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Abstract

We propose new fluctuation tests for detecting structural breaks in factor copula
models and analyze the behavior under the null hypothesis of no change. In the model,
the joint copula is given by the copula of random variables which arise from a factor
model. This is particularly useful for analyzing data with high dimensions. Parameters
are estimated with the simulated method of moments (SMM). Due to the discontinuity
of the SMM objective function, it is not trivial to derive a functional limit theorem for
the parameters. We analyze the behavior of the tests in Monte Carlo simulations and a
real data application. In particular, it turns out that our test is more powerful than
nonparametric tests for copula constancy in high dimensions.
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1. INTRODUCTION

Analyzing time-variant parameters in models for financial data e.g. returns, is a current

research topic. In particular, several tests for constant dependencies have recently been

developed, see e.g. Bücher and Ruppert (2013) for the case of copulas Dehling, Vogel,

Wendler, and Wied (2016) for the case of Kendall’s tau. The main motivation for such tests

is that dependencies usually increase in times of crises. So, they can be applied to detect and

quantify contagion between different financial markets or to construct optimal portfolios in

portfolio management.

In this paper, we consider factor copula models which have been recently proposed by Oh

and Patton (2013) and Krupskii and Joe (2013), whereas we focus on the first approach. In

such models, the joint copula between random variables is given by the copula of random

variables which arise from a factor model. The variable parameters are factor loadings and

possible distribution parameters of factor and error term distributions.

The advantage of these models is that they can be used in relatively high dimensional

applications and nevertheless capture the dependence structure by a low number of parameters.

In the suitability for high-dimensional data, factor copula models are similar to hierarchical

Archimedean copulas (see Savu and Trede, 2010) and vine copulas (see Bedford and Cooke,

2002). We focus on factor copula models to have both considerable model flexibility and the

possibility to perform statistical inference.

For the estimation of the model parameters, we use the simulated method of moments (SMM),

which is different to standard method of moments applications, since the theoretical moment-

counterparts are simulated and not as usual analytically derived. This makes asymptotic

theory more difficult, as deriving consistency and asymptotic distribution results of the

estimators. The reason is, that the objective function is not continuous and furthermore not

differentiable in the parameters and standard asymptotic approaches can not be used here.

We propose a new fluctuation test, where successively parameter estimators are compared
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to the parameter estimates of the full sample and we then analyze the behavior of the test

under the null hypothesis of no change. In contrast to formerly proposed nonparametric tests

for constant copulas by e.g. (Bücher, Kojadinovic, Rohmer, and Segers, 2014), our test is of

parametric nature.

It is not trivial to derive the asymptotic distribution of the test statistic. Due to the non-

smoothness of the objective function, we can not make use of a Taylor expansion approach to

derive the distribution under the null. To tackle this issue we propose a new construction

principle inspired by (Newey and McFadden, 1994). These new functional limit theorems

hold in general for SMM estimation and are therefore of broader interest.

We analyze size and power properties of our test in Monte Carlo simulation in various

situations. Moreover, we compare the fluctuation test based on parameter estimators with a

test based on the moment functions and with the (Bücher et al., 2014)-test. While (Bücher

et al., 2014) has better properties for low dimensions, our test performs better in high

dimensions, if the number of parameters is kept fixed. This reflects the fact that the drawback

of having to estimate the model with simulated methods is more and more compensated with

increasing dimensions. If the number of dimensions is kept fixed, one simply has more data

for estimating the model, while, on the other hand, in a nonparametric copula constancy

test, the complexity of the estimated objects increase. Finally, we use the test in a real-data

application on daily returns of international banks.

2. TESTING FOR CONSTANCY OF FACTOR COPULA MODELS

We first describe the factor copula model and its estimation, before we turn to the problem

of testing for structural changes.
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2.1. Factor copula models and SMM estimation

In this article we consider the same class of data-generating process as in Oh and Patton

(2013). In this class the dynamic of the marginal distributions is covered by a parameter

vector φ0 and each variable can have time varying conditional mean µt(φ0) and variance

σt(φ0). The dynamic of the joint distribution of the residuals ηt, namely the copula C(., θt),

is covered by the unknown parameters θt for t = 1, . . . , T . The data-generating process is

given by

[Y1t, . . . , YNt]′ =: YYY t = µµµt(φ0) + σσσt(φ0)ηηηt,

with varying conditional mean µµµt(φ0) := [µ1t(φ0), . . . , µNt(φ0)]′, varying conditional variance

σσσt(φ0) := diag{σ1t(φ0), . . . , σNt(φ0)} and [η1t, . . . , ηNt] =: ηηηt iid∼ FFF η = C(F1(η1), . . . , FN (ηN ); θt),

with marginal distributions Fi, where µµµt and σσσt are Ft−1-measurable and independent of ηt.

Ft−1 is the sigma field containing information from the past {YYY t−1,YYY t−2, . . . }. Note that the

r × 1 vector φ0 is
√
T consistently estimable, which is fulfilled by many multivariate time

series models, e.g. ARCH and GARCH models and the estimator is denoted as φ̂.

We are interested in estimating the p × 1 vectors θt ∈ Θ of the copula, by the residual

information {η̂ηηt := σσσ−1
t (φ̂φφ)[YYY t − µµµt(φ̂)]}Tt=1 from the data and information genereated by

simulations from the factor copula model C(., θt) for all t, implied by the following factor

structure

[X1t, . . . , XNt]′ =: Xt = βββtZZZt + qqqt,

with Xit =
K∑
k=1

βtikZkt + qit, where qit iid∼ Fqqqt(αqqqt) and Zkt
init∼ FZZZkt(γkt) for i = 1, . . . , N ,

t = 1, . . . , T and k = 1, . . . , K. Note that Zkt and qit are independent ∀i, k, t and the Copula
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for XXX t is given by

XXX t ∼ FFFXXXt = C(G1t(x1t; θt), . . . , GNt(xNt; θt); θt),

with marginal distributions Git(., θt) and θt =
[
{{βtik}Ni=1}Kk=1, α

′
qqqt , γ

′
1t, . . . , γ

′
Kt

]′
.

In principle we allow θt to be time-varying, having a piecewise constant model in mind.

We assume that this implied copula governs the dependence of YYY t, noting that we are not

interested in the marginals Git itself. For the estimation, we use the simulated method of

moments (SMM) to obtain estimators θsT,S of θbsT c = θt. The estimators are defined as

θsT,S := arg min
θ∈Θ

QsT,S(θ),

where QsT,S(θ) := gsT,S(θ)′ŴsTgsT,S(θ), gsT,S(θ) := m̂sT − m̃S(θ) and ŴsT a positive definite

weight matrix. m̂sT are k×1 vectors of averaged pairwise dependence measures m̂ij
sT , computed

with the residuals {η̂t}bsT ct=1 and m̃S(θ) is the corresponding vector of dependence measures,

computed with {η̃t}St=1, using S simulations from FFFXXXt , where m̂
ij
sT consisting of the pairwise

dependence measures defined below. For the dependence measures of the pair (ηi, ηj), we use

Spearman’s rank ρij and quantile dependence λijq , these are defined as

ρij :=12
∫ 1

0

∫ 1

0
Cij(ui, vj)duidvj − 3

λijq :=


P [Fi(ηi) ≤ q|Fj(ηj) ≤ q] = Cij(q,q)

q
, q ∈ (0, 0.5]

P [Fi(ηi) > q|Fj(ηj) > q] = 1−2q+Cij(q,q)
1−q , q ∈ (0.5, 1)

.
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The sample counterparts are defined as

ρ̂ij := 12
bsT c

bsT c∑
t=1

F̂ s
i (η̂it)F̂ s

j (η̂jt)− 3

λ̂ijq :=


Ĉsij(q,q)

q
, q ∈ (0, 0.5]

1−2q+Ĉsij(q,q)
1−q , q ∈ (0.5, 1)

,

where F̂ s
i (y) := 1

bsT c

bsT c∑
t=1

1{η̂it ≤ y} and Ĉs
ij(u, v) := 1

bsT c

bsT c∑
t=1

1{F̂ s
i (η̂it) ≤ u, F̂ s

j (η̂jt) ≤ v}.

The counterparts based on the simulations {η̃t}St=1 are defined analogically and are denoted

by ρ̃ij and λ̃ijq .

2.2. Null hypothesis and testing setup

We are interested in testing

H0 : θ1 = θ2 = · · · = θT H1 : θt 6= θt+1 for some t = {1, . . . , T − 1}.

with the test statistic ST,S, defined as

ST,S := sup
s∈[ε,1]

PsT,S := sup
s∈[ε,1]

s2T (θsT,S − θT,S)′(θsT,S − θT,S) (2.1)

' max
bεT c≤t≤T

(
t

T

)2
T (θt,S − θT,S)′(θt,S − θT,S), (2.2)

where θsT,S is the SMM estimator up to the information at time point t = bsT c, T the sample

size of the data, S the number of simulations in the SMM and ε > 0. Note that analytically

ε has to be choosen strictly greater than zero and thus s ∈ [ε, 1] to apply the required limit

theorems for our proof of the asymptotic distribution. In the finite sample case ε should

be choosen in a way, that we have enough information up to time point bεT c, to receive

reasonable estimators.

The null hypothesis of no parameter change is rejected if the test statistic (2.1) is “too large”,
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i.e., if the successively estimated parameters fluctuate too much over time. In the following

subsection, we will derive the analytical limit of the test statistic under the null hypothesis.

For applications, we propose to use a bootstrap approximations, which is described in the

after next subsection.

2.3. Asymptotic analysis

For deriving analytical results for the asymptotic distribution of our test statistic, we need

some assumptions. The first two ensure that the estimated rank correlation and quantile

dependencies converge to their respective population counterparts.

Assumption 1. i) The distribution function of the innovations Fη and the joint distribution

function of the factors FX(θ) are continuous.

ii) Every bivariate marginal copula Cij(ui, uj; θ) of C(u; θ) has continuous partial deriva-

tives with respect to ui ∈ (0, 1) and vi ∈ (0, 1).

The assumption is similar to Assumption 1 in (Oh and Patton, 2013), but the assumption on

the copula is relaxed.

Assumption 2. Define γ0t := σ−1
t (φ̂) .µt(φ̂) and γ1kt := σ−1

t (φ̂) .σkt(φ̂), where .
µt(φ) := ∂µt(φ)

∂φ′ and
.
σkt(φ) := ∂[σt(φ)]k-th column

∂φ′ for k = 1, . . . , N . And thus define

dt = ηt − η̂t −
(
γ0t +

N∑
k=1

ηktγ1kt

)
(φ̂− φ0),

with ηkt is the k-th row of ηt and γ0t and γ1kt are Ft−1-measurable, where Ft−1 contains

information from the past as well as possible information from exogenous variables.

i) 1
T

bsT c∑
t=1

γ0t
p−→ sΓ0 and 1

T

bsT c∑
t=1

γ1kt
p−→ sΓ1k, uniformly in s ∈ [ε, 1], ε > 0, where Γ0 and

Γ1k are deterministic for k = 1, . . . , N .
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ii) 1
T

T∑
t=1

E(‖γ0t‖), 1
T

T∑
t=1

E(‖γ0t‖2), 1
T

T∑
t=1

E(‖γ1kt‖) and 1
T

T∑
t=1

E(‖γ1kt‖2) are bounded for

k = 1, . . . , N .

iii) There exists a sequence of positive terms rt > 0 with
∞∑
i=1

rt <∞, such that the sequence

max
1≤t≤T

‖dt‖
rt

is tight.

iv) max
1≤t≤T

‖γ0t‖√
T

= op(1) and max
1≤t≤T

|ηkt|‖γ1kt‖√
T

= op(1) for k = 1, . . . , N .

v) (αT (s),
√
T (φ̂−φ0)) weakly converges to a continuous Gaussian process inD([0, 1]N )×Rr,

where D is the space of all Càdlàg-functions on [0, 1]N , with

αT (s) := 1√
T

bsT c∑
t=1

{
N∏
k=1

1{Ukt ≤ uk} −C(u; θ)
}
.

vi) ∂Fη
∂ηk

and ηk ∂Fη∂ηk
are bounded and continuous on RN = [−∞,∞]N for k = 1, . . . , N .

This assumption is similar to Assumption 2 in (Oh and Patton, 2013), only part (i) is more

restrictive. We need this because we consider successively estimated parameters.

The next assumption is needed for consistency of the successively estimated parameters. It

is the same as Assumption 3 in (Oh and Patton, 2013) with the difference that part (iv) is

adapted to our situation.

Assumption 3. i) g0(θ) = 0 only for θ = θ0.

ii) The space Θ of all θ is compact.

iii) Every bivariate marginal copula Cij(ui, uj; θ) of C(u; θ) is Lipschitz-continuous

for (ui, uj) ∈ (0, 1)× (0, 1) on Θ.

iv) The sequential weighting matrix ŴsT is Op(1) and sup
s∈[ε,1]

‖ŴsT −W‖
p−→ 0 for ε > 0

Finally, we need an assumption for distribution results, which is the same as Assumption 4

in (Oh and Patton, 2013) with a difference in part iii).
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Assumption 4. i) θ0 is an interior point of Θ.

ii) g0(θ) is differentiable at θ0 with derivative G such that G′WG is non singular.

iii) ∀s ∈ [ε, 1], ε > 0 : gsT,S(θsT,S)′ŴsTgsT,S(θsT,S) ≤ inf
θ∈Θ

gsT,S(θ)′ŴsTgsT,S(θ)+o∗p((s2T )−1),

where o∗p((s2T )−1) converges on the right hand side to zero and is therefore strictly

positive.

With these assumptions, we can formulate our main theorem:

Theorem 1. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT and if Assumptions 1-4 hold,

we obtain for ε > 0

s
√
T (θsT,S − θ0) d=⇒ A∗(s)

as T, S →∞ in the space of Càdlàg functions on the interval [ε, 1] and S
T
→ k ∈ (0,∞) or

S
T
→∞. Here, A∗(s) = (G′WG)−1G′W (A(s)− s√

k
A(1)), A(s) is a Gaussian process defined

in the proof of Lemma 7 in the appendix and θ0 the value of all θt under the null.

With Theorem 1 we obtain the asymptotic distribution under the null of our test statistic.

Corollary 1. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT and if Assumptions 1-4 hold,

we obtain for our test statistic

ST,S = sup
s∈[ε,1]

s2T (θsT,S − θT,S)′(θsT,S − θT,S) d−→ sup
s∈[ε,1]

(A∗(s)− sA∗(1))′(A∗(s)− sA∗(1))

as T, S →∞ and S
T → k ∈ (0,∞) or S

T →∞.

The estimation of the change point location is embedded in calculating the test statistic and

is given by bs̃T c, where s̃ is the maximum point of the quadratic left side of Corollary 1, i.e.

s̃ = argmax
s∈[ε,1]

s2T (θsT,S − θT,S)′(θsT,S − θT,S).
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2.4. Bootstrap distribution

We estimate the distribution under the null by using an i.i.d. bootstrap, with the following

steps:

i) Sample with replacement from the standardized residuals {η̂i}Ti=1 to obtain a B bootstrap

samples {η̂(b)
i }Ti=1, for b = 1, . . . , B.

ii) Use {η̂(b)
i }ti=1 to compute m̂(b)

t for b = 1, . . . , B and t = εT, . . . , T , such as {η̂i}Ti=1 to

obtain m̂T .

iii) Calculate the distribution bootstrap version of our test statistic

K(b) := max
t∈{εT,...,T}

(
A(b)
∗

(
t

T

)
− t

T
A(b)
∗ (1)

)′ (
A(b)
∗

(
t

T

)
− t

T
A(b)
∗ (1)

)
,

with A(b)
∗
(
t
T

)
:= (Ĝ′ŴT Ĝ)−1Ĝ′ŴTA

(b)( t
T

) and A(b)( t
T

) = t
T

√
T
(
m̂

(b)
t − m̂T

)
, where Ĝ

is the two sided numerical derivative estimator of G, evaluated at point θT,S, computed

with the full sample {η̂i}Ti=1. We can compute the k-th column of Ĝ by

Ĝk = gT,S(θT,S + ekεT,S)− gT,S(θT,S − ekεT,S)
2εT,S

, k ∈ {1, . . . , p},

where ek is the k-th unit vector, whose dimension ist p× 1 and εT,S has to be chosen in

a way that it fulfills εT,S → 0 and min{
√
T ,
√
S}εT,S →∞.

iv) Compute B versions of K(b) and determine the critical value K by e.g.

1
B

B∑
b=1

1{K(b) > K} != 0.05.

Note that by construction, the bootstrap distribution of the test statistic is mainly obtained

by calculating B versions of the moment process t
T

√
T
(
m̂

(b)
t − m̂

(b)
T

)
, which can be calculated

fast and direct from the data and it is therefore not necessary to solve B minimization
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problems, like on the left hand side, which requires a high computing effort.

3. SIMULATION EVIDENCE

We now want to investigate the size and power of our constructed test, therefore we consider

the simple factor copula model

[X1t, . . . , XNt]′ =: Xt = βtZZZt + qqqt, (3.1)

where Zt init∼ Skew t (σ2, ν−1, λ) and qt iid∼ t (ν−1) for t = 1, . . . , T and we fix σ2 = 1, ν−1 = 0.25

and λ = −0.5, such that our model is parametrized by the factor loading parameter θt = βt.

For the estimation of the sequential parameters θt for t = εT, . . . , T in the test statistic, we

use the SMM approach, with S = 25 · T simulations to match the simulated dependence

measures values with the dependence measures values of the data, with sample size T . For

this we use five dependence measures, namely Spearman’s rank correlation and the 0.05, 0.10,

0.90, 0.95 quantile dependence measures, averaged across all pairs. Note that the burn in

period bεT c has to be choosen sufficiently large, to derive reasonable estimators for θbεT c

in our test statistic. Table 1 and Table 2 show the strong fluctuations in the θT,S for small

sample sizes, we therefore recommend to choose ε = 0.2, as this leads to reasonable size and

power properties, as Table 3 and Table 4 show.

T 50 100 150 200 300 350 400 1000
Min -1.431 -1.282 -1.037 - 0.793 0.712 0.697 0.702 0.817
Max 1.724 1.641 1.522 1.615 1.415 1.333 1.392 1.200
Median 0.859 0.977 0.958 0.984 0.986 0.974 0.987 0.995
Bias 0.220 0.043 0.042 0.010 0.006 0.018 0.007 0.004
relative Bias 0.220 0.043 0.042 0.010 0.006 0.018 0.007 0.004

Table 1: Statistical analysis of θT,S for different sample size T , N = 5 and θ0 = 1 for 1000
simulation runs.
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T 50 100 150 200 300 350 400 1000
Min -0.656 -0.546 -0.565 -0.521 -0.450 -0.446 0.424 0.405
Max 1.084 0.930 0.872 0.946 0.789 0.749 0.735 0.639
Median 0.414 0.479 0.477 0.489 0.493 0.485 0.492 0.496
Bias 0.168 0.060 0.049 0.021 0.006 0.010 0.004 0.002
relative Bias 0.338 0.121 0.098 0.041 0.013 0.022 0.008 0.004

Table 2: Statistical analysis of θT,S for different sample size T , N = 5 and θ0 = 0.5 for 1000
simulation runs.

For our purpose, we chose the number of bootstrap replications B = 1000, to capture the

asymptotic behavior of the distribution and we test the behavior under the null for θ0 = 1

and θ0 = 0.5. In the course of this, we vary the sample size T and the dimension N .

To demonstrate the size and the power of the test, we choose the 0.95 quantile of the bootstrap

distribution and repeat the test 301 times. The results of the rejection rate under the null

are presented in Table 3 for θ0 = 1 and θ = 0.5, for various combinations of the sample size

T and dimension N .

θ0 = 1 N = 5 N = 10 N = 20 θ0 = 0.5 N = 5 N = 10 N = 20
T = 500

θt 0.066 0.056 0.053 θt 0.102 0.079 0.056
mt 0.030 0.039 0.056 mt 0.029 0.036 0.046
B 0.049 0.053 0.049 B 0.046 0.036 0.033

T = 1000
θt 0.056 0.046 0.069 θt 0.089 0.049 0.049
mt 0.049 0.043 0.076 mt 0.046 0.033 0.056
B 0.066 0.056 0.076 B 0.043 0.046 0.056

T = 1500
θt 0.056 0.069 0.066 θt 0.073 0.059 0.043
mt 0.049 0.063 0.066 mt 0.056 0.056 0.049
B 0.053 0.069 0.066 B 0.046 0.056 0.069

Table 3: Rejection rate for θ0 = 1.0 and θ0 = 0.5 for the parameter Test (θt) with ε = 0.2,
the moment function test (mt) and the nonparametric test of Bücher et al. (B)

Table 3 reveals that for increasing sample size and dimension the rejection rate tends more and
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more to 0.05. Note that a higher burn in period leads to a slightly better asymptotic behaviour,

especially for smaller T and N , due to fewer variation in the numerical minimization procedure

and distribution estimation.

The increasing rejection rate for some combinations of T and N can be reasoned by the non

optimal choice of the step size εT,S in the estimation of the non continuous derivative matrix

gT,S, see Oh and Patton (2015). In the computation of the numerical derivative we fix εT,S

to 0.1 for all combinations, which is much higher than standard step sizes used in computing

numerical derivatives, this can lead to a smaller valued scale matrix (Ĝ′ŴT Ĝ)−1Ĝ′ŴT and

hence smaller quantile values yielding a higher rejection rate, for some combinations of T and

N . Nevertheless it is necessary in order to handle the non smoothness of gT,S. For a optimal

choice of the step size see Hong, Mahajan, and Nekipelov (2015). Furthermore, note that the

non smoothness of gT,S leads to a non smooth objective function QT,S, see Figure 3.1, which

is difficult to optimize with standard minimization procedures, leading to problems in the

parameter estimation.

Figure 3.1: Objective function QT,S(θ) for T=1000/1500 and N=10.
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To emphasize the power of the test, we generate data with a break point at T
2 for different

sample sizes, where the data is simulated with θt = 1 for t ∈ {εT, . . . , T2 }, denoted as θ0 and

after that, we increase the parameter to θt = {1.2, 1.4, 1.6, 1.8, 2.0} for t ∈ {T2 + 1, . . . , T},

denoted as θ1. Table 4 and Figure 3.2 reveal, that the power of the test increases clearly with

a larger sample size and at the same time the size is improved, nevertheless the dimension N

is small.

N=5 θ0 = 1 θ1 = 1.2 θ1 = 1.4 θ1 = 1.6 θ1 = 1.8 θ1 = 2.0
T = 500

θt 0.066 0.272 0.551 0.833 0.963 0.993
mt 0.030 0.173 0.452 0.771 0.940 0.987
B 0.049 0.272 0.727 0.946 0.996 1.000

T = 1000
θt 0.056 0.352 0.781 0.980 1.000 1.000
mt 0.049 0.285 0.717 0.966 1.000 1.000
B 0.066 0.481 0.946 1.000 1.000 1.000

T = 1500
θt 0.056 0.488 0.950 1.000 1.000 1.000
mt 0.049 0.382 0.923 0.996 1.000 1.000
B 0.053 0.667 0.996 1.000 1.000 1.000

Table 4: Rejection rate for θ0 = 1.0 and N = 5 for the parameter test (θt) with ε = 0.2, the
moment function test (mt) and the nonparametric test of Bücher et al. (B)

N=40 θ0 = 1 θ1 = 1.2 θ1 = 1.4 θ1 = 1.6 θ1 = 1.8 θ1 = 2.0
T = 500

θt 0.043 0.302 0.691 0.910 0.996 1.000
B 0.059 0.225 0.588 0.903 0.996 1.000

Table 5: Rejection rate for θ0 = 1.0 and N = 40 for the parameter test (θt) with ε = 0.2 and
the nonparametric test of Bücher et al. (B)
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Figure 3.2: Power function for θ0 = 1, T = 500/1000/1500, N = 5 and ε = 0.2.

Another possibility is to directly test on the moment functions, consisting of the dependence

measures, since the distribution is already known. We therefore use

sup
s∈[ε,1]

s2T (m̂sT − m̂T )′(m̂sT − m̂T )

d−→ sup
s∈[ε,1]

(A(s)− sA(1))′(A(s)− sA(1)) T, S →∞,

where A(s) is the Gaussian process defined in the proof of Lemma 7 in the appendix. To

demonstrate the size and the power of the test, we again chose the 0.95 quantile of the

bootstrap distribution and repeat the test 301 times. The results of the rejection rate under

the null are presented in Table 3 for θ0 = 1 and θ = 0.5. Table 3 reveals that for increasing

sample size and dimension the rejection rate tends to 0.05. Note that the results for the size

are mostly better then the results of the parameter test, reasoned by the existing fluctuation

of the parameter and derivation estimation in the parameter testing.
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To emphasize the power of the test, we again generate data with a break point at T
2 , where the

data is simulated with θt = 1 for t ∈ {εT, . . . , T2 }, denoted as θ0 and after that, we increase

the parameter to θt = {1.2, 1.4, 1.6, 1.8, 2.0} for t ∈ {T2 + 1, . . . , T}, denoted as θ1. Table 4

reveal, that the power of the test increases with a larger sample size and at the same time the

size is improved. Noticeable is the weaker power of the test, compared to the parameter test.

We now want to compare our constructed parameter test to a non parametric test of (Bücher

et al., 2014), where the change point detection in this test is sensitive to changes in the

copula of the multivariate continuous observations. We repeat the test 301 times by using

the already implemented and online available R package of the copula test. The results of

the rejection rate under the null are presented in Table 3 for θ0 = 1 and θ = 0.5. Table

3 reveals that for a smaller sample size and dimension the rejection rate is closer to 0.05,

than our constructed parametric test, however for larger T and N it is the other way around.

Due to the SMM estimation, our test needs more information to compensate the upcoming

fluctuations in the parameter estimation, as mentioned above. To emphasize the power of

the test, we again generate data with a break point at T
2 and we use the same settings for θ0

and θ1 as used before. Table 4 reveal that the belonging power function increases more than

the power function of our test, especially for smaller T in the case of small N = 5.

On the other hand for larger dimensions, as Table 5 reveals, the rejection rate of our

constructed test increases, where the power of the copula based non parametric test decreases.

To conclude, the non parametric test has better properties for low dimensions while our test

performs better in high dimensions, if the number of parameters is kept fixed, this can be

reasoned due to the more available data information in the SMM estimation and on the other

hand, in a nonparametric copula constancy test, the complexity of the estimated objects

increase.
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4. REAL DATA EXAMPLE

4.1. 1D-Model

In this section we apply our test to a real data application. We use daily stock log return data

over a time span ranging from May 2002 to July 2013 of ten large banks namely Citigroup,

HSBC Holdings ($), UBS-R, Barclays, BNP Paribas, HSBC Holdings (ORD), Mitsubishi,

Royal Bank, Credit Agricole, Bank of America and JP Morgan implying T = 2900 and

N = 10.

To determine the residuals of the series, we first estimate an AR(1)-GARCH(1,1) model

ri,t = α + βri,t−1 + σi,tηit,

σ2
it = γ0 + γ1σ

2
i,t−1 + γ2σ

2
i,t−1η

2
i,t−1,

for t = 1, . . . , 2900, i = 1, . . . , 10 and assume the same one factor copula model as described

in Section 3 equation (3.1).

For a primary parameter analysis we estimate the common factor parameter in a rolling

window of size 650 and the result can be seen in Figure 4.3, where the date is referring to the

end of the considered window. As we can see the parameter increases strongly between July

2006 and June 2009, in the time span of the financial crisis, from approximately 0.65 up to

0.92, indicating a strong change of the residual dependencies. We now use our constructed

test to test for a break in the common factor loading and choose the burn in period as 500,

implying ε = 0.17.
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Figure 4.3: Rolling window parameter estimation for a window of size 650 in a data set of
size T=2900 and dimension N = 10.

Figure 4.4: PsT,S for data with T = 2900, N = 10 and ε = 0.17, detected breakpoint in July
2007.

Figure 4.4 is a plot of PsT,S for every time point bsT c between our considered time period

starting at April 2004, due to consideration of the burn in period. The test statistic value
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is around 13.94 indicating a break point in July 2007 (bs̃T c = 1438) and the belonging

0.95-quantile value is 1.53, hence the null hypothesis of no change in the parameter is clearly

rejected. One possible reason for the detected break point at around July 2007 can be the

well known start of the financial crisis in the Summer of 2007, also compare the strong change

of the parameter estimation in Figure 4.3 around this time point.

4.2. 2D-Model

In this section we apply our test to another real data application. We use daily stock log

return data over a time span ranging from January 2002 to June 2012 from the EURO STOXX

50 of ten large financial firms namely Allianz, Generali, AXA, BBVA, Banco Santander, BNP

Paribas, Deutschebank, Deutsche Börse, ING Groep and Intesa Sanpaolo as well as ten large

industrial firms namely Airliquide, Arcelor, Bayer, E.ON, Enel, Eni, Iberdrola, Repsol, RWE

and Total, implying T = 2724 and N = 20.

To determine the residuals of the series, we again estimate an AR(1)-GARCH(1,1) model

and assume the following two factor copula model:

[X1t, . . . , XNt]′ =: Xt =

β1t 0

0 β2t


 ZZZt

ZZZt

+ qqqt,

where Zt init∼ Skew t (σ2, ν−1, λ) and qt iid∼ t (ν−1) for t = 1, . . . , T and we fix σ2 = 1, ν−1 = 0.25

and λ = −0.5, such that our model is parametrized by the factor loading parameters

θt = (β1t β2t)′.

For the estimation of the sequential parameters θt for t = εT, . . . , T in the test statistic, we

again use the SMM approach, with S = 25 · T simulations with sample size T . We again

use five dependence measures, namely Spearman’s rank correlation and the 0.05, 0.10, 0.90,

0.95 quantile dependence measures, in a block eqidependence model as in Oh and Patton

(2015), leading to a total number of ten dependence measures, reasond by the existence of

19



two groups (financial and industrial sector each with ten companies). We check the size and

power of our test for the two dimensional model for T = 1000, N = 20 and ε = 0.2 and we

receive similar results as in the one factor model, compare Table 6.1

θ0 = [1.0 0.5] θ1 = [1.2 0.5] θ1 = [1.4 0.5] θ1 = [1.6 0.5] θ1 = [1.8 0.5]
T = 1000 0.066 0.461 0.887 0.996 1.000

Table 6: Empirical power for θ0 = [1 0.5], N = 20, ε = 0.2 and group size 10.

For a primary parameter analysis we estimate the two factor parameters for the finacial

and industrial sector in a rolling window of size 500 and the result can be seen in Figure

4.5, where the date is referring to the end of the considered window. The two parameters

increase strongly between July 2006 and July 2010, in the time span of the financial crisis,

from approximately 0.8 up to 1.2 for the industrial sector and from approximately 0.9 up to

1.4 for the financial sector, indicating a strong change of the residual dependencies.

We now apply our test to the above described application, with the two factor model and

choose the burn in period as 500, implying ε = 0.18.

Figure 4.6 is a plot of PsT,S for every time point bsT c between our considered time period

starting at December 2003 due to consideration of the burn in period. The test statistic value

is around 41.31 indicating a break point in August 2008 (bs̃T c = 1718) and the belonging

0.95-quantile value is 5.13, hence the null hypothesis of no change in the parameters is clearly
1In rare cases, the SMM estimation yields very extreme unnatural estimates in the case of two or more

parameters. To exclude them from the test statistic ST,S , we eliminate all values PsT,S which are larger than
the median plus 5 times the quarter-quantile difference of all PsT,S .
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Figure 4.5: Rolling window parameter estimation for a window of size 500 in a data set of
size T = 2724 and dimension N = 20.

rejected. One possible reason for the detected break point at around August 2008 can be

the well known high of the financial crisis in the Summer of 2008, also compare the strong

change of the parameters estimation in Figure 4.5 around this time point.

5. SUMMARY

We constructed new fluctuation tests for detecting structural breaks in factor copula models

and analyzed the behavior under the null hypothesis of no change. Due to the discontinuity

of the SMM objective function, it is not trivial to derive a functional limit theorem for the

model parameters. Further we analyzed the behavior of the tests in Monte Carlo simulations

and applied the test to real data applications.

In future reserach, our work could be extended in several interesting directions. First, one

could derive a monitoring procedure for detecting parameter changes in an online-setup.

Second, it would be interesting to explore the usefulness of our test in risk management
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Figure 4.6: PsT,S for data with T = 2724, N = 20 and ε = 0.18, detected breakpoint in
August 2008.

applications like the forecast of value at risk (VaR) and expected shortfall (ES). Finally, it

would be worthwhile, but also mathematically demanding to derive appropriate tests in the

case of time-varying marginal distributions.

A. ADDITIONAL RESULTS AND PROOFS

Theorem 1 is proved in different steps. First, we provide a consistency result in Lemma 2.

Then, Theorem 4, which is based on Theorem 3, yields a general convergence result for SMM

estimators. Lemma 6, which is based on Lemma 5 provides stochastic equicontinuity for the

objective function in a general SMM setting. Finally, Lemma 7 yields distribution results for

the empirical moments in our specific problem. All these results are then used for proving

Theorem 1.
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Lemma 2. If θ̂T,S a.s.−→ θ0, T, S →∞, then

sup
s∈[ε,1]

‖θ̂sT,S − θ0‖
p−→ 0, ∀ε > 0, T, S →∞.

Proof. Let δ > 0 , θ̂T,S a.s.−→ θ0 and choose any ε > 0

⇒ ∀γ > 0 there exists T ∗0 , S∗0 ∈ N+, such that for all T ≥ T ∗0 , S ≥ S∗0 , ‖θ̂T,S − θ0‖ < γ

⇒ there exists T0, S0 ∈ N+ such that for all T ≥ T0, S ≥ S0, ‖θ̂T,S − θ0‖ < δ

Choose T, S with εT ≥ T0 ⇔ T ≥ T0
ε
, S ≥ S0, ∀ε > 0 (in all cases T ≥ T0)

⇒ ∀s ∈ [ε, 1] : ‖θ̂sT,S − θ0‖ < δ, for all T ≥ T0
ε
, S ≥ S0, ∀ε > 0

⇒ sup
s∈[ε,1]

‖θ̂sT,S − θ0‖ < δ, for all T ≥ T0
ε
, S ≥ S0, ∀ε > 0

⇒ sup
s∈[ε,1]

‖θ̂sT,S − θ0‖
p−→ 0, ∀ε > 0, T, S →∞.

Theorem 3. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT , suppose that

∀s ∈ [ε, 1], ε > 0 QsT,S(θsT,S) ≥ sup
θ∈Θ

QsT,S(θ)− o∗p((s2T )−1), sup
s∈[ε,1)

‖θ̂sT,S − θ0‖
p−→ 0,

T, S →∞ and:

i) Q0(θ) is maximized on θ0(= θ1 = · · · = θT )

ii) θ0(= θ1 = · · · = θT ) are interior points of Θ

iii) Q0(θ) is twice differentiable at θ0 with non singular second derivative H = ∇θθQ0(θ0)

iv) s
√
TD̂sT (θ0) d−→ A(s)

v) ∀δ → 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣ R̂sT (θ)
1+s
√
T‖θ−θ0‖

∣∣∣∣ p−→ 0

with R̂sT = s
√
T [QsT,S(θ)−QsT,S(θ0)−D̂sT (θ−θ0)−(Q0(θ)−Q0(θ0))]

‖θ−θ0‖

⇒ s
√
T (θsT,S − θ0) d−→ A∗(s) ∀s ∈ [ε, 1], ε > 0 and A∗(s) = H−1A(s),

where A(s) is a continuous Gaussian process.

Proof. For simplification set Q := Q0 and Q̂ := QsT,S. We first show the limitation

s
√
T‖θsT,S−θ0‖ = Op(1). With a Taylor-expansion of Q(θ) around θ0 and knowing∇θQ(θ0) =
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0, due to condition i), we receive Q(θ) = Q(θ0) + 1
2(θ− θ0)′H(θ− θ0) + o(‖θ− θ0‖3). We also

know from condition i) and iii), that ∃C > 0 : (θ−θ0)′H(θ−θ0)+o(‖θ−θ0‖3) ≤ −C‖θ−θ0‖2

⇒ Q(θsT,S) ≤ Q(θ0)− C‖θsT,S − θ0‖2 and we obtain

0 ≤ Q̂(θsT,S)− Q̂(θ0) + o∗p((s2T )−1)

= Q(θsT,S)−Q(θ0) + D̂′sT (θsT,S − θ0) + 1
s
√
T
‖θsT,S − θ0‖R̂sT (θsT,S) + o∗p((s2T )−1)

c.s.
≤ −C‖θsT,S − θ0‖2 + ‖D̂′sT‖‖θsT,S − θ0‖

+ ‖θsT,S − θ0‖(1 + s
√
T‖θsT,S − θ0‖)op(s−1T−

1
2 ) + o∗p((s2T )−1)

= −(C + op(1))‖θsT,S − θ0‖2 + ‖θsT,S − θ0‖(‖D̂′sT‖+ op(s−1T−
1
2 )) + o∗p((s2T )−1)

≤ −(C + op(1))‖θsT,S − θ0‖2 + ‖θsT,S − θ0‖Op(s−1T−
1
2 ) + o∗p((s2T )−1)

⇒ ‖θsT,S − θ0‖2 ≤ ‖θsT,S − θ0‖Op(s−1T−
1
2 ) + o∗p((s2T )−1), ∀s ∈ [ε, 1]. (?)

Consider

(
‖θsT,S − θ0‖+Op(s−1T−

1
2 )
)2

= ‖θsT,S − θ0‖2 + ‖θsT,S − θ0‖Op(s−1T−
1
2 ) +Op(s−2T−1)

(?)
≤ ‖θsT,S − θ0‖Op(s−1T−

1
2 ) + o∗p((s2T )−1) +Op(s−2T−1)

≤ Op(s−2T−1)

⇒
∣∣∣‖θsT,S − θ0‖+Op(s−1T−

1
2 )
∣∣∣ ≤ Op(s−1T−

1
2 ), ∀s ∈ [ε, 1] (??)

and we get

‖θsT,S − θ0‖ = |‖θsT,S − θ0‖+Op(s−1T−
1
2 )−Op(s−1T−

1
2 )|

c.s.
≤ |‖θsT,S − θ0‖+Op(s−1T−

1
2 )|+ | −Op(s−1T−

1
2 )|

(??)
≤ Op(s−1T−

1
2 )
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⇒ s
√
T‖θsT,S − θ0‖ = Op(1), ∀s ∈ [ε, 1]. (+)

Note that for the counter of the remainder Term R̂sT , without the factor s
√
T , we get with

condition v) the scale

op(1)(1 + s
√
T‖θsT,S − θ0‖)‖θsT,S − θ0‖

1
s
√
T

=op
(
‖θsT,S − θ0‖

s
√
T

+ ‖θsT,S − θ0‖2
)

(+)= op
(
Op((s2T )−1 +Op((s2T )−1)

)
=op((s2T )−1). (++)

Now we can show the asymptotic behavior of s
√
T (θ̂sT,S−θ0). First let θ̃sT,S = θ0−H−1D̂sT ⇒

D̂sT = −H(θ̃sT,S − θ0) (*) be the maximum of the approximation

Q̂(θ) ≈Q̂(θ0) + D̂′sT (θ − θ0) +Q(θ)−Q(θ0)

≈Q̂(θ0) + D̂′sT (θ − θ0)′ + 1
2(θ − θ0)H(θ − θ0) (+ + +)

and by construction s
√
T -consistent.

From the previous result (++), we know the convergence ordering of the remainder term of

the approximation in (+++). So we receive

2[Q̂(θsT,S)− Q̂(θ0)] = 2D̂′sT (θsT,S − θ0) + (θsT,S − θ0)′H(θsT,S − θ0) + op((s2T )−1)
(∗)= (θsT,S − θ0)′H(θsT,S − θ0)− 2(θ̃sT,S − θ0)′H(θsT,S − θ0) + op((s2T )−1)

and analogously for θ̃sT,S

2[Q̂(θ̃sT,S)− Q̂(θ0)] = 2D̂′sT (θ̃sT,S − θ0) + (θ̃sT,S − θ0)′H(θ̃sT,S − θ0) + op((s2T )−1)
(∗)= −(θ̃sT,S − θ0)′H(θ̃sT,S − θ0) + op((s2T )−1).

Because θsT,S, θ̃sT,S ∈ Θ, the convergence ordering of the remainder terms are known and
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H = H(θ0) is negatively definite and non singular

⇒ op((s2T )−1) ≤2[Q̂(θsT,S)− Q̂(θ0)]− 2[Q̂(θ̃sT,S)− Q̂(θ0)]

=(θsT,S − θ0)′H(θsT,S − θ0)− 2(θ̃sT,S − θ0)′H(θsT,S − θ0)− (θ̃sT,S − θ0)′H(θ̃sT,S − θ0)

=(θsT,S − θ̃sT,S)′H(θsT,S − θ̃sT,S) ≤ −C‖θsT,S − θ̃sT,S‖2

⇒s
√
T‖θsT,S − θ̃sT,S‖ = op(1). (∗∗)

So we have ∀s ∈ [ε, 1], ε > 0

‖s
√
T (θsT,S − θ0)− (−s

√
TH−1D̂sT )‖

(∗)=‖s
√
T (θsT,S − θ0)− s

√
T (θ̃sT,S − θ0)‖

=‖s
√
T (θsT,S − θ̃sT,S)‖

=s
√
T‖(θsT,S − θ̃sT,S)‖ (∗∗)= op(1)

⇒ s
√
T (θsT,S − θ0) p−→ −H−1s

√
TD̂sT

d−→
iv)
−H−1A(s) = A∗(s).

Theorem 4. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT , suppose that

∀s ∈ [ε, 1], ε > 0 : gsT,S(θsT,S)′ŴsTgsT,S(θsT,S) ≤ inf
θ∈Θ

gsT,S(θ)′ŴsTgsT,S(θ) + o∗p((s2T )−1),

sup
s∈[ε,1]

‖θ̂sT,S − θ0‖
p−→ 0, sup

s∈[ε,1]
‖ŴsT −W‖

p−→ 0, T, S →∞ and:

i) There is a θ0(= θ1 = · · · = θT ) such that g0(θ0) = 0

ii) θ0(= θ1 = · · · = θT ) are interior points of Θ

iii) g0(θ) is differentiable at θ0 with derivative G such that G′WG is non singular

iv) s
√
TgsT,S(θ0) d−→ A(s)

v) ∀δ → 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
‖gsT,S(θ)−gsT,S(θ0)−g0(θ)‖

1+s
√
T‖θ−θ0‖

p−→ 0
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⇒ s
√
T (θsT,S − θ0) d−→ A∗(s) ∀s ∈ [ε, 1], ε > 0

and A∗(s) = (G′WG)−1G′WA(s),

where A(s) is a continuous Gaussian process.

Proof. The Theorem follows by verifying the conditions of Theorem 3. Set Q̂(θ) := QsT (θ) :=

−1
2 ĝ(θ)

′ŴsT ĝ(θ) + ∆̂sT (θ) with ĝ(θ) := gsT,S(θ) and Q(θ) := Q0(θ) := −1
2g(θ)

′Wg(θ) with

g(θ) := g0(θ). With a Taylor-expansion of g(θ) around θ0

g(θ) = g(θ0) +G(θ − θ0) + o(‖θ − θ0‖2) = G(θ − θ0) + o(‖θ − θ0‖2) (?),

we obtain

Q(θ) = g(θ)′Wg(θ) (?)= [G(θ − θ0) + o(‖θ − θ0‖2)]′W [G(θ − θ0) + o(‖θ − θ0‖2)]

and comparing this with a Taylor-expansion of Q(θ) around θ0

Q(θ) = Q(θ0) + 1
2(θ − θ0)′H(θ − θ0) + o(‖θ − θ0‖3),

noting that Q(θ) is maximized at θ0, it follows H(θ0) = −G′WG, where H is a non singular

negative definite matrix. Because H is by construction a nonsingular negative definite matrix,

∃ neighborhood of θ0, where Q(θ) has a unique maximum at θ0 with Q(θ0) = 0.

⇒ Conditions i), ii) and iii) of Theorem 3 are satisfied. By choosing D̂sT = −G′ŴsTgsT,S(θ0)

it follows, ∀s ∈ [ε, 1],

s
√
TD̂sT = −s

√
TG′ŴsTgsT,S(θ0) d−→

iv)
−G′WA(s),

thus condition iv) of Theorem 3 is fulfilled. Now we define

ε̂(θ) := ĝ(θ)− ĝ(θ0)− g(θ)
1 + s

√
T‖θ − θ0‖

⇔ ĝ(θ) = [1 + s
√
T‖θ − θ0‖]ε̂(θ) + ĝ(θ0) + g(θ) (??)
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and we get

ĝ(θ)′ŴsT ĝ(θ) (??)= [1 + 2s
√
T‖θ − θ0‖+ s2T‖θ − θ0‖2]ε̂(θ)′ŴsT ε̂(θ)

+g(θ)′ŴsTg(θ) + ĝ(θ0)′ŴsT ĝ(θ0) + 2g(θ)′ŴsT ĝ(θ0)

+2[g(θ) + ĝ(θ0)]′ŴsT ε̂(θ)[1 + s
√
T‖θ − θ0‖] (+)

Next we define the remainder term of Q̂(θ)

Q̂(θ) = −1
2 ĝ(θ)′ŴsT ĝ(θ) + ∆̂sT (θ) = −1

2 ĝ(θ)′ŴsT ĝ(θ) + 1
2 ε̂(θ)

′ŴsT ε̂(θ) + ĝ(θ0)′ŴsT ε̂(θ).

The remainder term is just chosen in this way, that Q̂(θ) is consistent with −1
2 ĝ(θ)′ŴsT ĝ(θ),

which is shown in the next window and that we get the right convergence ordering, when check-

ing condition v) of Theorem 3. First notice that by condition v) ∀δ > 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

‖ε̂(θ)‖ =

op(s−1T−
1
2 ), furthermore

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

‖ĝ(θ0)‖ = op(s−1T−
1
2 ) , sup

s∈[ε,1]
sup

‖θ−θ0‖<δ
‖ŴsT‖ = Op(1) and ‖g(θ)−g(θ0)‖

‖θ−θ0‖ =

Op(1) (++).

⇒∀δ > 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣Q̂(θ)− (−1
2 ĝ(θ)′ŴsT ĝ(θ))

∣∣∣∣
= sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣12 ε̂(θ)′ŴsT ε̂(θ) + ĝ(θ0)′ŴsT ε̂(θ)
∣∣∣∣

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

1
2‖ε̂(θ)‖‖ŴsT‖‖ε̂(θ)‖+ ‖ĝ(θ0)‖‖ŴsT‖‖ε̂(θ)‖

(++)= Op(1)(op(s−2T−1) + op(s−2T−1)) = op(s−2T−1). (∗)
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With the consistency of Q̂(θ) we can show the initial condition of Theorem 3

∀s ∈ [ε, 1], ε > 0 ĝ(θsT,S)′ŴsT ĝ(θsT,S) ≤ inf
θ∈Θ

ĝ(θ)′ŴsT ĝ(θ) + o∗p((s2T )−1)

⇔∀s ∈ [ε, 1], ε > 0 − 1
2 ĝ(θsT,S)′ŴsT ĝ(θsT,S) ≥ − inf

θ∈Θ

1
2 ĝ(θ)′ŴsT ĝ(θ)− o∗p((s2T )−1)

⇔∀s ∈ [ε, 1], ε > 0 − 1
2 ĝ(θsT,S)′ŴsT ĝ(θsT,S) ≥ −

(
− inf
θ∈Θ
− 1

2 ĝ(θ)′ŴsT ĝ(θ)
)
− o∗p((s2T )−1)

(∗)⇔∀s ∈ [ε, 1], ε > 0 Q̂(θsT,S) ≥ sup
θ∈Θ

Q̂(θ)− o∗p((s2T )−1).

Finally we have to check condition v) of Theorem 3, for that we calculate∣∣∣∣∣ R̂sT (θ)
1 + s

√
T‖θ − θ0‖

∣∣∣∣∣
=s
√
T

∣∣∣∣∣Q̂(θ)− Q̂(θ0)− D̂sT (θ − θ0)− (Q(θ)−Q(θ0))
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

∣∣∣∣∣
=s
√
T

∣∣∣∣∣∣−
1
2 ĝ(θ)′ŴsT ĝ(θ) + 1

2 ε̂(θ)
′ŴsT ε̂(θ) + ĝ(θ0)′ŴsT ε̂(θ) + 1

2 ĝ(θ0)′ŴsT ĝ(θ0)
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

+ −D̂sT (θ − θ0)− (Q(θ)−Q(θ0))
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

∣∣∣∣∣ (ε̂(θ0) = 0),

inserting (+) and Q(θ) = −1
2g(θ)′Wg(θ), sorting, triangle inequality,

choosing D̂sT = −G′ŴsT ĝ(θ0) and size up the resulting terms, leads to

≤
s
√
T [2s
√
T‖θ − θ0‖+ s2T‖θ − θ0‖2]

∣∣∣ε̂(θ)′ŴsT ε̂(θ)
∣∣∣

‖θ − θ0‖(1 + s
√
T‖θ − θ0‖)

(=: r1(θ))

+
s
√
T
∣∣∣(−g(θ) +G(θ − θ0))′ŴsT ĝ(θ0)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

(=: r2(θ))

+
s2T

∣∣∣(g(θ) + ĝ(θ0))′ŴsT ε̂(θ)
∣∣∣

1 + s
√
T‖θ − θ0‖

(=: r3(θ))

+
s
√
T
∣∣∣g(θ)′ŴsT

ˆε(θ)
∣∣∣

‖θ − θ0‖
(=: r4(θ))

+
s
√
T
∣∣∣g(θ)′[W − ŴsT ]g(θ)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

. (=: r5(θ))
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Now we have

∀δ → 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣∣ R̂sT (θ)
1 + s

√
T‖θ − θ0‖

∣∣∣∣∣
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

5∑
i=1

ri(θ) != op(1)

and we just have to check the convergence of the ri(θ) terms for i ∈ {1, 2, 3, 4, 5}. For r1, we

have

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r1(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T [2s
√
T‖θ − θ0‖+ s2T‖θ − θ0‖2]

∣∣∣ε̂(θ)′ŴsT ε̂(θ)
∣∣∣

‖θ − θ0‖(1 + s
√
T‖θ − θ0‖)

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T (s
√
T‖θ − θ0‖(2 + s

√
T‖θ − θ0‖))‖ε̂(θ)‖2‖ŴsT‖

‖θ − θ0‖(1 + s
√
T‖θ − θ0‖)

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

cs2T‖ε̂(θ)‖2‖ŴsT‖ (c sufficient tall)

(++)= op(1)

For r2, we obtain

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r2(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
∣∣∣(−g(θ) +G(θ − θ0))′ŴsT ĝ(θ0)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
To(‖θ − θ0‖2)‖ŴsT‖‖ĝ(θ0)‖

‖θ − θ0‖

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
To(‖θ − θ0‖)‖ŴsT‖‖ĝ(θ0)‖

(++)= op(1)
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Considering r3 yields

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r3(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s2T
∣∣∣(g(θ) + ĝ(θ0))′ŴsT ε̂(θ)

∣∣∣
1 + s

√
T‖θ − θ0‖

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

(
s2T‖ĝ(θ0)‖+ sT

1
2
‖g(θ)‖
‖θ − θ0‖

)
‖ŴsT‖‖ε̂(θ)‖

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

(
s2Top(s−1T−

1
2 ) + sT

1
2Op(1)

)
‖ŴsT‖‖ε̂(θ)‖

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

sT
1
2Op(1)‖ŴsT‖‖ε̂(θ)‖

(++)= op(1)

For r4, it holds

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r4(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
∣∣∣g(θ)′ŴsT

ˆε(θ)
∣∣∣

‖θ − θ0‖
c.s.
≤s
√
TOp(1)‖ŴsT‖‖ε̂(θ)‖

(++)= op(1)

Finally, for r5,

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r5(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
∣∣∣g(θ)′[W − ŴsT ]g(θ)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T‖g(θ)‖2‖W − ŴsT‖
s
√
T‖θ − θ0‖2

= sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

(
‖g(θ)‖
‖θ − θ0‖

)2

op(1)

=op(1).

Lemma 5. Under Assumption 1, 2, 3.ii) and 3.iii)
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i) gsT,S(θ) is stochastically Lipschitz-continuous ∀s ∈ [ε, 1], ε > 0, i.e.,

∃B = Op(1) such that ∀θ1, θ2 ∈ Θ : ‖gsT,S(θ1)− gsT,S(θ2)‖ ≤ B‖θ1 − θ2‖

ii) ∃δ > 0 such that

lim sup
T,S→∞

E
(
B2+δ

)
<∞.

Proof. Without loss of generality suppose gsT,S(θ) is a one-dimensional function, otherwise

show the Lipschitz-continuity for every entry of the vector gsT,S(θ).

i) We know m̃S(θ) = m0(θ) + op(1) (?), and from Assumption 3.iii), m0(θ) is Lipschitz-

continuous, due to combination of Lipschitz-continuous bivariate copulas Cij(θ),

∃K : |m0(θ1)−m0(θ2)| ≤ K‖θ1 − θ2‖. (??)

Now consider

|gsT,S(θ1)− gsT,S(θ2)| =|m̂sT − m̃S(θ1)− m̂sT + m̃S(θ2)|

=|m̃S(θ2)− m̃S(θ1)| = |m̃S(θ1)− m̃S(θ2)|
(?)
≤
c.s.
|m0(θ1)−m0(θ2)|+ |op(1)|

(??)
≤K‖θ1 − θ2‖+ |op(1)|

=
(
K + |op(1)|

‖θ1 − θ2‖

)
‖θ1 − θ2‖

=:B‖θ1 − θ2‖.

ii) For some δ > 0

⇒ lim sup
T,S→∞

E
(
B2+δ

)
= lim sup

T,S→∞
E

(K + |op(1)|
‖θ1 − θ2‖

)2+δ
 <∞.
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Lemma 6. Under Assumption 1, 2, 3.ii) and 3.iii), for S
T
→∞ or S

T
→ k ∈ (0,∞),

vsT,S(θ) =
√
sT [gsT,S(θ)− g0(θ)] is stochastically equicontinuous ∀s ∈ [ε, 1], ε > 0

Proof. By Lemma 5)i) {gsT,S(θ) : θ ∈ Θ} is Lipschitz-continuous ∀s ∈ [ε, 1], ε > 0 and so a

Type II class of functions in Andrews (1994). By Theorem 2 of Andrews {gsT,S(θ) : θ ∈ Θ}

satisfies Pollard’s entropy condition with envelope

max{1, sup
θ∈Θ
‖gsT,S(θ)‖, B}, ∀s ∈ [ε, 1], ε > 0.

⇒ Assumption A of Andrews (1994) is satisfied.

Furthermore gsT,S(θ) is bounded and by Lemma 5)ii) it holds

lim sup
T,S→∞

E
(
B2+δ

)
<∞.

⇒ Assumption B of Andrews (1994) is satisfied. Then with Theorem 1 of Andrews (1994)

and noting, that Assumption C is fulfilled by construction

vsT,S(θ) =
√
sT [gsT,S(θ)− g0(θ)] is stochastically equicontinuous ∀s ∈ [ε, 1], ε > 0.

Lemma 7. We consider the dependence measures Spearman’s rho and quantile dependence

measures, which are functions only depending on bivariate copulas.

Under the null and Assumption 1 and 2,

s
√
T (m̂sT −m0(θ0)) d−→ A(s), T →∞, ∀s ∈ [ε, 1], ε > 0

where A(s) is defined in the proof and θ0 the value of all θt under the null.

Proof. The proof follows the idea of Bücher et al. (2014) and we only consider the limit

process for T →∞.
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By Proposition 3.3 in (Bücher et al., 2014) (+) the sequential empirical copula of the

N -dimensional random vectors fulfills

CsT :=s
√
T
[
Ĉs(u)− C(u)

]
= 1√

T

bsT c∑
t=1

1{F̂
s(η̂t) ≤ u} − C(u)


d−→

(+)
B(s,u)−

N∑
j=1

∂jC(u)B(s,u(j)) =: A∗(s,u), T →∞, ∀s ∈ [ε, 1], ε > 0,

where u ∈ [0, 1]N , u(j) ∈ [0, 1]N defined by u(j)
i = uj, if i = j and 1 otherwise and

F̂
s(η̂t) = (F̂ s

1 (η̂1t), . . . , F̂ s
N(η̂Nt)). Here, F̂ s

j denotes the marginal empirical distribution

function of the j-th component calculated from data up to time point [sT ]. Moreover B(s,u)

is a tight centered continuous Gaussian process with B(0,u) = 0 and

Cov(B(s,u),B(t,v)) = min(s, t)Cov(1(F(η) ≤ u),1(F(η) ≤ v)).

Note that Spearman’s rho between the i-th and j-th component is given by

12
∫ 1

0

∫ 1

0
C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)duiduj − 3

and that the quantile dependencies are projections of the N -dimensional copula onto one

specific point divided by some prespecified constant. Define the function mij(C) as the

function which generates a vector of all considered dependence measures (Spearman’s rho

and/or quantile dependencies for different levels) between the i-th and j-th component out of

the copula C. Without loss of generality consider the equicontinuity case, then the function

m(C) : D[0, 1]N → Rk

C → m(C) = 2
N(N − 1)

N−1∑
i=1

N∑
j=i+1

mij∗(C)
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is continuous and we directly obtain

s
√
T (m̂sT −m0(θ)) = s

√
T [m(Cs)−m(C)] d−→ 2

N(N − 1)

∑
i,j

mij(A∗(s,u))
 =: A(s)

as T → ∞ with s ∈ [ε, 1], ε > 0. Here, mij(·) is the same function as mij∗(·) with the

only difference that the formula for Spearman’s rho between the i-th and j-th component is

replaced by

12
∫ 1

0

∫ 1

0
C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)duiduj.

Proof of Theorem 1

The proof follows by checking the conditions of Theorem 4. The initial conditions of Theorem

4 follow by Assumption 4.iii) and Lemma 2.

i) g0(θ0) = 0 follows direct by construction, because g0(θ) = m0(θ0)−m0(θ).

ii) θ0(= θ1 = · · · = θT ) are interior points of Θ given by Assumption 4.i).

iii) g0(θ) is differentiable at θ0 with derivative G such that G′WG is non singular, given by

Assumption 4.ii).

iv) 1) If S
T
→∞ as T, S →∞,

s
√
TgsT,S(θ0) =s

√
T (m̂sT − m̃S(θ0))

=s
√
T (m̂sT −m0(θ0)) + s

√
T (m0(θ0)− m̃S(θ0))

=s
√
T (m̂sT −m0(θ0))−

√
T√
S
s
√
S(m̃S(θ0)−m0(θ0))

d−→
Lemma 7

A(s)
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2)If S
T
→ k ∈ (0,∞) as T, S →∞,

s
√
TgsT,S(θ0) =s

√
T (m̂sT − m̃S(θ0))

=s
√
T (m̂sT −m0(θ0)) + s

√
T (m0(θ0)− m̃S(θ0))

=s
√
T (m̂sT −m0(θ0))−

√
T√
S
s
√
S(m̃S(θ0)−m0(θ0))

d−→
Lemma 7

A(s)− s√
k
A(1),

combined we get

s
√
TgsT,S(θ0) d−→A(s)− s√

k
A(1), T, S →∞, ∀s ∈ [ε, 1], ε > 0.

v) We know by Lemma 6, that for S
T
→∞ or S

T
→ k ∈ (0,∞)

vsT,S(θ) =
√
sT [gsT,S(θ)− g0(θ)] is stochastically equicontinuous ∀s ∈ [ε, 1], ε > 0.

⇒ ∀ε > 0, η > 0, ∃δ > 0 : lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

‖vsT,S(θ)− vsT,S(θ0)‖ > η

]

=lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

√
sT‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖ > η

]
< ε.(?)

Furthermore the inequality

s
√
T
‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖

1 + s
√
T‖θ − θ0‖

≤ s
√
T‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖ (??)

is valid ∀s ∈ [ε, 1].

Finally we obtain

lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖

1 + s
√
T‖θ − θ0‖

> η

]

≤lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

√
sT
‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖

1 + s
√
T‖θ − θ0‖

> η

]
(??)
≤ lim sup

T→∞
P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

√
sT‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖ > η

]
(?)
< ε.

Note that, for the first inequality sign, we use that 0 < s ≤
√
s ∀s ∈ [ε, 1], ε > 0.
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This completes the proof. �
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