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Abstract

We develop tests for the null hypothesis that forecasts become uninformative beyond some

maximum forecast horizon h∗. The forecast may result from a survey of forecasters or from an

estimated parametric model. The first class of tests compares the mean-squared prediction

error of the forecast to the variance of the evaluation sample, whereas the second class of tests

compares it to the mean-squared prediction error of the recursive mean. We show that the

forecast comparison may easily be performed by adopting the encompassing principle, which

results in simple regression tests with standard asymptotic inference. Our tests are applied

to forecasts of macroeconomic key variables from the survey of Consensus Economics. The

results suggest that these forecasts are barely informative beyond 2–4 quarters ahead.
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1 Introduction

The choice of the largest forecast horizon appears to be an important issue for decision-makers.

For example, in recent years, several central banks, including the Federal Reserve, the Bank

of England and the European Central Bank (ECB), decided to increase the time horizons of

their macroeconomic forecasts or surveys they conduct among private sector forecasters. For

instance, since 2004, the Bank of England has published macroeconomic forecasts for up to 12

instead of 8 quarters ahead. In the US Survey of Professional Forecasters (SPF), conducted

by the Federal Reserve Bank of Philadelphia, the largest horizon for forecasts of some annual

variables like real GDP was extended from 1 to 3 years in 2010. In 2013 and 2014, the largest

horizon of several macroeconomic forecasts by the ECB and in the ECB’s SPF increased from 1

year to 2 years.1 Yet, it is unclear whether forecasts for larger horizons actually provide valuable

information in such cases, as forecast error variances approach the unconditional variance of the

target variable.

For assessing the predictive content, Theil (1958) proposed (among other measures) the

inequality coefficient that compares the actual forecast to some “naive” guess. If the forecast is

informative, the inequality coefficient should be substantially smaller than unity, see e.g. Isiklar

and Lahiri (2007) for an application to survey forecasts from Consensus Economics.

Using the unconditional mean as the uninformative benchmark, the inequality coefficient is

related to the R2 from a regression of the actual observations on their forecasts (often referred

to as Mincer-Zarnowitz regression, see Mincer and Zarnowitz 1969). This R2 was considered by

Nelson (1976) and Diebold and Kilian (2001) as a measure for the predictive content. Diebold

and Kilian (2001) generalized this measure to accommodate nonstationary time series and arbi-

trary loss functions. Their measure compares the loss of the short-run forecast to the loss of the

long-run prediction. If the target variable is stationary, the loss function is quadratic, and the

horizon of the long-run forecast tends to infinity, then the Diebold-Kilian measure and Nelson’s

R2 coincide.

The empirical literature reports few and differing results concerning the largest informative

forecast horizon. The differences are at least partly due to different data transformations, as

pointed out by Galbraith and Tkacz (2007). For example, concerning quarterly GDP, they find

1See Knüppel (2018) for further details.
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that forecasts of quarter-on-quarter growth are barely informative beyond a forecast horizon of

one quarter. For year-on-year forecasts this horizon increases to about four quarters, which may

not be surprising provided the overlap of the forecasts. Concerning annual GDP growth, Isiklar

and Lahiri (2007) find that forecasts are informative for horizons up to six quarters. Diebold

and Kilian (2001) report even larger horizons for HP-filtered or linearly detrended GDP.

The purpose of this paper is to provide statistical tests for assessing the predictive content of

forecasts, thereby determining the largest informative forecast horizon. A natural way of testing

is to compare the forecast to some uninformative benchmark. To this end, traditional forecast

evaluation tests, such as the Diebold and Mariano (1995) test or forecast encompassing tests

(e.g. Harvey, Leybourne, and Newbold 1997) can be adopted.2 It is important to note that

the uninformative benchmark is typically nested within the forecast under scrutiny in the sense

that under the null hypothesis the difference between the forecasts tends to zero in probability

(Clark and McCracken 2001). In this paper we propose an alternative approach that sidesteps

the problem of selecting a “naive benchmark” and directly compares the mean-squared forecast

error to the unconditional variance of the target variable.

We consider three different forecast scenarios. Whenever the forecasts are based on survey

expectations (as in our empirical application), it is natural to assume that the forecasts cor-

respond to some conditional mean based on an associate information set. We argue that it

makes a crucial difference whether the forecasts are exactly identical to some conditional mean

function (scenario 1) or whether the forecasts involve some additional noise (scenario 2). For

the latter scenario it is natural to test the hypothesis of uninformative forecasts by running a

Mincer-Zarnowitz regression, whereas under the first scenario the Mincer-Zarnowitz regression

is invalid due to the fact that under the null hypothesis the conditional mean is constant. Yet,

it is possible to construct a Diebold-Mariano type test for scenario 1 by taking into account the

fact that the forecast comparison is nested. Scenario 3 assumes that the forecast is generated by

an estimated model. In many cases the forecast results from a parametric specification of some

conditional mean function, where the parameters are estimated from past observations. This

scenario is related to scenario 2, where the noise corresponds to the estimation error. An im-

portant difference is, however, that the estimation error vanishes as the number of observations

2See Elliott and Timmermann (2016, chap. 17) and Cheng, Swanson, and Yao (2020) for reviews of the recent
literature.
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tends to infinity.

We consider two testing strategies for assessing the predictive power of the forecasts. As our

test procedures are based on a comparison of the forecast and the unconditional mean as an

uninformative benchmark, we require an estimator for the unconditional mean. One approach is

to employ the in-sample mean of the evaluation sample. Alternatively, we may use some other

uninformative benchmark such as the recursive mean computed from an expanding sample.

It turns out that the in-sample version of the test typically provides a simpler test with less

assumptions and choices to make. Moreover the in-sample version of our tests tend to perform

better in many situations.

The rest of this paper is organized as follows. In Section 2 we introduce our testing frame-

work. Tests of the information content of survey expectations are considered in Section 3,

whereas Section 4 deals with forecasts based on parametric models. Section 5 investigates the

small sample properties of the tests by means of Monte Carlo experiments, and in Section 6 the

proposed tests are applied to forecasts of key macroeconomic variables as reported by Consensus

Economics. Section 7 concludes. Additional results are provided in an online appendix to this

paper.

2 Testing framework

Assume that the target time series {Yt} is generated by a stationary and ergodic stochastic

process. The h-step ahead forecast of Yt+h based on information up to time period t is de-

noted by Ŷt+h|t. Under quadratic loss the optimal forecast equals the conditional expectation

µh,t = E(Yt+h|It), where It represents the information set at time period t. For our analysis we

distinguish two time spans. The evaluation period starts at t = 1 + h and runs up to period

t = n + h. For these time periods we compare the forecasts Ŷ1+h|1, . . . , Ŷn+h|n to the actual

values Y1+h, . . . , Yn+h. The following assumption characterizes the process generating the series

to be forecasted by the information set It:

Assumption 1 (i) For each h = 1, 2, . . . the time series is decomposed as

Yt+h = µh,t + uh,t , (1)
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where µh,t = E(Yt+h|It) for h > 0, It denotes an increasing sigma-field and uh,t = φh(L)εh,t,

where φh(L) = 1 +φh,1L+φh,2L
2 + · · · is a lag polynomial with all roots outside the unit circle,∑∞

i=1 |φh,i| <∞ and εh,t is an i.i.d. white noise process with E(εh,t) = 0 and E(ε2
h,t) = σ2

h. (ii)

E|uh,t|2+δ < C <∞ for some δ > 0. (iii) E
(
n−1

∑n
t=1 µ

2
h,t

)
< C <∞ for all n.

For some of our results, the assumptions of a linear process with constant variances are not

necessary (see Remark 2 below) and may be relaxed at the cost of a more demanding notation

and asymptotic analysis.

Let µ = E(Yt) denote the unconditional mean. We are interested in testing the null hypoth-

esis

no information: E(Yt+h − Ŷt+h|t)2 ≥ E(Yt+h − µ)2, for h > h∗ and t ∈ {1, . . . , n}, (2)

which is tested against the alternative H1 : E(Yt+h−Ŷt+h|t)2 < E(Yt+h−µ)2. The null hypothesis

(2) asserts that there exists a maximum forecast horizon h∗ beyond which the process Yt is

unpredictable with respect to the information set It. If the forecast Yt+h is identical to the

conditional mean µh,t, then the hypothesis (2) is equivalent to the hypothesis:

constant mean: E(Yt+h|It) = µh,t = µ, for h > h∗ and t ∈ {1, . . . , n}, (3)

that is, the conditional expectation is constant within the evaluation sample.

In many practical situations it is not reasonable to assume that the forecast is identical to

some conditional expectation. In Section 3 we assume that the conditional expectation may

be contaminated by some noise ηt such that Ŷt+h|t = µh,t + ηt. Another possibility is that the

conditional expectation is specified as a parametric function involving a parameter vector θ,

which needs to be estimated (see Section 4). In such cases the null hypotheses (2) and (3) are

not equivalent as E(Yt+h − Ŷt+h|t)2 may be larger than E(Yt+h − µ)2 due to the variance of the

noise or the estimation error. Therefore, a test for a constant conditional mean may reject while

a test of the hypothesis (2) is not able to reject the no information hypothesis. In Section 3 we

show that if the conditional mean is contaminated with noise, then the constant mean hypothesis

(3) implies that the slope coefficient of the Mincer-Zarnowitz regression is equal to zero, whereas
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the no information hypothesis (2) refers to a slope not larger than 0.5. Whenever the forecast

Ŷt+h|t converges in probability to the conditional expectation µh,t (scenario 3 for model-based

predictions), then the no information hypothesis is asymptotically equivalent to the constant

mean hypothesis.

Another difficulty with hypothesis (2) is that µ is not observed and has to be replaced

by some estimate. Our preferred approach is to insert the mean of the evaluation sample

Y
h

= n−1
∑n

t=1 Yt+h. Another possibility is to replace µ by an uninformative benchmark Ŷ ∗t

known in period t, such as the recursive mean computed from observations prior to t or the

mean of a rolling window. The advantage of employing a recursive mean is that the estimation

error of Ŷ ∗t −µ tends to become smaller as t increases. The mean of a rolling window is suitable

for adopting the finite-sample framework of Giacomini and White (2006), see Section 5.

Using the uninformative benchmark Ŷ ∗t instead of the mean of the evaluation sample Y
h

requires more information (a longer history of the target variable), a stronger assumption (the

null hypothesis applies to a longer time span involving the risk of structural breaks) and addi-

tional choices (recursive vs. rolling mean, the choice of the estimation window size) to perform

the tests.3 Therefore, the tests based on Y
h

are more versatile and can easily be employed, for

example, when analyzing survey forecasts or comparing different forecasts (for instance, survey

vs. model, model with larger estimation sample vs. model with shorter estimation sample etc.).

However, if a forecaster is interested in the largest informative horizon of her model only, Ŷ ∗t

and Y
h

are both suitable choices, since the additional requirements related to Ŷ ∗t also apply to

the model-based forecast anyway.4

The maximum forecast horizon h∗ can be identified by sequentially applying a consistent

test for horizons h = 1, 2, ... until it is not rejected for the first time. Then, h∗ is identified as

the penultimate horizon tested. Provided that the tests are consistent, h∗ is correctly identified

with probability approaching 1−α as n→∞, where α denotes the significance level of the test.

Therefore α must tend to zero to achieve a consistent selection rule for h∗ (see Remark 6 below).

It should be noted that the forecast error variances are monotonically increasing with respect

3Moreover, since the uninformative benchmark is typically nested within the (potentially) informative forecast,
the “standard” Diebold and Mariano (1995) or encompassing tests are invalid.

4This case corresponds to scenario 3 and can be addressed using existing tests like the one proposed in Clark
and West (2007). Yet, to the best of our knowledge, these tests have never been applied sequentially to find the
largest informative horizon, as suggested in what follows.
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to the forecast horizon (see, for instance, Patton and Timmermann 2012, Section 2.2). Thus,

if a forecast is uninformative at some horizon h, it must also be uninformative for any higher

horizon. Therefore, we can stop the testing sequence as soon as the test does not reject for the

first time.

It is important to notice that there may not exist a finite maximum forecast horizon h∗.

If, for example, Yt+h is generated by an AR(1) process, then h∗ is infinity. In such cases our

tests address the question: “For how many time periods ahead does the forecast significantly

outperform the naive benchmark?” As for many other statistical tests, failing to reject the null

hypothesis does not imply that it is true.

3 Survey expectations

First we focus on forecasts that are not based on an (estimated) statistical model but result

from expectations of a sample of individuals. We consider two different scenarios: In scenario

1, the expectation is identical to some conditional mean, that is, Ŷt+h|t = µh,t = E(Yt+h|It).

For our test it is not important to specify and know the information set It. It is only required

that there exists some sequence of increasing information sets with It ∈ It+1. In scenario 2 the

conditional expectation is observed with noise such that Ŷt+h|t = µh,t + ηt. The error term ηt

may be due to reporting error or forecast disagreement, for instance.5

3.1 Tests without expectation error

First we analyse scenario 1 where the survey expectations are identical to the conditional ex-

pectation based on some information set It. In this setup the no information hypothesis (2)

and the constant mean hypothesis (3) are equivalent. To test the null hypothesis, the unknown

unconditional mean µ may be replaced by the in-sample mean Y
h

= n−1
∑n

t=1 Yt+h. Another

alternative is to employ some uninformative benchmark such as the recursive mean based on

5In the literature on survey expectations (e.g. Carlson and Parkin 1975) it is often assumed that individual
expectations are drawn from the distribution N (µh,t, σ

2
h). If mt is the number of survey participants in period t,

the error of the survey mean is distributed as ηt ∼ N (0, σ2
h/mt).
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T + t observations:

Y t =
1

T + t

t∑
s=−T+1

Ys . (4)

The test statistics are based on the mean-squared prediction error (MSPE) loss differentials:

δh0,t = u2
h,t − (Yt+h − Y

h
)2 (5)

δhT,t = u2
h,t − (Yt+h − Y t)

2 , (6)

where uh,t = Yt+h− Ŷt+h|t. Following Diebold and Mariano (1995, henceforth DM) we construct

two test statistics based on δh0,t and δhT,t. Notice that the forecast comparison δhT,t is based

on nested forecasts (see Clark and McCracken 2001) implying that under the null hypothesis

δh0,t
p→ 0 as n→∞ and δhT,t

p→ 0 as T →∞.

Theorem 1 The DM type test statistics are defined as

dm0,h =
1

ω2
h

n∑
t=1

δh0,t and dmT,h =
1

ω2
h

n∑
t=1

δhT,t (7)

where

ω2
h = lim

n→∞
E

(
1√
n

n∑
t=1

uh,t

)2

. (8)

Under the null hypothesis H0 : µh,t = µ for all t and h > h∗, Assumption 1, a recursive

forecasting scheme with T → ∞, n → ∞ and T/(T + n) → π ∈ [0, 1) the test statistics are

distributed as

dm0,h
d→ χ2 (9)

dmT,h
d→ 2

∫ 1

π

1

a
W (a)dW (a)−

∫ 1

π

1

a2
W (a)2da. (10)

where W (a) represents a standard Brownian motion defined on [0, 1].
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Remark 1 The test statistics (7) reveal some interesting differences to the original DM statistic.

First, the sum of the loss differential is not divided by
√
n. Second, the statistics involve the long-

run variance of uh,t instead of the square root of the long-run variance of the loss differentials.

Third, the limiting distribution is different from a standard normal distribution. This is due to

the nested nature of the forecast comparison. It is important to notice that for the test based on

the recursive mean, dmT,h, the limiting distribution depends on the fraction π. Critical values for

selected values of π are presented in the online appendix. In contrast, the limiting distribution

of the in-sample statistic dm0,h does not depend on π and is available from standard statistical

tables and software. Note that the critical values are obtained from the lower quantiles of the

χ2 distribution. For example, the critical value for a significance level of 0.05 is 0.0039.

Remark 2 Following Diebold and Mariano (1995), the long-run variance ω2
h can be estimated

as

ω̂2
h =

1

n

n∑
t=1

u2
h,t +

2

n

h−1∑
j=1

n∑
t=j+1

uh,tuh,t−j

It should be noted, however, that by applying a rectangular kernel, the estimated long-run

variance may be negative. In this case some other kernel should be applied that ensures a

positive estimator for the long-run variance (e.g. Newey and West 1987). Note also that the usual

estimators for the long-run variance are robust to heteroskedasticity. Accordingly, Assumption 1

may be generalized to allow for heteroskedastic processes when the statistic dm0,h is concerned.

On the other hand, the limiting distribution of the test statistic dmT,h depends on functionals

of Brownian motions that are affected whenever uh,t is heteroskedastic.

Remark 3 The statistic dmT,h employs T additional observations prior to the evaluation sam-

ple, requiring the assumption that the unconditional mean remains constant during the entire

time span of T + n time periods. In contrast, the statistic dm0,h is less vulnerable to structural

instability. Surprisingly, using more information does not imply that the statistic dmT,h is more

powerful than dm0,h, as documented in Section 5.
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3.2 Tests with expectation error

Let us now move on to scenario 2 where the forecast is contaminated with noise, i.e. Ŷt+h|t =

E(Yt+h|t|It) + ηt and ηt represents the noise. Our asymptotic analysis is based on the following

assumption:

Assumption 2 (i) The noise ηt is generated by a stationary process with E(ηt) = 0, E(η2
t ) = σ2

η,

E(η4
t ) < ∞ and long-run variance ω2

η = limn→∞ E
[
n−1

∑n
t=1 ηt

]2
< ∞. (ii) E(ηtµh,t) = 0 for

all t. (iii) Let ξt = ηtuh,t. For h > h∗ and all t we assume that E(ξt) = 0, E(ξt−jξt) = 0 for

|j| ≥ h , and E|ξt|2+δ <∞ for some δ > 0.

Again, the assumption that the expectation error is homoskedastic is made to facilitate the

proofs but is not necessary as the test statistic employs heteroskedasticity- and autocorrelation-

consistent (henceforth HAC) standard errors. Assumptions 2 (ii) and (iii) ensure that the noise

does not result in a systematic bias. The limitation to autocorrelation up to h− 1 lags in (iii) is

due to the fact that the HAC t-statistic assumes an MA(h− 1) process for uh,t. We can easily

relax this assumption to allow for some higher order correlation of ξt by employing a larger

truncation lag for the HAC correction.

Our test of the no information hypothesis (2) relies on the following lemma:

Lemma 1 Let Ŷt+h|t = µh,t + ηt. (i) The no information hypothesis (2) and Assumptions 1 – 2

imply βh = 0.5 in the regression:

Yt+h = αh + βhŶt+h|t + vt+h . (11)

To provide an intuitive explanation for this result we note that regression (11) is asymptotically

equivalent6 to running the forecast encompassing regression (cf. Elliott and Timmermann 2016,

6The only difference is that in (11) the implicit centering of the regressor is around Ŷ h = n−1 ∑n
t=1 Ŷt+h|t,

whereas the regressor in (12) is centered around Y
h
. Assumptions 1 – 2 imply that Y

h p→ µ and Ŷ h
p→ µ as

n→∞.
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pp. 393-397)

Yt+h = (1− βh)Y
h

+ βhŶt+h|t + ṽt+h

or Yt+h − Y
h

= βh(Ŷt+h|t − Y
h
) + ṽt+h . (12)

The representation (12) implies that for the hypothesis βh = 0.5 the optimal forecast combination

attaches equal weights to both forecasts. In other words none of these two forecasts is favored

under the null hypothesis. The relevant alternative assigns larger weight to the forecast Ŷt+h|t

than implied by the respective null hypothesis. Therefore, we consider one-sided tests, that is,

the null hypothesis βh = 0.5 is tested against βh > 0.5.

All tests of the parameters βh (and γh, see Remark 4) rely on the LM version of the (HAC)

t-statistic constructed as

τa =
1

ω̂a
√
n

n∑
t=1

at (13)

where ω̂2
a denotes some consistent estimator for the long-run variance of at. The specific form

of the sequence at is given in Theorem 2. The test statistic τa is asymptotically equivalent to

the ordinary HAC t-statistics of the coefficients βh in regression (11). The only difference of

the latter statistic is that for estimating the long-run variance of at, the hypothesized coefficient

βh = 0.5 is replaced by the estimated coefficient β̂h. Since β̂h is a consistent estimator for βh,

both versions of the tests are asymptotically equivalent under the null hypothesis.

It is interesting to consider the null hypothesis βh = 0 which refers to the constant mean

hypothesis (3). This null hypothesis implies that the forecast Ŷt+h|t and the actual value Yt+h

are uncorrelated. Since Assumption 2 supposes that ηt and Yt+h are uncorrelated, it follows from

the null hypothesis that µh,t and Yt+h are uncorrelated as well. Since E[(Yt+h − µ)(µh,t − µ)] =

E(µh,t − µ)2 we conclude that βh = 0 implies µh,t = µ and, therefore, the test of βh = 0

is equivalent to testing the constant mean hypothesis (3). In other words, βh = 0 makes a

statement about the conditional mean µh,t, whereas βh = 0.5 tests the hypothesis that the

MSPE of the forecast fails to be smaller than the unconditional variance.

Another implication of the null hypothesis βh = 0 is that there exists no linear transformation

of the forecast Ŷt+h|t that results in a smaller MSPE than the unconditional variance. If 0 <
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βh < 0.5, then the MSPE of the forecast Ŷt+h,t is larger than the unconditional variance of Yt+h,

but the linear transformation Ŷ ∗t+1|t = αh+βhŶt+1|t is an informative forecast. This is due to the

fact that whenever the R2 of the regression (11) is larger than zero, then the residual variance

is smaller than the variance of Yt+h. Note that the estimated linear transformation of Ŷ ∗t+h|t can

also be represented as a linear combination of Ŷt+h|t and the in-sample mean. Therefore, the

test for βh = 0 can be interpreted as a type of forecast encompassing test.

The following theorem summarizes the asymptotic distributions of the HAC t-statistics for

the no information hypothesis (2) and the constant mean hypothesis (3) based on the in-sample

mean Y
h
. The tests employing the recursive mean Y t are considered in Remark 4 and Appendix

A.

Theorem 2 (i) Under Assumptions 1 – 2, h > h∗, σ2
η > 0 and n → ∞ the HAC t-statistics

constructed as in (13) with

at =
[
Yt+h − Y

h − 0.5(Ŷt+h|t − Ŷ h)
]

(Ŷt+h|t − Ŷ h) for H0 : βh = 0.5

at =
(
Yt+h − Y

h
)

(Ŷt+h|t − Ŷ h) for H0 : βh = 0

in the regression (11) possess a limiting standard normal distribution, with Ŷ h = n−1
∑n

t=1 Ŷt+h|t.

The proof is relegated to Appendix B.

Remark 4 In Appendix A we consider analogous tests based on the recursive mean as uninfor-

mative benchmark. Essentially this version of the test replaces the constant µ by the recursive

mean Y t and employs the HAC t-statistic for the hypothesis γh = 0.5 or γh = 0 in the regression

Yt+h − Y t = γh

(
Ŷt+h|t − Y t

)
+ νt+h. (14)

It is interesting to note that this test is related to the adjusted MSPE statistic suggested by

Clark and West (2007) for nested forecast comparisons. Their statistic is given by

MSPE-adj =
2

n

n∑
t=1

(
Yt+h − Y t

) (
Ŷt+h|t − Y t

)
(15)
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which is essentially equal to the numerator of the OLS estimator of γh multiplied by the factor

2/n. As argued by Clark and West (2007) the adjustment accounts “for the noise associated

with the larger model’s forecast”, whereas in our framework the adjusted MSPE statistic is

equivalent to testing the hypothesis γh = 0 instead of γh = 0.5. As argued above, testing γh = 0

corresponds to the hypothesis that there does not exist a linear transformation of the forecast

Ŷt+h|t with a MSPE lower than the unconditional variance. Likewise, the linear transformation

can be regarded as a linear combination of Ŷt+h,t and the recursive sample mean.

Remark 5 The tests considered in Theorem 2 have two important characteristics. First, they

are valid even if the survey expectations are biased such that E(Ŷt+h|t) = µt+h,t + ψ, where

the bias ψ is constant over time. For instance, the survey expectations may be biased due

to an asymmetric loss function, but nevertheless informative in the sense that if the survey

participants expect an increase, the actual value is likely to increase as well. The invariance to

a possible bias is due to the fact that the regression constant takes into account any deviation

between the means of the forecast and the target variable. This is an important difference to

the test considered in Remark 4, where the uninformative benchmark is the recursive mean and

the resulting test statistic is not invariant to a forecast bias. Second, the tests do not run into

problems if the noise ηt is small, as the regressor is well behaved for all σ2
η > 0. The reason

is that the test statistic is invariant to the scaling of the regressor. Under the null hypothesis,

the long-run variance of the regressor Ŷt+h|t may become arbitrarily small as long as it remains

positive. In contrast, the proof of Theorem A.2 reveals that the regression t-statistic for γh = 0.5

and γh = 0 in Remark 4 involves an extra term due to Y t − µ that becomes relatively more

important the smaller σ2
η is. This additional term results in severe size distortions whenever σ2

η

is small. In empirical practice, the long-run variance of ηt is unknown and, consequently, the

effect of the additional term on the asymptotic distribution is not clear.

4 Model predictions

In scenario 3, we consider model-based forecasts that are characterized by a conditional mean

function E(Yt+h|It) = µh,t(θ), where the k × 1 vector θ represents the model parameters. To

economize on notation we do not make explicit the dependence of the forecast model on addi-
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tional variables. In practice the unknown parameter vector θ is replaced by consistent estimates

θ̂t based on the recursive sampling scheme {−T + 1, . . . , 0, 1, . . . , t}. Accordingly the estimated

conditional mean is denoted by Ŷt+h|t ≡ µh,t(θ̂t). To some extent this framework is related to

scenario 2 where the survey expectations are contaminated by noise, a situation that was anal-

ysed in the previous section. The crucial difference is, however, that the estimation error tends

to zero as T tends to infinity, whereas the variance of the expectation error ηt is assumed to be

constant. Specifically we make the following assumptions on the estimated forecast function:

Assumption 3 (i) Under the null hypothesis there exists some h∗ such that µh,t(θ) = µ for all

h > h∗. (ii) The parameters are estimated consistently with

a) θ̂0 − θ = Op(T
−1/2)

b) sup
t∈{1,...,n}

||θ̂t − θ̂0|| = Op

(√
n

T

)
for t = 1, 2, . . . , n

where θ̂0 denotes the estimator based on time periods {−T + 1, . . . ,−1, 0}.

(iii) Let Dh,t(θ) = ∂µh,t(θ)/∂θ and Dh(θ) = n−1
∑n

t=1Dh,t(θ). For all θ∗i ∈ [θi − ε, θi + ε] with

ε > 0 and θ∗ = (θ∗1, . . . , θ
∗
k)
′ it holds that

1

n

n∑
t=1

||Dh,t(θ
∗)−Dh(θ∗)|| p→ D with 0 < D <∞

E||Dh,t(θ
∗)uh,t||2+δ <∞ for some δ > 0 and all t.

Part (i) refers to the constant mean hypothesis (3). Since for all t ∈ {1, . . . , n} we have

µt+h|t(θ̂t)− µt+h|t(θ)
p→ 0 as T →∞, this null hypothesis is asymptotically equivalent to the no

information hypothesis (2). Therefore we focus on the hypothesis βh = 0 which results in more

powerful tests than testing βh = 0.5. Part (ii) a) supposes the usual (parametric) convergence

rate of the estimation error in the estimated parameter vector θ̂0 based on the pre-evaluation

sample t ∈ {−T + 1, . . . , 0}, whereas (ii) b) limits the variation of estimators in the recursive

estimation scheme within the evaluation sample. Assumption 3 (iii) ensures the existence of a

central limit theorem.

For illustration, consider the forecast based on a simple regression model with Ŷt+h|t = β̂tXt,
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where β̂t is the least squares estimator based on the T + t time periods {−T + 1, . . . , t}. If Xt

is stationary, then β̂0 − β = Op(T
−1/2) and Assumption 2 (ii) a) is fulfilled. Furthermore, it is

not difficult to show7 that β̂t − β̂0 = Op
(√
t/T

)
and, because t ≤ n, Assumption 3 (ii) b) is

satisfied. Furthermore, Dh,t(θ) = Xt and, assuming stationary regressors with positive variance,

Assumption 3 (iii) is fulfilled as well. It should also be noted that this assumption rules out

forecasts based on non-parametric estimators that typically involve lower convergence rates. In

such cases T must grow faster to achieve a similar accuracy of the asymptotic approximations.

In an earlier version of this paper (Breitung and Knüppel 2018) we analyzed the asymptotic

properties of a DM type test dm0,h considered in Theorem 1 above. Specifically we showed

that the estimation error of such a test can be ignored if T → ∞, n → ∞ and n/T → 0.

Unfortunately, in typical sample sizes the additional term due to the estimation error remains

large relative to the critical value and, therefore, the size distortions are substantial and disappear

very slowly with increasing T . We therefore do not consider the test statistics dm0,h or dmT,h

in this section. Rather we focus on the regression variant by testing the hypothesis βh = 0 in

(11).

In our asymptotic analysis we first focus on the case that n/T tends to zero. Although

in empirical practice n/T is often in the range 0.2 − 0.5, say, the test performs nevertheless

reasonably well, even for sizable values of n/T . Note that the test statistic has a standard

normal limiting distribution regardless of the fraction n/T , if the forecast were computed from

a fixed forecasting scheme, where the estimated parameter values from period t = 0 are used

for estimating the conditional mean function. Since the difference θ̂t − θ̂0 is typically small (see

Assumption 3 (ii) b) the difference between applying the recursive scheme involving θ̂t and the

fixed scheme θ̂0 is typically small if T is reasonably large. Denote the respective forecast based

on the fixed forecasting scheme as Ŷ 0
t+h|t = µh,t(θ̂0), where θ̂0 denotes the estimate of θ using

information from t ∈ {−T + 1, . . . , 0}. Under the null hypothesis Assumption 3 implies

E
[
(Yt+h − Y

h
)Ŷ 0
t+h|t

]
= E

[
(uh,t − uh)Ŷ 0

t+h|t

]
= 0

with uh = n−1
∑n

t=1 uh,t, and it follows that the HAC t-statistic of βh = 0 in the regression (11)

possesses a standard normal limiting distribution regardless of the estimation error in Ŷ 0
t+h|t.

7See the working paper version of this paper, Breitung and Knüppel (2018).
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This is due to the fact that the estimation error Ŷ 0
t+h|t−µh,t(θ) and uh,t−uh are uncorrelated. In

a recursive forecasting scheme the difference between Ŷt+h|t and Ŷ 0
t+h|t introduces a correlation

with uh which is due to the overlap of information employed in Ŷt+h|t and Y
h

(resp. uh). This

correlation gives rise to a negative bias that disappears as n/T → 0. In practice, this bias is

relatively small and results in a test that tends to be slightly conservative for sizable values of

n/T .8 The details are provided in the proof of the following theorem:

Theorem 3 Under Assumptions 1 and 3, a recursive forecasting scheme, h > h∗, T → ∞,

n→∞ and n/T → 0 the HAC t-statistic (13) for testing the hypothesis βh = 0 with

at =
(
Yt+h − Y

h
)

(Ŷt+h|t − Ŷ h)

in the regression (11) possesses a standard normal limiting distribution, with Ŷ h = n−1
∑n

t=1 Ŷt+h|t.

The proof is relegated to the online appendix.

Remark 6 As mentioned in Section 2, a consistent selection rule for the maximum forecast

horizon h∗ requires that the size of the test tends to zero as n→∞. One possibility is to apply

a critical value of the form κ log(n) with some κ > 0. This choice is motivated by the Bayesian

information criterion. It is not difficult to see that under the alternative τa = Op(n
1/2) such that

for h ≤ h∗ we obtain limn→∞ P (τa > κ log(n)) = 1, whereas for h > h∗ we have τa = Op(1) and

limn→∞ P (τa > κ log(n)) = 0. Thus the decision rule based on the last rejection in the sequence

of tests with h = 1, 2, . . . is weakly consistent. For instance, letting n = 27 the critical value

1
2 log(27) = 1.65 is similar to the one-sided 0.05 critical value of a standard normal distribution.

This suggests setting κ = 0.5 in order to obtain a selection rule roughly equivalent to usual

hypothesis testing when n is small. The same considerations apply to the tests considered in

Section 3.

8Calhoun (2016) suggests a related approach for sidestepping the problems due to the overlap of the two
forecasts. He considers the test statistic proposed by Clark and West (2007), where the model forecast is computed
following a rolling window forecasting scheme, whereas the benchmark is computed recursively.
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5 Small sample properties

To compare the small sample properties of the proposed test statistics in alternative forecasting

scenarios, we conduct a number of Monte Carlo experiments. As the main conclusions are robust

against variants of the forecasting model and the forecast horizon we focus on the data-generating

process (DGP) given by Yt = a+ bXt−1 + εt, where εt and Xt are independent standard normal

random variables. For b = 0 the time series is unpredictable at all forecast horizons h, whereas

for b 6= 0 the forecast Ŷt+1|t = a+ bXt is informative. This forecast corresponds to scenario 1 in

Section 3 where we assume that the forecast is identical to the conditional mean of the process

given the information It = {Xt, Xt−1, . . .}. In scenario 2 we assume that the forecast from

scenario 1 is contaminated by the noise term ηt, which is again an independently and normally

distributed random variable with E(ηt) = 0 and E(η2
t ) = σ2

η.

Table 1 compares the actual sizes of the test procedures proposed in Theorems 1 and 2. The

upper panel reports the rejection rates for b = 0, according to the constant mean hypothesis

(3) for scenario 1, i.e. in the case of no noise (ση = 0). It turns out that the size of the tests

considered in Theorem 1 is very accurate for all combinations of n and T . The second panel

depicts the actual sizes for the tests if the forecasts are contaminated by noise. The findings

suggest that the in-sample test dm0 ≡ dm0,1 is quite sensitive to the noise whereas the test

dmT ≡ dmT,1 based on the recursive mean as the benchmark is more robust at least if the noise

is as small as ση = 0.01. In contrast, the tests that allow for noise perform well if the noise is

large, but the test for γ ≡ γ1 = 0 reveals severe size distortions in the case with very small noise

(ση = 0.001). This is due to the fact that with small noise, the test statistic is dominated by

a term with a nonstandard distribution that is related to the recursive mean Y t − µ. The test

for β ≡ β1 = 0, however, performs well even for very small noise. The same holds for the test

for β = 0.5 in the situation where b = ση holds, such that the noisy forecasts are as accurate

as forecasts based on the unconditional mean and the no information hypothesis holds. The

test for γ = 0.5 again suffers from pronounced size distortions unless ση is large. Yet, these

distortions are not as severe as with the test for γ = 0 in the case with b = 0.

[Table 1 about here.]

To study the relative power of the tests we let b = 0.2. We only present results for the
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empirically relevant scenario 2, i.e. for forecasts with noise, and we only consider cases where

the tests show reliable size properties in Table 1. The results presented in the upper panel of

Table 2 indicate that the in-sample version of the DM type test is more powerful than the test

with the recursive mean as a benchmark whenever the fraction n/T is larger than 0.1. If T gets

very large, however, the test dmT outperforms the in-sample version dm0. Compared to the

tests of Theorem 2 (with noise) it turns out that the robustness to noise comes at the expense of

a slight loss of power. Note that the null hypothesis of the tests of Theorem 1 implies µ1,t = µ.

This corresponds to the null hypothesis β = 0 in the tests of Theorem 2. For large n both tests

have similar power, but for n as small as 25 or 50 the corresponding test in Theorem 2 (β = 0)

is substantially less powerful.

[Table 2 about here.]

Let us now turn to scenario 3, i.e. to the tests for model-based forecasts. In our example, the

forecasts are obtained as Ŷt+1|t = ât + b̂tXt, where (ât, b̂t) refers to the OLS estimates based on

time periods {−T + 1, . . . , t}. Our findings are summarized in Table 3. The results presented in

the upper panel report the actual sizes of the tests. It turns out that the tests are conservative

for all combinations of n and T . The size distortions appear to depend on the fraction n/T . For

n/T < 1, as often encountered in practice, the size distortions tend to be rather small. For a

nominal size of 0.05, the actual size is usually in the range 0.02 – 0.04.9 The power of the tests is

presented in the lower half of Table 3. Note that the test statistics for model-based forecasts are

similar to the tests for survey forecasts with noise; the only difference is how the forecasts relate

to the conditional expectation µh,t = E(Yt+h|Xt, Xt−1, . . .). In Theorem 2 the noise is assumed

to be uncorrelated with µh,t and the variance does not depend on n or T . In contrast, the size of

the “noise” that is due to the estimation error is a function of n and T and it is not uncorrelated

with µh,t. To get an idea of the size of the estimation error we calculated the standard deviation

of the estimated conditional mean function as 0.1 for T = 100 which corresponds to the case

with large noise in Table 1. The important difference is, however, that the estimation error

is not independent of the sample mean Y
h
, which tends to result in moderate size distortions

unless n/T is very small.

9In simulations not reported here, we tried out values of n/T as large as 40, but the actual size never dropped
below 0.01.
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[Table 3 about here.]

We finally consider the test procedure of Giacomini and White (2006). This test involves

a rolling window forecasting scheme with fixed window size B for the forecast model and the

benchmark, and it simply tests if their loss differential denoted by d̃mB,1 equals zero.10 The

left panel of Table 4 reports the actual sizes of this test for various window sizes. As the test

is based on the small sample comparison of the losses, the coefficient b is calibrated such that

under the null hypothesis the expected losses are identical. The corresponding values of b are

presented in the second column of Table 4, and the note contains details about their calibration.

From the simulation results it turns out that for small evaluation samples (n = 25), the test

is slightly oversized whereas for n ≥ 100 the test appears to be slightly conservative. This

corresponds to the results of McCracken (2019) who found that the Giacomini-White test tends

to be conservative for large n. With respect to the power of the test, we observe that – as

expected – the power of the test increases gradually with B. Compared to the encompassing

tests proposed in Theorem 3 we observe a severe loss of power. For example, while the Giacomini-

White test rejects in 23 percent of the cases if n = 100 and B = 250, the encompassing test

based on γ rejects in at least 60 percent of the cases if T ≥ 250 and n = 100.

[Table 4 about here.]

In the online appendix we present additional Monte Carlo experiments for multiple forecast

horizons that by and large corroborate our results for h = 1.

6 Empirical results

For the empirical application of the tests, we employ quarterly survey forecasts collected by

Consensus Economics. The mean of the forecasts across all panelists is known to be a very

accurate forecast, as documented, for example, by Ang, Bekaert, and Wei (2007) for inflation

forecasts. While survey forecasts are commonly evaluated ignoring the potential presence of any

type of noise (see Clements 2019, chap 4.1), we are going to focus on the tests for scenario 2, i.e.

10This test is loosely related to scenario 2, because the parameter estimation error resulting from the rolling
window is stationary and can be regarded as a form of autocorrelated noise. However, in contrast to all three
scenarios considered, the uninformative benchmark is likewise contaminated by autocorrelated noise even as
n→∞.
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on forecasts with noise. Therefore, we employ the tests for βh = 0 and γh = 0, and for βh = 0.5

and γh = 0.5. We do so because disagreement across forecasters combined with entry and exit

of forecasters inevitably leads to some form of noise.11

We consider quarterly forecasts of quarter-on-quarter (q-o-q) rates of real GDP growth and

year-on-year (y-o-y) inflation rates of the consumer price index (CPI).12 The quarterly forecasts

are usually gathered in the first half of the last month of a quarter. Therefore, the forecasters

can be expected to have information about the variable of interest in the current quarter, i.e. for

the forecast (resp. nowcast) horizon h = 0. Given the y-o-y definition, and denoting the forecast

horizon for the current quarter, i.e. for the nowcast with h = 0, we can expect that h∗ ≥ 2

for CPI inflation. This is because knowledge about past values of the price index enables the

forecasters to mechanically produce forecasts which have lower MSPEs than the unconditional

mean up to h = 2.13 The countries under study are the US, the euro area, Japan, Germany,

the UK, Italy, Canada, and France. Since, in each quarter, Consensus Economics also provides

data for recent quarters, we can employ this real-time data for the evaluation of the forecasts.

We use second vintages for both variables.

Considering forecasts for up to h = 6 quarters ahead, our evaluation sample mostly starts

in the second quarter of 2001 and ends in the second quarter of 2018, yielding a sample size

of n = 69. Only for the euro area, the sample starts in the second quarter of 2004, leading to

n = 57. For the recursive mean serving as a benchmark forecast, the estimation begins with the

T = 20 observations before the start of the evaluation sample.14

The empirical maximum forecast horizons ĥ∗ determined by the tests are shown in Table 5.

The sequential p-values of the tests giving rise to these values of ĥ∗ are displayed in Figures 1

to 4. These figures also contain the ratios of the survey forecasts’ MSPEs to the MSPEs of the

respective benchmark forecasts.

11Results of the tests dm0,h, dmT,h, and the test of Giacomini and White (2006) for real GDP growth in the
US can be found in the online appendix.

12For the UK, we use forecasts of the retail price index (RPI) because of their larger sample size.
13The year-on-year rate for h = 2 equals the sum of the quarter-on-quarter rates for h = −1, 0, 1, 2. Using the

observed quarter-on-quarter rate for h = −1 and the unconditional mean as the forecast of the quarter-on-quarter
rates for the latter three horizons yields an MSPE for the year-on-year rate forecast for h = 2 which is lower
than the variance of the year-on-year rates by construction. If information on the current quarter is available, the
maximum forecast horizon should thus be equal to or larger than 3.

14The recursive and the in-sample mean employ the same second-vintage realizations as used for the forecast
evaluations.
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[Table 5 about here.]

Notably, for GDP growth, ĥ∗ is always smaller than the largest forecast horizon of h = 6.

The tests for βh = 0 and γh = 0 mostly yield results between ĥ∗ = 1 and ĥ∗ = 3 with a median

result of about 2. For 5 out of 8 countries, both tests give identical results, while for the US,

the euro area, and Japan, ĥ∗ is 1 or 2 quarters larger when γh = 0 is used instead of βh = 0.

The findings of Section 5 suggest that this may be due to size distortions of the test for γh = 0

in the scenario with small noise.

For many countries, the tests for βh = 0.5 and γh = 0.5 stop rejecting the null hypotheses

about 1–2 quarters before their respective counterparts which test for equality to 0. ĥ∗ mostly

lies in the range 0–2. However, for Japan, the null hypotheses cannot even be rejected for the

nowcast. The results of both tests coincide for 4 out of 8 countries. For 3 countries, the test for

γh = 0.5 yields a value of ĥ∗ which exceeds the value obtained with the test for βh = 0.5 by 1

quarter, while for Italy, the opposite is observed.

To sum up, the survey forecasts for GDP often are not significantly more accurate than

simple unconditional mean forecasts except at very short horizons. To be more precise, using

the no information hypothesis, most real GDP growth forecasts turn out not to be informative

for more than 1 quarter ahead. Yet, also at larger horizons, a linear transformation of the survey

forecasts would often yield lower MSPEs than the unconditional means. In the latter sense, i.e.

based on the constant mean hypothesis, the survey forecasts for GDP growth are informative

for 2–3 quarters ahead in the majority of cases.

[Figure 1 about here.]

[Figure 2 about here.]

For CPI inflation, we find larger values of ĥ∗ as expected due to the y-o-y definition. Con-

cerning the tests for βh = 0 and γh = 0, ĥ∗ equals 3 or 4 in most cases. However, for Japan

and Italy, the tests even reject for the last horizon, implying that ĥ∗ at least equals 6. This

result might be related to large changes of the value-added tax rate (VAT) which are commonly

announced well in advance.15 For 5 out of 8 countries, both tests again give identical results,

15For instance, the Japanese VAT rate increased from 5% to 8% in the second quarter of 2014. This pre-
announced increase equals about 3 times the standard deviation of Japanese CPI inflation and, thus, leads to
extremely large forecast errors of the benchmark forecasts, but not of the survey forecasts.
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while the test for γh = 0 yields larger values of ĥ∗ for 3 countries. For the US and France ĥ∗

equals 4 instead of 3. For Canada, ĥ∗ at least equals 6 if the test of γh = 0 employed, which is

considerably larger than ĥ∗ = 3 as obtained with the test of βh = 0. As Figures 3 and 4 show,

Canada’s ratios of the survey forecasts’ MSPEs to the MSPEs of the respective benchmark fore-

casts are essentially flat and very close to 1 for h ≥ 4. This suggests that small differences in

the testing approaches can lead to relatively large differences concerning ĥ∗.

When the tests for βh = 0.5 and γh = 0.5 are employed, we again find values of ĥ∗ that are

often 1–2 quarters smaller than when using βh = 0 and γh = 0. While ĥ∗ continues to equal 3

or 4 in the majority of cases, values as small as 2 occur for the US, Germany and the UK, and

ĥ∗ ≥ 6 is only observed for Italy. Both tests give identical results for 6 out of 8 countries, while

for the US and Germany, the test for γh = 0.5 yields ĥ∗ = 3 instead of ĥ∗ = 2 with the test for

βh = 0.5.

Thus, the survey forecasts for CPI inflation mostly outperform unconditional mean forecasts

only at horizons where the y-o-y definition gives the survey forecasts an informational advantage.

Only rarely do the tests find more accurate survey forecasts for ĥ∗ > 3. For several countries,

however, employing linear transformations of the survey forecasts would again yield lower MSPEs

than employing the unconditional means. Accordingly, based on the constant mean hypothesis,

the survey forecasts for CPI inflation are usually found to be informative for 3–4 quarters ahead.

[Figure 3 about here.]

[Figure 4 about here.]

7 Conclusions

This paper develops a forecast evaluation framework for testing the null hypothesis that the

forecast at some pre-specified horizon h is uninformative. We consider three different scenarios:

In the first scenario the forecast is identical to some conditional mean whereas in the second

scenario some noise is superimposed on the conditional mean. The third scenario relates to

model-based forecasts where the parameters of the model are estimated in a recursive manner.

For the first scenario a Diebold-Mariano type test statistic is proposed that performs very well
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in our Monte Carlo experiments. For the empirically more realistic second and third scenario

we adopt the encompassing principle that yields simple regression-based test statistics.

While all regression-based tests work reasonably well in the majority of cases considered, the

tests using the recursive mean as a benchmark (tests based on γh) can suffer from non-negligible

size distortions in certain situations. They also require more information than the tests based

on the in-sample mean (tests based on βh). Furthermore, we think that testing for a coefficient

equal to zero is more appealing than testing for 0.5. First, the former test has more power and,

second, it is invariant to linear transformations of the forecast and therefore, for instance, robust

to forecast bias.

In the empirical analysis, we apply our tests to macroeconomic forecasts from the survey of

Consensus Economics. Our results suggest that forecasts of macroeconomic key variables are

hardly informative beyond 2–4 quarters ahead. Our results confirm earlier findings from the

macroeconomic forecasting literature which were based on less rigorous approaches. The main

contribution of our work is to provide statistical tests that allow the forecaster to assess the

maximum forecast horizon of the forecast of interest.

It is worth mentioning that our testing approach (as any other empirical methodology) has

two major limitations. First, the estimated maximum forecast horizon may be biased downwards

whenever the power of the test is poor (e.g. for a small number of forecasts in the evaluation

sample). Second, the estimated maximum forecast horizon depends on the approach that gen-

erates the forecasts. If the approach fails to exploit important information it may produce

uninformative forecasts, while a richer forecasting procedure may result in informative fore-

casts. Accordingly, any qualification of the informative content is conditional on the forecasting

approach.

22



References

Andrews, D. W. K. (1991): “Heteroskedasticity and Autocorrelation Consistent Covariance

Matrix Estimation,” Econometrica, 59(3), 817–858.

Ang, A., G. Bekaert, and M. Wei (2007): “Do macro variables, asset markets, or surveys

forecast inflation better?,” Journal of Monetary Economics, 54(4), 1163–1212.
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Appendix A: Tests against a noninformative benchmark

In this appendix we analyse the tests invoking the recursive mean Y t as uninformative bench-

mark. As noted in Remark 4, this hypothesis can be tested by running the regression

Yt+h − Y t = γh

(
Ŷt+h|t − Y t

)
+ νt+h, (16)

where Y t denotes the recursive mean of the expanding sample {Y−T+1, . . . , Yt}. The LM version

of the HAC test statistic is constructed as in (13), where

at =
[
Yt+h − Y t − 0.5(Ŷt+h|t − Y t)

]
(Ŷt+h|t − Y t) for H0 : γh = 0.5

at =
(
Yt+h − Y t

)
(Ŷt+h|t − Y t) for H0 : γh = 0.

The following theorem presents the limiting null distribution of this test.

Theorem A.2 Under Assumptions 1 – 2, h > h∗ and σ2
η > 0 the HAC t-statistics constructed

as in (13) possess a limiting standard normal distribution as n→∞ and T →∞.

Proof: See online appendix.

Finally we note that the test of hypothesis γh = 0 in (16) is equivalent to the adjusted MSPE

test for nested forecast comparisons proposed by Clark and West (2007). Clark and McCracken

(2001) showed that under the conditions of Theorem 3 (in particular n/T → 0) the HAC

t-statistic possesses a standard normal limiting null distribution, whereas the test is slightly

conservative whenever n/T is substantial.

Appendix B: Proofs of the main results

Proof of Theorem 1:

(i) For the first statistic dm0,h we have

δh0,t = (Yt+h − µ)2 − (Yt+h − Y
h
)2

= u2
h,t − (uh,t − uh)2

= 2uh,tuh − u2
h

n∑
t=1

δh0,t = nu2
h

where uh = n−1
∑n

t=1 uh,t. This in turn yields

1

ω2
h

n∑
t=1

δh0,t
d→ χ2.
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(ii) Under the null hypothesis we have for the statistic dmT,h

1

ω2
h

n∑
t=1

δhT,n =
1

ω2
h

n∑
t=1

{
(Yt+h − µ)2 −

[
Yt+h − µ− (Y t − µ)

]2}
= − 1

ω2
h

n∑
t=1

(Y t − µ)2 +
2

ω2
h

n∑
t=1

(Yt+h − µ)(Y t − µ)

= − 1

ω2
h

n∑
t=1

(T + n)(Y t − µ)2 1

T + n
+

2

ω2
h

n∑
t=1

[√
T + n(Y t − µ)

] [ 1√
T + n

(Yt+h − µ)

]
⇒ −

∫ 1

π

1

a2
W (a)2da+ 2

∫ 1

π

1

a
W (a)dW (a)

where ⇒ denotes weak convergence with respect to the associated probability measure, π =

T/(T + n), and

√
T + n (Y t − µ) =

T + n

T + t

(
t−h∑

s=−T−h+1

uh,s

)
√
T + n

=
T + n

T + t

(
t−1∑

s=−T+1

uh,s

)
√
T + n

+Op[(T + n)−1/2]

⇒ ωh
a
W (a)

with a = (T + t)/(T + n) and W (a) is a standard Brownian motion.

Proof of Lemma 1:

Under the null hypothesis and Assumptions 1 and 2 we have

E(Ŷ h) = E(Y
h
)− E

(
n−1

n∑
t=1

uh,t

)
+ E

(
n−1

n∑
t=1

ηt

)
= µ

and the least-squares estimator of βh in (11) is a consistent estimator of

βh =

lim
n→∞

1
n

n∑
t=1

E
[(
Ŷt+h|t − µ

)
(Yt+h − µ)

]
lim
n→∞

1
n

n∑
t=1

E
(
Ŷt+h|t − µ

)2
.
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From

n∑
t=1

E
[
(Yt+h − Ŷt+h|t)2 − (Yt+h − µ)2

]
=

n∑
t=1

E
{[

(Yt+h − µ)− (Ŷt+h|t − µ)
]2
− (Yt+h − µ)2

}

=

n∑
t=1

E
[
(Ŷt+h|t − µ)2 − 2(Yt+h − µ)(Ŷt+h|t − µ)

]

= E

(
n∑
t=1

(Ŷt+h|t − µ)2

)1− 2

E
(

n∑
t=1

(Yt+h − µ)(Ŷt+h|t − µ)

)
E
(

n∑
t=1

(Ŷt+h|t − µ)2

)


= (1− 2βh)

n∑
t=1

E
[
(Ŷt+h|t − µ)2

]
it follows that the null hypothesis (2) is equivalent to testing βh = 0.5 in regression (11).

For testing the same hypothesis based on the recursive mean as the uninformative benchmark

we define

γh =

n∑
t=1

E
[
(Yt+h − Y t)(Ŷt+h|t − Y t)

]
n∑
t=1

E
[
(Ŷt+h|t − Y t)2

] .

Using

n∑
t=1

E
[
(Yt+h − Ŷt+h|t)2 − (Yt+h − Y t)

2
]

=
n∑
t=1

E
{[

(Yt+h − Y t)− (Ŷt+h|t − Y t)
]2
− (Yt+h − Y t)

2

]

=

n∑
t=1

E
[
(Ŷt+h|t − Y t)

2 − 2(Yt+h − Y t)(Ŷt+h|t − Y t)
]

= (1− 2γh)

n∑
t=1

E
[
(Ŷt+h|t − Y t)

2
]
.

it follows that under Assumptions 1 – 2, the null hypothesis implies γh = 0.5.
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Proof of Theorem 2:

Under the null hypothesis (2) and Assumptions 1 – 2 we have

1

n

n∑
t=1

E
[
(Yt+h − Ŷt+h|t)2 − (Yt+h − µ)2

]
=

1

n
E

[
n∑
t=1

(uh,t − ηt)2 − (µh,t − µ+ uh,t)
2

]
= σ2

η − σ2
µ

where σ2
η = E(n−1

∑n
i=1 η

2
t ) and σ2

µ = E[n−1
∑n

i=1(µh,t−µ)2]. It follows that the null hypothesis

(2) implies σ2
η ≥ σ2

µ.

The test statistic for βh = 0.5 is constructed by using

at = (Yt+h − Y
h
)(Ŷt+h|t − Ŷ h)− 1

2
(Ŷt+h|t − Ŷ h)2

= (µ̃h,t + ũh,t)(η̃t + µ̃h,t)−
1

2
(η̃t + µ̃h,t)

2

=
1

2
(µ̃2
h,t − η̃2

t ) + ũh,t(η̃t + µ̃h,t),

where a tilde above the symbol indicates a mean adjusted series, e.g. µ̃h,t = µh,t−n−1
∑n

s=1 µh,s.

Under the hypothesis σ2
η = σ2

µ we have

E

(
1√
n

n∑
t=1

(
µ̃2
h,t − η̃2

t

))
= 0.

Assumption 1 and Assumption 2 (ii) imply that uh,t is uncorrelated with µn,t and ηt. Thus

E

(
1√
n

n∑
t=1

ũh,tµ̃h,t

)
= E

(
1√
n

n∑
t=1

uh,tµh,t

)
+ E

(√
n uhµh

)
= Op(n

−1/2)

E

(
1√
n

n∑
t=1

ũh,tη̃t

)
= E

(
1√
n

n∑
t=1

uh,tηt

)
+ E

(√
n uhη

)
= Op(n

−1/2),

where uh = n−1
∑n

t=1 uh,t = Op(n
−1/2), µh = n−1

∑n
t=1(µh,t − µ) = Op(n

−1/2), and η =

n−1
∑n

t=1 ηt = Op(n
−1/2). It follows that

lim
n→∞

E

(
1√
n

n∑
t=1

at

)
= 0.

Assumptions 1 and 2 ensure that the sample covariance n−1
∑n

t=j+1 atat−j converges in proba-

bility to its expectation for any finite j and provide the requirements for the Lindeberg-Feller

central limit theorem. Therefore the test statistic constructed as in (13) possesses a standard

normal limiting distribution.
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For the null hypothesis βh = 0 and Assumptions 1 and 2 we obtain

n∑
t=1

at
1

n

n∑
t=1

E
[
Ŷt+h|t(Yt+h − µ)

]
=

1

n

n∑
t=1

E [(ηt + µh,t)(µh,t − µ+ uh,t)]

=
1

n

n∑
t=1

E [µh,t(µh,t − µ)] = 0

which implies µh,t = µ, that is, the constant mean hypothesis (3). Under the null hypothesis we

therefore have

n∑
t=1

(Yt+h − Y
h
)(Ŷt+h|t − Ŷ h) =

n∑
t=1

ũh,tη̃t

Using previous results for the hypothesis βh = 0.5 it follows immediately that

lim
n→∞

E

(
1√
n

n∑
t=1

at

)
= 0

and the sample covariances of at converge to their expectations. Accordingly, the test statistic

has a standard normal limiting distribution.
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Figure 1: Test results for quarter-on-quarter growth rates of real GDP using the in-sample mean
as the benchmark. The number on the x-axis denotes the forecast horizon in quarters with 0 being the
nowcast. The dotted line is at 0.05, corresponding to the significance level of the tests. The dashed line
is at 1. The solid line indicates the ratio of the Consensus forecasts’ MSPE to the variance. All tests are
one-sided. The respective values of ĥ∗ are displayed in Table 5.
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Figure 2: Test results for quarter-on-quarter growth rates of real GDP using the recursive mean
with T = 20 initial observations as the benchmark. The solid line indicates the ratio of the Consensus
forecasts’ MSPE to the MSPE of the recursive mean forecasts. For further explanations, see Figure 1.
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Figure 3: Test results for year-on-year growth rates of the CPI (the RPI in the case of the UK) based
on the in-sample mean as the benchmark.. For further explanations, see Figure 1.
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Figure 4: Test results for year-on-year growth rates of the CPI (the RPI in the case of the UK) using
the recursive mean with T = 20 initial observations as the benchmark. For further explanations, see
Figures 1 and 2.
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Table 1: Actual size of tests of Theorems 1 (w/o noise) and 2 (w/ noise)

n 25 50 100 250 500 25 50 100 250 500 25 50 100 250 500

b = 0

ση = 0

dm0

0.05 0.05 0.05 0.05 0.05

dmT
T = 50 0.06 0.05 0.05 0.05 0.05
T = 100 0.06 0.05 0.05 0.05 0.05
T = 250 0.06 0.05 0.05 0.05 0.05
T = 500 0.05 0.05 0.05 0.05 0.05
T = 1000 0.07 0.05 0.05 0.05 0.05

ση = 0.001 ση = 0.01 ση = 0.1

dm0 dm0 dm0

0.05 0.05 0.05 0.06 0.07 0.10 0.12 0.13 0.16 0.18 0.22 0.22 0.20 0.15 0.10

dmT dmT dmT
T = 50 0.06 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.06 0.05 0.09 0.08 0.08 0.07 0.05
T = 100 0.06 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.06 0.05 0.11 0.10 0.09 0.08 0.05
T = 250 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.05 0.15 0.13 0.11 0.08 0.06
T = 500 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.05 0.06 0.06 0.19 0.17 0.14 0.10 0.06
T = 1000 0.06 0.05 0.05 0.05 0.05 0.07 0.05 0.06 0.06 0.05 0.26 0.21 0.17 0.12 0.07

β = 0 β = 0 β = 0
0.06 0.06 0.06 0.05 0.05 0.07 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.05

γ = 0 γ = 0 γ = 0
T = 50 0.20 0.24 0.30 0.44 0.58 0.20 0.23 0.29 0.42 0.54 0.13 0.15 0.16 0.19 0.20
T = 100 0.17 0.19 0.23 0.34 0.44 0.15 0.18 0.22 0.30 0.39 0.10 0.11 0.12 0.15 0.15
T = 250 0.13 0.15 0.17 0.24 0.30 0.11 0.13 0.15 0.21 0.26 0.08 0.08 0.08 0.10 0.10
T = 500 0.11 0.12 0.14 0.19 0.23 0.10 0.10 0.11 0.15 0.19 0.07 0.07 0.07 0.08 0.09
T = 1000 0.10 0.10 0.12 0.15 0.18 0.08 0.08 0.09 0.12 0.15 0.06 0.06 0.06 0.07 0.07

b = ση

ση = 0.001 ση = 0.01 ση = 0.1

β = 0.5 β = 0.5 β = 0.5
0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.06 0.05 0.06 0.06 0.05 0.05 0.05

γ = 0.5 γ = 0.5 γ = 0.5
T = 50 0.14 0.14 0.15 0.18 0.20 0.13 0.14 0.15 0.16 0.17 0.08 0.08 0.08 0.09 0.08
T = 100 0.12 0.13 0.14 0.16 0.18 0.11 0.11 0.13 0.14 0.15 0.07 0.07 0.08 0.08 0.08
T = 250 0.11 0.11 0.12 0.14 0.16 0.09 0.09 0.10 0.11 0.12 0.07 0.06 0.06 0.07 0.06
T = 500 0.09 0.10 0.11 0.12 0.14 0.08 0.08 0.08 0.10 0.10 0.06 0.06 0.06 0.06 0.06
T = 1000 0.09 0.09 0.10 0.11 0.13 0.08 0.07 0.07 0.08 0.09 0.06 0.06 0.06 0.06 0.05

Note: Test results for data-generating process Yt = bXt−1 + εt with Xt, εt
iid∼ N (0, 1) and 10,000 simulations. Forecasts are given by

Ŷt+1|t = bXt + ηt with ηt
iid∼ N (0, σ2

η). dm0 and the tests for β are based on in-sample means of Yt. Benchmark forecasts for tests
based on dmT and γ are estimation-sample means of Yt using a recursive estimation scheme starting with T observations. Significance
level is α = 0.05. Tests are based on OLS standard errors. All tests are one-sided. The subscript h is suppressed in dm0,h, dmT,h,
βh and γh, because h = 1 for all tests.
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Table 2: Power of tests of Theorems 1 (w/ noise) and 2 (w/o noise) for noisy forecasts

n 25 50 100 250 500 25 50 100 250 500 25 50 100 250 500

b = 0.2

ση = 0.001 ση = 0.01 ση = 0.1

dm0

0.52 0.63 0.77 0.91 0.98

dmT dmT
T = 50 0.37 0.47 0.63 0.86 0.97 0.34 0.51 0.74 0.97 1.00
T = 100 0.43 0.52 0.66 0.87 0.97 0.31 0.48 0.70 0.96 1.00
T = 250 0.51 0.59 0.71 0.88 0.97 0.29 0.45 0.67 0.95 1.00
T = 500 0.55 0.64 0.75 0.90 0.97 0.28 0.44 0.65 0.94 1.00
T = 1000 0.61 0.67 0.78 0.91 0.98 0.28 0.43 0.65 0.94 1.00

β = 0 β = 0 β = 0
0.28 0.41 0.64 0.93 1.00 0.28 0.42 0.64 0.93 1.00 0.25 0.36 0.56 0.88 0.99

β = 0.5 β = 0.5 β = 0.5
0.14 0.18 0.27 0.47 0.73 0.15 0.18 0.27 0.48 0.72 0.11 0.13 0.17 0.28 0.44

γ = 0.5
T = 50 0.13 0.15 0.21 0.34 0.50
T = 100 0.12 0.14 0.20 0.32 0.49
T = 250 0.11 0.14 0.18 0.31 0.47
T = 500 0.11 0.13 0.18 0.29 0.46
T = 1000 0.11 0.13 0.18 0.29 0.45

Test results for data-generating process Yt = bXt−1 + εt with Xt, εt
iid∼ N (0, 1) and 10,000 simulations. Results are only

displayed for tests with actual size < 0.10 for all n, T considered in Table 1. Forecasts are given by Ŷt+1|t = bXt + ηt with ηt
iid∼ N (0, σ2

η). dm0 and β indicates tests based on in-sample means of Yt. Benchmark forecasts for tests based on dmT and γ
are sample means of Yt using a recursive estimation scheme starting with T observations. Significance level is α = 0.05. Tests
are based on OLS standard errors. All tests are one-sided. The subscript h is suppressed in dm0,h, dmT,h, βh and γh, because
h = 1 for all tests.
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Table 3: Actual size and power of tests of Theorem 3 (model predictions)

n 25 50 100 250 500 25 50 100 250 500

b = 0

β = 0 γ = 0

T = 50 0.02 0.02 0.02 0.01 0.01 0.04 0.03 0.03 0.02 0.02
T = 100 0.03 0.02 0.02 0.01 0.01 0.04 0.03 0.03 0.03 0.02
T = 250 0.03 0.02 0.02 0.02 0.01 0.04 0.04 0.03 0.03 0.03
T = 500 0.04 0.03 0.02 0.02 0.01 0.04 0.04 0.03 0.03 0.03
T = 1000 0.04 0.03 0.03 0.02 0.02 0.05 0.04 0.04 0.03 0.03

b = 0.2

β = 0 γ = 0

T = 50 0.16 0.24 0.41 0.78 0.97 0.20 0.31 0.50 0.86 0.99
T = 100 0.20 0.30 0.48 0.83 0.98 0.23 0.35 0.56 0.89 0.99
T = 250 0.26 0.36 0.57 0.89 0.99 0.27 0.38 0.61 0.91 0.99
T = 500 0.27 0.39 0.60 0.91 1.00 0.27 0.40 0.62 0.92 1.00
T = 1000 0.28 0.41 0.62 0.93 1.00 0.28 0.42 0.63 0.93 1.00

Note: Test results for data-generating process Yt = bXt−1 + εt with Xt, εt
iid∼ N (0, 1)

and 10,000 simulations. Forecasts are given by Ŷt+1|t = â+ b̂ Xt with â, b̂ resulting from
OLS regressions of Yt on a constant and Xt−1. Benchmark forecasts for tests based on
γ are estimation-sample means of Yt. Both forecasts use a recursive estimation scheme
starting with T observations. Tests based on β are considered in Theorem 2. Significance
level is α = 0.05. Tests are based on OLS standard errors. All tests are one-sided. The
subscript h is suppressed in βh and γh, because h = 1 for all tests.
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Table 4: Giacomini-White tests for unconditional forecast comparisons

n 25 50 100 250 500 25 50 100 250 500

d̃mB = 0

b = bGW b = 0.2
bGW

B = 50 0.1458 0.08 0.04 0.02 0.02 0.02 0.11 0.08 0.06 0.08 0.14
B = 100 0.1012 0.07 0.05 0.03 0.02 0.02 0.14 0.14 0.14 0.21 0.39
B = 250 0.0655 0.08 0.06 0.04 0.02 0.02 0.17 0.18 0.23 0.36 0.63
B = 500 0.0458 0.08 0.06 0.05 0.03 0.02 0.19 0.20 0.26 0.44 0.70
B = 1000 0.0323 0.09 0.06 0.05 0.04 0.03 0.19 0.21 0.28 0.46 0.72

Note: Test results for data-generating process Yt = bXt−1 + εt with Xt, εt
iid∼ N (0, 1) and 10,000

simulations. Forecasts are given by Ŷt+1|t = â + b̂ Xt resulting from OLS regressions of Yt on a
constant and Xt−1. Benchmark forecasts are estimation-sample means of Yt. Both forecasts use a
rolling estimation scheme with B observations. Significance level is α = 0.05. Tests are based on
Newey and West (1987) standard errors with truncation lags chosen according to Andrews (1991).
The values of bGW used for the size simulations are calibrated to yield identical mean-squared
prediction errors (MSPE) of Ŷt+1|t and the rolling sample means. The MSPEs are 1.0417 (B = 50),
1.0205 (B = 100), 1.0080 (B = 250), 1.0040 (B = 500) and 1.0020 (B = 1000), respectively. These
values of the MSPEs are based on 1 billion simulations and have standard errors of about 0.00005,

respectively. The test is one-sided. The subscript 1 is suppressed in d̃mB,1.
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Table 5: Empirical maximum forecast horizons ĥ∗ in quarters for forecasts of growth and inflation

US EA JP DE UK IT CA FR median

GDP q-o-q

βh = 0 3 2 1 1 3 2 1 2 2
γh = 0 5 3 3 1 3 2 1 2 2.5

βh = 0.5 2 2 −1 0 2 1 0 0 0.5
γh = 0.5 3 3 −1 1 2 0 0 0 0.5

CPI y-o-y

βh = 0 3 4 6 3 3 6 3 3 3
γh = 0 4 4 6 3 3 6 6 4 4

βh = 0.5 2 3 4 2 2 6 3 3 3
γh = 0.5 3 3 4 3 2 6 3 3 3

Note: ‘GDP q-o-q’ denotes quarter-on-quarter growth rates of real GDP, ‘CPI y-o-y’
year-on-year growth rates of the consumer price index except for the UK, where the
retail price index is employed. The abbreviations used for the countries are ‘US’ for
the United States, ‘EA’ for the euro area, ‘JP’ for Japan, ‘DE’ for Germany, ‘UK’ for
the United Kingdom, ‘IT’ for Italy, ‘CA’ for Canada, and ‘FR’ for France. Forecast
errors cover the sample 2004q2 to 2018q2 for the euro area and 2001q2 to 2018q2 for
all other countries. Forecasts and real-time observations (second vintage) are taken from
Consensus Economics. The benchmark mean forecasts for the tests of γ = 0 and γ = 0.5
are based on recursive estimations starting with T = 20 observations. ĥ∗ is set to −1
if the null hypothesis cannot be rejected for the nowcast. A value of 6 implies that the
maximum forecast horizon equals at least 6 quarters, because 6 quarters is the largest
forecast horizon under study.
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