt are generated as εt
iid∼ N (0, Ik). We control the persistence of the

process by specifying the eigenvalues of the VAR. For this purpose, we use A = V Λ∗V −1, where

V is the matrix of eigenvectors obtained from a spectral decomposition of some random matrix

X = ZZ ′, and Z is a matrix of i.i.d. standard normal random numbers. Within this setup,

specifying different values for the diagonal elements of Λ∗, λ∗1 and λ∗2, can be used to control

the persistence of the DGP. All simulations results below are based on M = 1000 Monte Carlo

replications.

Table 1 and Figure 1 report typical simulation results for this DGP type using different

sample sizes and persistence properties. Results are obtained from estimating a VAR with lag

order p = 1 and for different response horizons h. Panel A in Table 1 shows results for the

VAR with low persistence using λ∗1 = 0.2 and λ∗2 = 0.4. We report bias and standard errors

of the response coefficient θh21, which corresponds to the response of the second variable to the

first structural shock and has been in the center of interest in many other simulation studies.

A number of interesting results emerge. First, the table documents the well-known finding

that in small samples (T = 100) and at larger horizons h, Jordà’s (2005) projection estimator

tends to be less efficient than the iterated estimator. Second, in terms of bias and standard

errors the two-step estimator and Jordà’s projection estimators perform quite similarly. The

main advantage of the two-step estimator is, however, that the standard errors and confidence

intervals can be computed without any correction generated regressors and serial correlation.

Third, it appears that the GLS refinement improves the properties of the projection estimators

substantially. Even in small samples, the 2step-GLS estimator behaves similarly to the iterated

estimator with bias and standard deviation converging to zero as h gets large.

Figure 1 shows the corresponding empirical coverage rates and average lengths of intervals

for θh21 obtained from the different estimators. Panel A and C on the left of Figure 1 show the

empirical coverage of nominal 95% confidence intervals. The coverage rates across all methods

are quite comparable.4 What is striking is the substantial difference in the average lengths

(see Panels B and D). The OLS projection methods lead to much wider confidence intervals

at larger horizons h. In fact, while the widths of intervals based on the iterated method or

the GLS projection method tend to zero with increasing h, intervals based on Jordà’s and the

2-step estimator remain wide at large horizons. This illustrates the inefficiency of the OLS

projection methods and the effectiveness of the suggested GLS refinement.

Panel B of Table 1 shows the results for the more persistent VAR(1) DGPs, where λ∗1 = 0.8

and λ∗2 = 0.4 has been used. The change in persistence leads to population responses that

converge to zero more slowly as h increases. In turn, this leads to somewhat larger biases

and standard deviations for larger h. Apart from this, the relative ranking of methods is

not changing compared to Panel A: Jordà’s and the OLS 2-step estimator still lead to more

4One exception for larger horizons h is that the iterated and the GLS projection method lead to coverage

very close to 100%. This has also been observed in other simulation studies and is driven by population responses

that are very close to zero.
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biased estimates and higher standard deviations for larger h, while the GLS estimator (2S-GLS)

behaves similarly to the iterated estimator (even for T = 100). Panels A and C of Figure 2

show the coverage rates. Similar to earlier results from the literature for more persistent VAR

processes, in small samples and for larger h, all methods yield intervals that have coverage

somewhat below the desired 95% level. The differences in coverage between the methods is,

however, again fairly small. Moreover, we still observe the same striking difference in the widths

of intervals (see Panels B and D of Figure 2).

We have also conducted a number of additional Monte Carlo experiments based on different

DGPs, which included the vector autoregressive DGPs of Kilian and Kim (2011), vector moving

average (VMA) processes and higher-dimensional, (four variables) VARs. We have also repeated

the experiments using information criteria for lag selection instead of using the true lag order.

The main conclusions from these additional simulations is the same as for the results reported

above. We have therefore decided not to include the results here but they are available on

request.

We complement the results for stylized DGPs above by also using a DGP obtained from

an empirical 6-variable monetary VAR system based on the data in Jordà (2005). To fix the

parameters, we fit a VAR with intercepts to the vector

yt = (EMt,Pt,PCOMt,FFt,NBRXt,∆M2t)
′,

where the variables are the log of non-agricultural employment, the log of personal consumption

expenditure deflator (1996=100), the annual growth rate of an index of sensitive materials

prices, the federal funds rate and the ratio of non-borrowed reserves to total reserves and the

annual growth rate of M2. We use p = 2 as suggested by the Hannan-Quinn and the Schwarz

information criterion. The results in Table 2 and Figure 3 are based on estimated VARs with

a lag length selected by the Akaike information criterion (AIC) using a maximum lag length

of pmax = 6. We use T = 500, which corresponds approximately to the number of monthly

observations originally used in Jordà (2005).

We report results for selected response coefficients, which are typically of interest in economic

analysis. In particular, we report results for the responses of employment (θh14), of consumer

prices (θh24) and of the growth rate of the monetary aggregate M2 (θh64) to a monetary policy

shock. This shock ε4t is identified as an orthogonalized innovation of the federal funds rate

equation (the fourth equation in the VAR) and consequently, a Cholesky model can be used.

Panel A of Table 2 reports results for the response of employment (θh14). Similar to the results

in lower dimensional VARs, we find that for larger h Jordà’s and the OLS 2-step estimator

lead to larger bias and standard deviations compared to the iterated and the GLS projection

estimator. Panels B and C show results for the response of prices and money growth. Here

the biases of different methods are in the same order magnitude and in some cases the iterated

and the GLS estimators have even slightly larger bias. The OLS projection methods still have

somewhat larger standard deviations, however, the differences among the methods seem to
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be smaller than in the bivariate DGPs considered above. Figure 3 shows the coverage and

lengths of the corresponding 95% confidence intervals (see Panels A, C and D). As for the

other DGPs, we only find small differences in the empirical coverage rates but larger differences

in interval lengths at larger horizons. Again, as seen from Panels B, D, and F, the OLS

projection estimators yield somewhat wider intervals (especially at longer horizons). We also

find that the other methods produce intervals that are still fairly wide at the considered horizons

and consequently, the difference in intervals lengths are not as pronounced as in the bivariate

DGPs. This can be explained by the properties of the DGP. The empirical DGP used here is

very persistent with a number of roots of the characteristic polynomial fairly close to the unit

circle. This implies population impulse responses that are different from zero even at fairly large

horizons h and consequently longer intervals. The fact that population responses are different

from zero even for large h also explains the smaller differences in the biases of the different

methods. Finally, we note that despite the large dimension of the system (and consequently a

larger number of future residuals to be included in the refinement), the refined methods and

the iterative estimator perform very similarly.

5.2 Results for IV Projections

To investigate the properties of IV projection estimators, we focus on a model where we identify

the first structural shock ε1t by a single external instrument wt. Thus, we are interested in the

first column of the contemporaneous impact matrix Γ−1. For the simulations, we set

Γ−1 =

(
1 0

γ21 γ22

)

and let γ21 = 0.3 and γ22 =
√

1− γ21. The latter choice ensures that both reduced from errors

have unit variances. To mimic an external instrument setup, we also need to simulate data for

the instrument wt that is related to the structural shocks of interest. We do so by making use

of the augmented system(
ut

wt

)
=

(
Γ−1 0n×k

Φ Σ
1/2
η

)(
εt

ηt

)
,

(
εt

ηt

)
∼ iid N (0, In+k). (36)

The standard relation between reduced form errors and structural shocks ut = Γ−1εt is aug-

mented by equations that relate the structural shocks to the external instruments. This setup

has a measurement interpretation, where the ηt are the measurement errors (see e.g. Braun and

Brüggemann (2017)). If there is only one instrument wt and one structural shock ε1t, we find

that

wt = φ1ε1t + σηηt,

where φ1, ση and ηt are scalar-valued. In this setup, it is easy to see that the correlation

between wt and ε1t is given by ρw,ε1 = φ1/
√
φ2

1 + σ2
η. For a given correlation ρw,ε1 , we may
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specify the standard deviation of the measurement error as ση =
√
φ2

1(1/ρ2
w,ε1
− 1). In our

baseline simulation, we use φ1 = 0.5 and choose ση to obtain a correlation of ρw,ε1 = 0.5. Using

equation (36), we generate data on wt and ut. Data for yt are then obtained from a VAR(1) in

equation (35) with

A =

(
a11 0

0.5 0.5

)
.

This reduced form VAR(1) DGP has been used in several studies on impulse response properties

(among others in Kilian and Kim (2011)) and the parameter a11 can be used to control the

persistence. For the results in Table 3 and Figure 4, we have set a11 = 0.5.5 As above, we

focus on the properties of estimators of θh21, the response of the second variable to the first

structural shock in the system. Table 3 and Figure 4 report results for T = 100 and T = 500

and the following five alternative response estimators: IV-SVAR, IV-LP and IV-LP+ are the

estimators described in Stock and Watson (2018). In IV-SVAR, only the (first column of the)

contemporaneous impact matrix is obtained by the IV method and is then combined with

iterated reduced form impulse response estimates. IV-LP estimates the dynamic responses to

structural shocks by directly by regressing yj,t+h on y1t using wt as an instrument for y1t (see

equation (7) in Stock and Watson (2018)). IV-LP+ adds additional control variables to the

regression used in IV-LP (see equation (10) in Stock and Watson (2018)). 2S-IV denotes the 2-

step IV projection estimator introduced in Section 3 and 2S-IV-GLS is the corresponding GLS

version by adding future reduced form residuals to the projection equation. Intervals for impulse

responses are obtained by using HAC standard errors for IV-LP and IV-LP+ and a parametric

bootstrap (with B = 499 bootstrap replications) for IV-SVAR, 2S-IV and 2S-IV-GLS following

Appendix A.2 of Stock and Watson (2018).

For T = 100, we observe from Table 3 that IV-LP has a comparably large bias at very

low and high horizons. Adding control variables as in IV-LP+ decreases the bias somewhat at

shorter horizons. Nevertheless, we observe the familiar pattern that for large h the projection

based methods lead to larger biases than IV-SVAR, which is based on an iterated estimator

for the impulse responses. Similar to the OLS projections considered above, we again find

that the 2-step GLS projection estimator (2S-IV-GLS) performs very much like the IV-SVAR

method. The differences between the two groups is also evident from the standard deviations:

All projection methods without GLS refinement lead to substantially higher standard deviations

compared to IV-SVAR and 2S-IV-GLS at all horizons. Interestingly, within the group projection

estimators without GLS refinement, we find that the 2-step IV method often performs somewhat

better in terms of bias and standard deviation. Increasing the sample size to T = 500, decreases

biases and standard deviations for all methods but the relative differences between them still

persist.

5Note that in this simulation setup for T = 100 the average first-stage F -statistics from regressing y1t on

wt is 24.33 and about 95% of the F -statistics exceed 10. For T = 500, we find an average F -statistic of 115.9

with a minimal value off 47.91.
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Panel A of Figure 4 shows the interval coverage. For T = 100 and at larger horizons h,

the IV-SVAR method and 2S-IV-GLS show a somewhat lower coverage compared to the other

projection methods. Panel B shows that this is mostly due to the much wider confidence

intervals (especially for IV-LP and IV-LP+). Remarkably, the lengths of intervals produced by

2S-IV is much smaller than those from IV-LP and IV-LP+. It seems that within the group

of projection estimators without GLS refinement, 2S-IV with bootstrap intervals has the best

trade-off of coverage and interval length. For T = 500, all methods yield comparable coverage

very close to the nominal level. However, the projection methods (without GLS refinement)

still lead to much wider intervals. For this larger sample size, the IV-SVAR and and 2S-IV-

GLS seem to have the most favorable properties (good coverage and at the same time short

intervals).

In additional simulations, we vary the persistence a11 and the correlation ρw,ε1 . Note that

the choice of both parameters influences the first-stage F -statistics. In small samples with very

high persistence we find some erratic behavior of the LP-IV estimator, potentially driven by

the fact that the regressor y1t in the projection step is quite persistent, while the instrument

is not persistent at all.6 The other methods (including LP-IV+) are more robust in this re-

spect. Whenever we choose a combination of a11 and ρw,ε1 that implies fairly low first-stage

F -statistics, we are essentially in weak instrument situations, which affects all considered meth-

ods adversely (larger bias and wider intervals that often show coverage larger than the nominal

level in small samples). We find, however, that the IV-LP and IV-LP+ estimators are affected

most strongly. These estimators again show sometimes erratic behavior with huge bias and

extremely wide intervals if ρw,ε1 is small. In practical work, these erratic cases would not be

considered further given the low first-stage F -statistics. A more detailed study of differences

between the methods in weak instrument situations is beyond the scope of this paper and thus

left for future research. Whenever a parameter combination implies fairly large first-stage F -

statistics, the conclusions are very similar to those from results reported in Table 3 and Figure

4 are therefore not shown here.

6 Conclusion

In this paper we propose a two-step projection estimator for impulse responses in a structural

VAR framework. In the first step the structural shock is typically obtained from its relationship

to the VAR residuals. In the second step the impulse response is estimated from a regression

of the future variable of interest yi,t+h on the estimated shock ε̂j,t and a vector of control vari-

ables zj,t. The control variables are included for improving the efficiency but they may also

be used to eliminate the estimation error from the first estimation step. We show that if the

control variables are uncorrelated with the shock and include the vector of derivatives ∂εj,t/∂βj,

6We find a similar behavior in simulations that use a DGP based on the empirical example in Stock and

Watson (2018).
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then the estimation error from the identification step is negligible in the projection step. Fur-

thermore, standard OLS inference applies even if the projection residuals are autocorrelated.

Another advantage is that inference is valid no matter whether the variables are stationary or

nonstationary (integrated).

In many cases the shocks cannot be represented by observed variables. In such cases, an

instrumental variable approach can be employed resulting in an IV projection method. We show

how this method can be adapted for estimating popular SVAR models like the proxy VAR, the

AB-model and long-run restrictions. The asymptotic distribution of these estimators can easily

be derived from the method-of-moment (MM) representation of the two-step approach. Finally,

we point out that the OLS and IV projection methods are inefficient as the projection residuals

are correlated up to h− 1 lags. In order to improve the efficiency we propose a GLS projection

that removes the serial correlation from the projection equation. We show that GLS projections

are closely related (but not identical) to the iterative method of estimating impulse responses

from the MA representation of a finite order VAR.

In our Monte Carlo simulations we find that the original OLS projection method suggested

by Jordà (2005) performs similarly to our two-step projection estimator. An important ad-

vantage of our projection estimator is that no corrections for serial correlation or generated

regressors is required. Applying the GLS refinement we observe substantial efficiency gains

relative to OLS (or IV) projections.

18



References

Amisano, G. and Giannini, C. (1997). Topics in Structural VAR Econometrics, 2nd ed. Springer.

Blanchard, O. J. and Quah, D. (1989). The dynamic effects of aggregate demand and supply

disturbances, American Economic Review 79(4): 655–673.
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Jordà, O., Schularick, M. and Taylor, A. M. (2019). The effects of quasi-random monetary

experiments, Journal of Monetary Economics p. forthcoming.

Kilian, L. and Kim, Y. J. (2011). How reliable are local projection estimators of impulse

responses?, Review of Economics and Statistics 93(4): 1460–1466.

Lusompa, A. (2019). Local projections, autocorrelation, and efficiency, Working paper, Univer-

sity of California, Irvine.

Lütkepohl, H. (1989). A note on the asymptotic-distribution of impulse-response functions of

estimated VAR models with orthogonal residuals, Journal of Econometrics 42(3): 371–376.

Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing,

Handbook of Econometrics, Vol. 4, Elsevier, chapter 36, pp. 2111 – 2245.

Plagborg-Moller, M. and Wolf, C. K. (2019). Local projections and VARs estimate the same

impulse responses, Working paper, Princeton University.

Ramey, V. A. and Zubairy, S. (2018). Government spending multipliers in good times and in

bad: Evidence from U.S. historical data, Journal of Political Economy forthcoming.

19



Romer, C. D. and Romer, D. H. (2004). A new measure of monetary shocks: Derivation and

implications, American Economic Review 94(4): 1055–1084.

Romer, C. D. and Romer, D. H. (2010). The macroeconomic effects of tax changes: Estimates

based on a new measure of fiscal shocks, American Economic Review 100(3): 763–801.

Shapiro, M. D. and Watson, M. D. (1988). Sources of business cycle fluctuations, NBER

Macroeconomic Annual 1998 pp. 111–148.

Sims, C. A. (1980). Macroeconomics and reality, Econometrica 48: 1–48.

Stock, J. H. and Watson, M. W. (2018). Identification and estimation of dynamic causal effects

in macroeconomics using external instruments, Economic Journal 128(610): 917–948.

Theil, H. (1971). Principles of Econometrics, Wiley.

20



Appendix

Proof of Proposition 1

A first order Taylor expansion around the true value βj yields

ε̂ij = f(xj,t, βj) + g(xj,t, βj)
′(β̂j − βj) +Op(T

−1).

Using g(xj,t, βj) = Czj,t and the Frisch-Waugh theorem, the OLS estimator of θhij in (11) is

equivalent to the OLS estimator of the regression

ỹi,t+h = θhij ε̃j,t + êhij,t

where ỹi,t+h and ε̃j,t are residuals from the regressions of yi,t+h and εj,t on zj,t, respectively.

Since εj,t and zj,t are uncorrelated, the limiting distribution of the OLS estimator

θ̂hij = θhij +

∑T−h
t=p+1 ε̃j,tê

h
ij,t∑T−h

t=p+1 ε̃
2
j,t

is given by

√
T (θ̂hij − θhij) =

1

σ2
j

√
T

T−h∑
t=p+1

ξ̃t + op(1)

where σ2
j = E(ε̃2

j,t) and ξ̃t = ε̃j,tê
h
ij,t. Since zj,t is uncorrelated with εj,t and ehij,t it follows that

1√
T

T−h∑
t=p+1

ξ̃t =
1√
T

T−h∑
t=p+1

ξt + op(1) ,

where ξt = εj,te
h
ij,t. Furthermore, since εj,t is a serially uncorrelated shock, and ξt is also

uncorrelated and, therefore,

E

(
1√
T

T−h∑
t=p+1

ξt

)2

= E

(
1

T

T−h∑
t=p+1

ξ2
t

)
= σ2

jσ
2
h,ij,

where σ2
h,ij = E[(ehij,t)

2]. It follows that the limiting distribution of θ̂hij is given by

√
T (θ̂hij − θhij)

d→ N
(
0, σ2

h,ij/σ
2
j

)
Note that the asymptotic variance is consistently estimated by the usual OLS variance estima-

tor.
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Table 1: Bias and Standard Deviation of Impulse Response Estimators for θh21

Panel A: DGP: VAR(1) with low persistence, λ∗1 = 0.2, λ∗2 = 0.4

Bias Standard Deviation

h Jorda 2step 2step-GLS iterated Jorda 2step 2step-GLS iterated

T = 100 0 -0.003 -0.003 -0.003 -0.003 0.106 0.106 0.106 0.106

1 -0.013 -0.008 -0.008 -0.013 0.138 0.144 0.144 0.138

2 -0.017 -0.013 -0.002 -0.004 0.131 0.129 0.077 0.075

3 -0.015 -0.010 0.000 -0.001 0.128 0.126 0.038 0.037

4 -0.015 -0.014 0.000 0.000 0.130 0.128 0.018 0.017

8 -0.007 -0.006 0.000 0.000 0.129 0.126 0.001 0.00

12 -0.005 -0.002 0.000 0.000 0.131 0.130 0.000 0.000

16 -0.012 -0.009 0.000 0.000 0.134 0.133 0.000 0.000

T = 500 0 -0.001 -0.001 -0.001 -0.001 0.046 0.046 0.046 0.046

1 -0.004 -0.004 -0.004 -0.004 0.095 0.096 0.096 0.095

2 -0.002 0.000 -0.001 -0.001 0.072 0.072 0.056 0.055

3 -0.004 -0.003 0.000 0.000 0.059 0.057 0.026 0.026

4 -0.002 -0.002 0.000 0.000 0.055 0.054 0.012 0.012

8 0.000 0.000 0.000 0.000 0.055 0.053 0.000 0.000

12 -0.001 -0.001 0.000 0.000 0.054 0.051 0.000 0.000

16 -0.002 -0.001 0.000 0.000 0.055 0.053 0.000 0.000

Panel B: DGP: VAR(1) with high persistence, λ∗1 = 0.8, λ∗2 = 0.4

Bias Standard Deviation

h Jorda 2step 2step-GLS iterated Jorda 2step 2step-GLS iterated

T = 100 0 0.005 0.005 0.005 0.005 0.102 0.102 0.102 0.102

1 -0.014 -0.011 -0.011 -0.014 0.198 0.209 0.209 0.198

2 -0.018 -0.011 -0.013 -0.015 0.235 0.240 0.219 0.214

3 -0.019 -0.010 -0.012 -0.013 0.232 0.235 0.197 0.192

4 -0.020 -0.012 -0.010 -0.012 0.216 0.215 0.167 0.161

8 -0.024 -0.012 -0.005 -0.006 0.183 0.173 0.077 0.074

12 -0.019 -0.010 -0.002 -0.002 0.188 0.165 0.038 0.036

16 -0.029 -0.023 0.000 0.000 0.190 0.174 0.020 0.019

T = 500 0 0.000 0.000 0.000 0.000 0.045 0.045 0.045 0.045

1 -0.004 -0.004 -0.004 -0.004 0.164 0.167 0.167 0.164

2 -0.004 -0.004 -0.004 -0.004 0.197 0.199 0.194 0.193

3 -0.003 -0.003 -0.003 -0.003 0.187 0.188 0.179 0.178

4 -0.003 -0.002 -0.002 -0.002 0.163 0.164 0.153 0.152

8 -0.005 -0.002 -0.001 -0.001 0.102 0.097 0.068 0.068

12 -0.004 -0.001 0.000 0.000 0.081 0.072 0.030 0.030

16 -0.006 -0.002 0.000 0.000 0.080 0.071 0.014 0.014

Note: Results show bias and standard deviation of different structural impulse response estimators

identified by a recursive ordering (Cholesky). Panel A: DGP is 2-variable VAR(1) with low per-

sistence. Panel B: DGP is 2-variable VAR(1) with high persistence. Estimated models use p = 1.

Results are based on M = 1000 Monte Carlo replications.

22



Table 2: Bias and Standard Deviation of Impulse Response Estimators of θhij

Panel A: θh14 (response of employment)

Bias Standard Deviation

h Jorda 2step 2step-GLS iterated Jorda 2step 2step-GLS iterated

T = 500 1 0.000 0.000 0.000 0.000 0.015 0.016 0.016 0.015

2 -0.001 -0.001 -0.002 -0.002 0.027 0.027 0.025 0.023

3 -0.001 -0.001 -0.002 -0.004 0.037 0.035 0.030 0.028

4 -0.001 -0.001 -0.003 -0.004 0.045 0.042 0.033 0.031

8 0.008 0.008 -0.001 0.000 0.072 0.065 0.050 0.048

12 0.025 0.028 0.010 0.014 0.093 0.085 0.071 0.068

16 0.050 0.053 0.029 0.035 0.117 0.107 0.093 0.089

Panel B: θh24 (response of consumer prices)

Bias Standard Deviation

h Jorda 2step 2step-GLS iterated Jorda 2step 2step-GLS iterated

T = 500 1 0.000 0.000 0.000 0.000 0.012 0.014 0.014 0.012

2 -0.002 -0.001 -0.002 -0.002 0.025 0.024 0.024 0.022

3 -0.004 -0.004 -0.005 -0.005 0.036 0.034 0.031 0.029

4 -0.006 -0.006 -0.008 -0.008 0.046 0.042 0.037 0.034

8 -0.021 -0.022 -0.026 -0.027 0.082 0.076 0.061 0.000

12 -0.040 -0.044 -0.050 -0.052 0.117 0.107 0.091 0.086

16 -0.057 -0.062 -0.076 -0.077 0.157 0.142 0.121 0.115

Panel C: θh64 (response of M2 growth rate)

Bias Standard Deviation

h Jorda 2step 2step-GLS iterated Jorda 2step 2step-GLS iterated

T = 500 0 0.000 0.000 0.000 0.000 0.026 0.026 0.026 0.026

1 0.002 0.001 0.001 0.002 0.046 0.047 0.047 0.046

2 0.008 0.0 0.00 0.007 0.067 0.067 0.066 0.064

3 0.015 0.010 0.007 0.012 0.087 0.084 0.080 0.076

4 0.021 0.015 0.010 0.018 0.105 0.099 0.089 0.085

8 0.031 0.023 0.027 0.036 0.156 0.143 0.115 0.110

12 0.034 0.022 0.033 0.039 0.188 0.174 0.133 0.129

16 0.028 0.015 0.023 0.026 0.207 0.191 0.142 0.138

Note: Results show bias and standard deviation of different structural impulse response estimators

identified by a recursive ordering (Cholesky). DGP: Jorda 6-variable VAR(2). Estimated models

use lag length selected by AIC using pmax = 6. Results are based on M = 1000 Monte Carlo

replications.
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Table 3: Bias and Standard Deviation of Impulse Response Estimators for θh21

Bias Standard Deviation

h IV-LP IV-LP+ 2S-IV 2S-IV-GLS IV-SVAR IV-LP IV-LP+ 2S-IV 2S-IV-GLS IV-SVAR

T = 100 0 -0.052 -0.004 -0.002 -0.002 -0.004 0.304 0.224 0.204 0.204 0.212

1 -0.040 -0.012 -0.010 -0.010 -0.006 0.281 0.279 0.146 0.146 0.141

2 -0.039 -0.032 -0.023 -0.030 -0.032 0.299 0.313 0.147 0.133 0.124

3 -0.037 -0.038 -0.035 -0.032 -0.041 0.313 0.342 0.157 0.124 0.115

4 -0.038 -0.041 -0.041 -0.029 -0.037 0.331 0.364 0.159 0.107 0.100

5 -0.037 -0.034 -0.038 -0.022 -0.028 0.347 0.379 0.162 0.087 0.082

6 -0.053 -0.048 -0.044 -0.015 -0.018 0.321 0.353 0.157 0.068 0.064

T = 500 0 -0.011 0.000 0.000 0.000 0.000 0.127 0.085 0.084 0.084 0.085

1 -0.005 0.002 -0.001 -0.001 0.000 0.113 0.101 0.064 0.064 0.060

2 -0.007 -0.004 -0.004 -0.005 -0.005 0.123 0.120 0.063 0.057 0.054

3 -0.006 -0.004 -0.004 -0.005 -0.007 0.132 0.131 0.064 0.052 0.050

4 -0.005 -0.004 -0.003 -0.005 -0.007 0.136 0.135 0.065 0.045 0.044

5 -0.009 -0.008 -0.006 -0.004 -0.005 0.139 0.140 0.067 0.038 0.037

6 -0.009 -0.008 -0.009 -0.003 -0.004 0.138 0.140 0.067 0.030 0.030

Note: Results show bias and standard deviation of different structural impulse response estimators using the IV approach. DGP:

2-variable VAR(1) with medium persistence. Population correlation of instrument and structural shock is ρ = .5. Estimated models

use lag length p = 1. Results are based on M = 1000 Monte Carlo replications.
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Figure 1: Coverage and average length of confidence intervals impulse response estimators of

θh21 identified by a recursive ordering (Cholesky). DGP: 2-variable VAR(1) with low persistence.

Estimated models use p = 1. Results are based on M = 1000 Monte Carlo replications.
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Figure 2: Coverage and average length of confidence intervals impulse response estimators of θh21

identified by a recursive ordering (Cholesky). DGP: 2-variable VAR(1) with high persistence.

Estimated models use p = 1. Results are based on M = 1000 Monte Carlo replications.
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Figure 3: Coverage and average length of confidence intervals impulse response estimators of θhij

identified by a recursive ordering (Cholesky). DGP: 6-variable VAR(2) with high persistence.

Estimated models use lag length specified with pmax = 6. Results are based on M = 1000

Monte Carlo replications.
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Figure 4: Coverage and average length of confidence intervals impulse response estimators of

θh21 identified by IV. DGP: 2-variable VAR(1) with medium persistence. Population correlation

of instrument and structural shock is ρ = .5. Estimated models use lag length p = 1. Results

are based on M = 1000 Monte Carlo replications.
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