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OA.1 Monte Carlo experiments with multiple forecast horizons

In order to gain insights into the small sample behaviour of the tests in typical time-series

environments with multiple forecast horizons, we conduct Monte Carlo experiments based on

the cases displayed in Table OA.1.1 In the first four cases, univariate DGPs are considered,

whereas the last case refers to the simple multivariate DGP used in Section 5 of the main text.

The first three DGPs are moving-average processes considered in Stock and Watson (2007) to

describe the behaviour of first differences of quarterly US inflation. The first process is based

on their MA(1)-model estimated for the post-1984 period, whereas the second process refers to

their pre-1984 estimation results. The third process is based on the quarterly version of Nelson

and Schwert’s (1977) model reported in Stock and Watson (2007). The fourth process uses

the estimation result for an AR(1)-process of quarterly growth of US real GDP from 1996 to

2016 which broadly corresponds to the sample employed in Section 6 of the main text. For all

four univariate cases, the forecast models assume an AR(1) process. While these models are

misspecified in the first three cases, the parameters θh will be determined such that the respective

null hypotheses h∗ = 1 and h∗ = 2 are nevertheless correct. For the case AR(1)-AR(1), a finite

h∗ does not exist, because the forecasts are informative for all h <∞. The last process mimics

a forecasting equation for financial returns and implies an R2 of about 0.04 for h = 1. This

would be considered a “large” value in forecasting stock price returns given the usual empirical

results as reported, for example, in Fama and French (1988). In this case, the maximum forecast

horizon is h∗ = 1. All processes are specified such that the variance of Yt equals 1.

Forecasts are assumed to be made in a direct manner. That is, the parameters of the

forecast models depend on the forecast horizon h. For the scenario with forecasts being equal to

their conditional means (scenario 1) and the corresponding scenario with noise (scenario 2), the

parameters θh are set to their pseudo-true values implied by the DGP and the forecast model with

direct forecasts. This leads, for instance, to θ1 = −0.28/(1 + 0.282) in the case MA(1)a-AR(1).

Of course, direct forecasts imply θh = 0 for h > h∗ in all cases considered. Correspondingly,

for the scenario of model predictions (scenario 3), the parameters of the forecast models result

from regressions of Yt on the explanatory variables known at time t − h.2 We consider 1- to

4-step-ahead forecasts.

1We do not consider the test of Giacomini and White (2006) in these experiments, because it is difficult to
implement their null hypothesis into the DGPs and because of the lower power of the test.

2That is, Yt is regressed on a constant and Xt−h in the case multivar, and on a constant and Yt−h in the other
cases.

1



Table OA.1: Cases considered in our Monte Carlo study

case DGP h∗ forecast model R2 (h∗)

MA(1)a-AR(1) Yt = εt − 0.28εt−1 1 Ŷ ∗t+h = θhYt 0.07

MA(1)b-AR(1) Yt = εt − 0.66εt−1 1 Ŷ ∗t+h = θhYt 0.21

MA(2)-AR(1) Yt = εt − 0.49εt−1 − 0.16εt−2 2 Ŷ ∗t+h = θhYt 0.02

AR(1)-AR(1) Yt = 0.42Yt−1 + εt − Ŷ ∗t+h = θhYt −

multivar Yt = 0.2Xt−1 + εt 1 Ŷ ∗t+h = θhXt 0.04

Note: εt and Xt are
iid∼ N (0, σ2

ε). h∗ is the maximum forecast horizon. R2 (h∗) is the asymptotic R2 of
the forecast model at horizon h∗. In each case, σ2

ε is chosen such that the variance of Yt is equal to 1.

The forecast models in Table OA.1 coincide with the conditional mean only when the test

statistics dm0,h and dmT,h are applied. For all other tests, the forecasts are modified as described

in Table OA.2. For tests in the scenario with noise, the magnitude of the variance of the noise

term added to the conditional mean forecast is comparable to the largest magnitude considered

in Section 5.3 Note that for the tests of βh = 0.5 and γh = 0.5, the null hypotheses do not

hold for h > h∗, because the MSPE of the noisy forecasts is larger than (i.e. not equal to) the

MSPE of the benchmark. Therefore, the tests will reject less frequently than suggested by the

size. Actually, in the case AR(1)-AR(1), h∗ for the tests of βh = 0.5 and γh = 0.5 differs from

h∗ for the tests of βh = 0 and γh = 0. While a finite h∗ does not exist in the latter situation, h∗

equals 2 in the former setting. The reason is that even without noise, the MSPE would only be

marginally lower than the variance of Yt at h = 3. With noise, the MSPE exceeds the variance

at this horizon. In the scenario with model predictions, for tests of the null hypotheses βh = 0

and γh = 0, the forecast models are estimated including a constant.4 The standard errors of

the test statistics are calculated as in Newey and West (1987) using the automatic lag length

selection procedure proposed by Andrews (1991). We employ a significance level of 0.05.

Table OA.3 displays the results for the MAa(1) model, hence h∗ = 1. The evaluation sample

includes n = 50 or n = 100 forecasts. In scenario 3, the initial estimation samples are based on

T = 100 observations, and a recursive estimation scheme is employed. The tests are conducted

sequentially for the forecast horizons h = 1, 2, 3, 4. The last forecast horizon where the test

rejects is identified as horizon ĥ∗. If the test does not reject for any horizon, we conclude that

ĥ∗ ≥ 4.

3The largest value in Section 5 of the main text is ση = 0.1 which is identical to the value used here, but the
variance of Yt in Section 5 is 1 + b2, whereas it equals 1 here. However, the differences are very small, since |b|
does not exceed 0.2.

4As mentioned above, since we are considering direct forecasts, the model parameters are estimated separately
for each h.
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Table OA.2: Modifications of forecasts depending on scenario

scenario test stat./hypothesis forecasts

1: without noise dm0,h, dmT,h Ŷt+h = Ŷ ∗
t+h

2: with noise
βh = 0; βh = 0.5
γh = 0; γh = 0.5

Ŷt+h = Ŷ ∗
t+h + ηt

3: model prediction
βh = 0
γh = 0

Ŷt+h =

{
θ̂1,h + θ̂2,hXt case multivar

θ̂1,h + θ̂2,hYt otherwise

Note: ηt is
iid∼ N (0, σ2

η) with ση = 0.1. θ̂1,h and θ̂2,h are estimated by regressing Yt on a
constant and on Xt−h in the case multivar, and on a constant and Yt−h in all other cases
considered.

With n = 50 most tests have a power of about 0.6 to 0.7 at h = 1. In the scenario without

noise and with the test dm0,h, the power almost reaches 0.8. In the scenario with noise, the null

hypotheses βh = 0.5 and γh = 0.5 are rejected in 25% of the simulations only. For n = 100, the

power increases to about 0.3 for these tests, while all other tests attain a power of about 0.8

to 0.9. The power of the tests at h = 1 broadly corresponds to the percentage of simulations

in which h∗ is identified correctly. The latter percentage is marginally lower than the power,

which is due to those cases where the tests also reject at h > 1. The percentage of these cases

is mostly close to the significance level of the tests, i.e. to 5%.

For the remaining Monte Carlo experiments, we do not report results for the tests dm0,h and

dmT,h because the underlying scenario without noise appears unrealistic in empirical applica-

tions, and violations of this assumption can easily cause pronounced size distortions as found in

Section 5. Moreover, in what follows, we will not consider the tests based on γh in the scenario

with noise, because with the magnitude of noise used here, the results are very similar to those

based on βh.

Table OA.4 contains the results for the cases MA(1)b-AR(1) and MA(2)-AR(1). Concerning

the case MAb(1)-AR(1), the absolute value of the MA-coefficient is much larger than in the case

MAa(1)-AR(1), making it considerably easier for the tests to detect h∗ = 1. The MSPE-variance

ratio equals about 0.8 at h = 1, and the tests for βh = 0 and γh = 0 virtually always reject at

this horizon even with n = 50. ĥ∗ is equal to h∗ in 90% to 95% of the simulations, and it is

mostly larger than h∗ otherwise. Only the test for βh = 0.5 has a considerably lower power of

0.5 with n = 50 and of 0.7 with n = 100 at h = 1. The share of correct identifications of h∗ is

very similar to the power at h = 1.

In the case MA(2)-AR(1), the second MA-coefficient is very close to zero, making it difficult

to identify h∗ = 2. Note that the MSPE-variance ratio is virtually equal to 1 at this horizon.

While for h = 1, the tests for βh = 0 and γh = 0 reject in about 85% of the replications with

n = 50 and in almost all of the replications with n = 100, these numbers are considerably lower

for h = 2. The most frequent value of ĥ∗ equals 1 for these tests. Given the large MSPE-variance
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Table OA.3: Results for case MA (1)a-AR (1)

h 0 1 2 3 4 0 1 2 3 4

n = 50 n = 100

without noise (scenario 1)
MSPE
variance 0.95 1.01 1.01 1.01 0.94 1.01 1.01 1.01

rejections
dmh,0 0.77 0.05 0.05 0.05 0.89 0.05 0.05 0.05
dmh,T 0.66 0.04 0.04 0.04 0.81 0.04 0.04 0.04

ĥ∗

dmh,0 0.23 0.73 0.00 0.00 0.04 0.11 0.84 0.00 0.00 0.05
dmh,T 0.34 0.62 0.00 0.00 0.03 0.19 0.77 0.00 0.00 0.03

with noise (scenario 2)
MSPE
variance 0.96 1.02 1.02 1.02 0.95 1.02 1.02 1.01

rejections
βh = 0 0.64 0.07 0.07 0.07 0.85 0.06 0.06 0.07
γh = 0 0.66 0.10 0.11 0.10 0.88 0.09 0.09 0.10
βh = 0.5 0.25 0.04 0.04 0.04 0.32 0.02 0.02 0.02
γh = 0.5 0.25 0.04 0.04 0.04 0.33 0.03 0.03 0.03

ĥ∗

βh = 0 0.36 0.59 0.05 0.00 0.00 0.15 0.79 0.05 0.00 0.00
γh = 0 0.34 0.59 0.06 0.01 0.01 0.12 0.80 0.07 0.01 0.00
βh = 0.5 0.75 0.24 0.01 0.00 0.00 0.68 0.31 0.01 0.00 0.00
γh = 0.5 0.75 0.24 0.01 0.00 0.00 0.67 0.32 0.01 0.00 0.00

model prediction (scenario 3)
MSPE
variance 0.96 1.02 1.02 1.02 0.95 1.02 1.02 1.02

rejections
βh = 0 0.60 0.04 0.05 0.04 0.82 0.03 0.03 0.03
γh = 0 0.63 0.05 0.05 0.05 0.85 0.04 0.04 0.04

ĥ∗

βh = 0 0.40 0.58 0.02 0.00 0.00 0.18 0.80 0.02 0.00 0.00
γh = 0 0.37 0.60 0.02 0.00 0.00 0.15 0.82 0.02 0.00 0.00

Note: The values displayed in the category ‘rejections’ denote the share of rejections for each horizon
h. The values displayed in the category ‘ĥ∗’ denote the share of cases in which h is identified as
the maximum forecast horizon. The significance level is set to 0.05. ‘MSPE’ is the mean-squared
prediction error, ‘variance’ is the variance of the target variable in the evaluation sample. Bold entries
refer to the true h∗. If a test rejects for all horizons, ĥ∗ is set equal to the largest horizon h = 4.
The forecasts differ between the 3 scenarios according to the modifications described in Table OA.2.
For the tests corresponding to the model-based predictions, the estimation is carried out recursively
with T = 100 observations used for the first parameter estimation. n is the number of observations
for evaluation. The share of rejections for h ≤ ĥ∗ corresponds to the power of the tests. The share
of rejections for h > ĥ∗ corresponds to the size of the tests (except for βh = 0.5 and γh = 0.5). The
variance in the MSPE-variance-ratio is calculated dividing by n. All tests are one-sided. Results are
based on 10,000 simulations.
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ratio at h∗ = 2, the test for βh = 0.5 almost never identifies ĥ∗ = 2. Thus, with the MA(2)-

specification chosen here, larger evaluation samples are needed in order to reliably determine

h∗.

The results for the cases AR(1)-AR(1) and multivar can be found in Table OA.5. Due to

the persistence of the AR(1)-process, the sample variance is downward biased in small samples.

Apparently, this bias, together with the effects of noise or estimation error, leads to MSPE-

variance ratios often considerably larger than 1 for h > 1. Nevertheless, the tests for βh = 0

and γh = 0 reject at h = 2 in about 15% to 40% of the replications. Yet, in about 60% to

70% of the simulations, ĥ∗ = 1 is found, and the correct identification of h∗ ≥ 4 almost never

occurs. This result, however, is not surprising given the sample sizes under study, and the fact

that the population correlation between Yt+4 and Yt equals 0.03 only. The test for γh = 0 has

a moderately larger power than the test for βh = 0, which is more conservative. Therefore, the

test for γh = 0 tends to obtain larger values of ĥ∗ here. The test for βh = 0.5 finds ĥ∗ = 0

in about 70% of the simulations with n = 50, and still in about 50% of the simulations with

n = 100.

Concerning the multivariate case, the results are strongly related to those displayed in Tables

1, 2 and 3 in the main text. For h = 1, the power of the tests ranges from about 0.3 with model

predictions, βh = 0 and n = 50 to 0.55 with model predictions, γh = 0 and n = 100. For

h > 1, the tests have an actual size close to their nominal size of 5%, with the tests for βh = 0

being moderately liberal in the scenario with noise, and conservative in the scenario with model

predictions. The test for βh = 0.5 practically never rejects for h > 1, and also fails to reject at

h = 1 in more than 80% of the simulations.

Finally, it might be interesting to see how many observations are needed in the cases MA(2)-

AR(1) and AR(1)-AR(1) to find ĥ∗ > 1 with a large probability. Table OA.6 contains results

for sample sizes of n = 250 and n = 500. For both sample sizes and in both cases, the MSPE-

variance ratio equals 0.99 at h = 2, but exceeds 1 for h > 2. While in the case MA(2)-AR(1)

with n = 250, ĥ∗ = 1 continues to be the most frequent result, ĥ∗ = 2 is the most likely result

of the tests for βh = 0 and γh = 0 when n = 500. In the case AR(1)-AR(1) with n = 500, the

test for γh = 0 yields ĥ∗ = 3 in about 20% of the simulations, but still hardly delivers ĥ∗ ≥ 4.

The test for βh = 0.5 mostly gives ĥ∗ = 1.5

To summarize, with the small sample sizes considered in the simulations, the forecasts Ŷt+h|t

need to be at least moderately correlated with the target variable Yt+h at h∗ for the tests of

βh = 0 and γh = 0 to correctly identify h∗. For model predictions and a known value of T , the

test for γh = 0 appears to be preferable due to its marginally larger power. For other situations,

the test for βh = 0 seems more appealing, because it does not require knowledge of or decisions

about T but gives similar results.

5In additional simulations not reported here, we find that with n = 10, 000 the tests for βh = 0.5 and γh = 0.5
virtually always correctly identify h∗ = 2. The tests for βh = 0 and γh = 0 yield ĥ∗ ≥ 4 in about 30% and 55%
of the simulations, respectively.
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Table OA.4: Results for cases MA (1)b-AR (1) and MA (2)-AR (1)

h 0 1 2 3 4 0 1 2 3 4

n = 50 n = 100

MA(1)b −AR(1)

with noise (scenario 2)
MSPE
variance 0.82 1.01 1.01 1.01 0.81 1.01 1.01 1.01

rejections
βh = 0 0.99 0.09 0.08 0.09 1.00 0.07 0.07 0.07
βh = 0.5 0.51 0.04 0.04 0.04 0.72 0.03 0.03 0.02

ĥ∗

βh = 0 0.01 0.90 0.08 0.01 0.00 0.00 0.93 0.06 0.00 0.00
βh = 0.5 0.49 0.48 0.02 0.00 0.00 0.28 0.70 0.02 0.00 0.00

model prediction (scenario 3)
MSPE
variance 0.81 1.01 1.01 1.01 0.80 1.01 1.01 1.01

rejections
βh = 0 0.99 0.07 0.06 0.06 1.00 0.05 0.05 0.05
γh = 0 0.99 0.06 0.06 0.06 1.00 0.05 0.05 0.04

ĥ∗

βh = 0 0.01 0.92 0.05 0.01 0.00 0.00 0.95 0.04 0.01 0.00
γh = 0 0.01 0.93 0.05 0.01 0.00 0.00 0.95 0.04 0.01 0.00

MA(2)−AR(1)

with noise (scenario 2)
MSPE
variance 0.91 1.00 1.01 1.01 0.91 1.00 1.01 1.01

rejections
βh = 0 0.86 0.25 0.08 0.08 0.98 0.31 0.06 0.06
βh = 0.5 0.32 0.12 0.04 0.04 0.46 0.10 0.02 0.02

ĥ∗

βh = 0 0.14 0.67 0.18 0.01 0.00 0.02 0.68 0.28 0.02 0.00
βh = 0.5 0.68 0.31 0.01 0.00 0.00 0.54 0.44 0.02 0.00 0.00

model prediction (scenario 3)
MSPE
variance 0.92 1.00 1.01 1.01 0.91 1.00 1.01 1.01

rejections
βh = 0 0.84 0.21 0.06 0.06 0.98 0.25 0.04 0.04
γh = 0 0.88 0.21 0.05 0.05 0.99 0.26 0.04 0.04

ĥ∗

βh = 0 0.16 0.71 0.12 0.01 0.00 0.02 0.74 0.23 0.01 0.00
γh = 0 0.12 0.73 0.14 0.01 0.00 0.01 0.73 0.24 0.01 0.00

Note: See Table OA.3 for explanations.
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Table OA.5: Results for cases AR (1)-AR (1) and multivar

h 0 1 2 3 4 0 1 2 3 4

n = 50 n = 100

AR(1)−AR(1)

with noise (scenario 2)
MSPE
variance 0.89 1.04 1.06 1.06 0.86 1.01 1.03 1.03

rejections
βh = 0 0.88 0.26 0.10 0.07 0.99 0.41 0.12 0.07
βh = 0.5 0.34 0.09 0.05 0.04 0.54 0.11 0.04 0.03

ĥ∗

βh = 0 0.12 0.63 0.20 0.05 0.01 0.01 0.58 0.33 0.07 0.01
βh = 0.5 0.66 0.27 0.06 0.01 0.00 0.46 0.44 0.08 0.01 0.00

model prediction (scenario 3)
MSPE
variance 0.89 1.05 1.08 1.09 0.86 1.02 1.05 1.05

rejections
βh = 0 0.87 0.16 0.04 0.03 0.99 0.27 0.04 0.02
γh = 0 0.92 0.27 0.09 0.06 0.99 0.41 0.09 0.05

ĥ∗

βh = 0 0.13 0.71 0.14 0.01 0.00 0.01 0.72 0.24 0.02 0.00
γh = 0 0.08 0.66 0.21 0.04 0.01 0.01 0.59 0.33 0.06 0.02

multivar

with noise (scenario 2)
MSPE
variance 0.99 1.03 1.03 1.03 0.98 1.02 1.02 1.02

rejections
βh = 0 0.39 0.07 0.07 0.07 0.57 0.06 0.07 0.06
βh = 0.5 0.15 0.04 0.04 0.03 0.18 0.02 0.02 0.02

ĥ∗

βh = 0 0.61 0.36 0.03 0.00 0.00 0.43 0.54 0.03 0.00 0.00
βh = 0.5 0.85 0.15 0.01 0.00 0.00 0.82 0.18 0.00 0.00 0.00

model prediction (scenario 3)
MSPE
variance 1.00 1.04 1.04 1.04 0.99 1.02 1.02 1.02

rejections
βh = 0 0.33 0.03 0.03 0.03 0.50 0.02 0.02 0.02
γh = 0 0.39 0.05 0.05 0.05 0.57 0.03 0.04 0.04

ĥ∗

βh = 0 0.67 0.32 0.01 0.00 0.00 0.50 0.49 0.01 0.00 0.00
γh = 0 0.61 0.37 0.02 0.00 0.00 0.43 0.55 0.02 0.00 0.00

Note: See Table OA.3 for explanations. For the case ‘AR (1)-AR (1)’, bold entries refer to the largest h
tested except for the test of βh = 0.5. In the latter case h∗ = 2, because the MSPE exceeds the variance
of Yt at h = 3.
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Table OA.6: Results for cases MA (2)-AR (1) and AR (1)-AR (1) with large n

h 0 1 2 3 4 0 1 2 3 4

n = 250 n = 500

MA(2)−AR(1)

with noise (scenario 2)
MSPE
variance 0.91 0.99 1.01 1.01 0.91 0.99 1.01 1.01

rejections
βh = 0 1.00 0.49 0.06 0.06 1.00 0.70 0.05 0.05
βh = 0.5 0.76 0.10 0.01 0.01 0.95 0.11 0.00 0.00

ĥ∗

βh = 0 0.00 0.51 0.46 0.02 0.00 0.00 0.30 0.67 0.03 0.00
βh = 0.5 0.24 0.72 0.05 0.00 0.00 0.05 0.86 0.09 0.00 0.00

model prediction (scenario 3)
MSPE
variance 0.90 0.99 1.01 1.01 0.90 0.99 1.01 1.01

rejections
βh = 0 1.00 0.43 0.03 0.03 1.00 0.66 0.03 0.03
γh = 0 1.00 0.45 0.03 0.03 1.00 0.69 0.03 0.03

ĥ∗

βh = 0 0.00 0.57 0.41 0.01 0.00 0.00 0.34 0.64 0.01 0.00
γh = 0 0.00 0.55 0.44 0.01 0.00 0.00 0.31 0.67 0.01 0.00

AR(1)−AR(1)

with noise (scenario 2)
MSPE
variance 0.85 0.99 1.02 1.02 0.84 0.99 1.01 1.01

rejections
βh = 0 1.00 0.72 0.17 0.08 1.00 0.93 0.24 0.08
βh = 0.5 0.87 0.16 0.03 0.01 0.99 0.23 0.02 0.01

ĥ∗

βh = 0 0.00 0.28 0.57 0.13 0.02 0.00 0.07 0.69 0.21 0.03
βh = 0.5 0.13 0.71 0.14 0.01 0.00 0.01 0.76 0.21 0.01 0.00

model prediction (scenario 3)
MSPE
variance 0.84 0.99 1.02 1.03 0.84 0.99 1.01 1.02

rejections
βh = 0 1.00 0.56 0.06 0.01 1.00 0.84 0.10 0.02
γh = 0 1.00 0.71 0.14 0.05 1.00 0.93 0.23 0.06

ĥ∗

βh = 0 0.00 0.44 0.50 0.05 0.01 0.00 0.16 0.74 0.09 0.01
γh = 0 0.00 0.29 0.58 0.11 0.03 0.00 0.07 0.70 0.19 0.04

Note: See Table OA.3 for explanations. For the case ‘AR (1)-AR (1)’, bold entries refer to the largest h
tested except for the test of βh = 0.5. In the latter case h∗ = 2, because the MSPE exceeds the variance
of Yt at h = 3.
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Figure OA.1: Additional test results for quarter-on-quarter growth rates of US real GDP. The tests in
the left panel assume that forecasts are conditional means without noise. The test based on dm0,h uses
the in-sample mean as the benchmark. The solid line indicates the corresponding ratio of the Consensus
forecasts’ MSPE to the variance. The test based on dmT,h uses the recursive mean with T = 20 initial
observations as the benchmark. The dash-dotted line indicates the corresponding ratio of the Consensus
forecasts’ MSPE to the MSPE of the recursive mean forecasts. The Giacomini-White test for a loss
differential of zero (d̃mB,h = 0) in the right panel uses the mean from a rolling estimation window with
B = 20 observations as the benchmark. The solid line indicates the corresponding ratio of the Consensus
forecasts’ MSPE to the MSPE of the rolling mean forecasts. The test for γh = 0.5 is identical to the test
in Figure 2 in the main text and is displayed for comparison only. For further explanations, see Figure 1
in the main text.

OA.2 Further empirical results

The sequential p-values of the tests dm0,h, dmT,h, and the test of Giacomini and White (2006)

when applied to US real GDP growth are shown in Figure OA.1. The test results for the scenario

without noise are displayed in the left panel, and both tests arrive at ĥ∗ = 3. The same result

was obtained with the test for βh = 0 (see Table 5). The test of Giacomini and White (2006) is

shown in the right panel together with the test for γh = 0.5 for comparison. While the ratios of

the survey forecasts’ MSPEs to the MSPEs of the respective benchmark forecasts (rolling and

recursive means) are very similar, the p-values of the test by Giacomini and White (2006) are

larger than those of the test for γh = 0.5 for most horizons. Since the p-value of the former test

is larger than 5% even for the nowcast, the survey forecasts are found to be uninformative at all

horizons.
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OA.3 Proofs

OA.3.1 Proof of Theorem A.2:

Under the null hypothesis (2), Assumptions 1 – 2 and with the recursive mean as the uninfor-

mative benchmark, we obtain

1

n

n∑
t=1

E
[
(Yt+h − Ŷt+h|t)2 − (Yt+h − Y t)

2
]

=
1

n

n∑
t=1

E
[
(uh,t − ηt)2 −

(
µ∗h,t + uh,t

)2]
= 0

where

µ∗h,t = µh,t − µ− ζT,t

ζT,t = Y t − µ = Op

(
(T + t)−1/2

)
.

and E(µ∗h,tuh,t) = 0. It follows that the null hypothesis implies:

σ2
η = E

[
1

n

n∑
t=1

(µ∗h,t)
2

]
.

Consider the numerator of the statistic τa for the hypothesis γh = 0.5 with

at = (Yt+h − Y t)(Ŷt+h|t − Y t)−
1

2
(Ŷt+h|t − Y t)

2

= (µ∗h,t + uh,t)(µ
∗
h,t + ηt)−

1

2
(µ∗h,t + ηt)

2

= uh,t(µ
∗
h,t + ηt) +

1

2
(µ∗h,t)

2 − 1

2
η2
t .

Let St =
∑t

s=−T+1(Ys − µ). According to Assumption 1 a functional central limit theorem

applies (see Phillips and Solo 1992) such that

1

ωy
√
T + n

S[a(T+n)] ⇒W (a)

where ω2
y denotes the long-run variance of Yt. Then uh,tζT,t = (T + t)−1uh,tS

h
t and

n∑
t=1

uh,tζT,t =

n∑
t=1

T + n

T + t

St√
T + n

uh,t√
T + n

⇒ ωyωh

∫ 1

π

1

a
W (a)dWh(a)

10



where (T + n)−1/2
∑[a(T+n)]

s=−T+1 uh,s ⇒ ωhWh(a) and π = T/(T + n). Therefore,
∑n

t=1 uh,tζT,t is

Op(1). It follows that

1√
n

n∑
t=1

at =

(
1√
n

n∑
t=1

uh,t(µh,t − µ+ ηt) +
1

2
(µ∗h,t)

2 − 1

2
η2
t

)
+Op(n

−1/2)

By Assumptions 1 and 2 ut is uncorrelated with µh,t and ηt yielding

E

(
1√
n

n∑
t=1

uh,t(µh,t − µ+ ηt)

)
= 0.

Furthermore, the null hypothesis implies

E

(
1√
n

n∑
t=1

(µ∗h,t)
2 − η2

t

)
= 0.

It follows that limn→∞ E(n−1/2
∑n

t=1 at) = 0.

Under the conditions of Assumptions 1 and 2 it can be shown that n−1
∑n

t=j+1 atat−j con-

verges in probability to its expectation for any finite j and n→∞. Therefore the test statistic

for γh = 0.5 has a standard normal limiting distribution.

The asymptotic distribution for the test of the hypothesis γh = 0 follows in a similar manner.

The test statistic is based on

at = (Yt+h − Y t)(Ŷt+h|t − Y t)

= (µ∗h,t + uh,t)(µ
∗
h,t + ηt)

Since E(µ∗h,tηt) = 0 and E(µ∗h,tuh,t) = 0 we have

E

(
n∑
t=1

(µ∗h,t)
2

)
= E

(
n∑
t=1

(µh,t − µ)2

)
+ E

(
n∑
t=1

ζ2
T,t

)

= E

(
n∑
t=1

(µh,t − µ)2

)
+

n∑
t=1

(T + n)2

(T + t)2

(
St√
T + n

)2 1

T + n

E

(
1√
n

n∑
t=1

(µ∗h,t)
2

)
= E

(
1√
n

n∑
t=1

(µh,t − µ)2

)
+O

(
n−1/2

)
If µh,t = µ it follows that

lim
n→∞

E

(
1√
n

n∑
t=1

at

)
= 0

and the sample covariances of at converge in probability to the respective covariances as n→∞
and the HAC t-statistic possesses a standard normal limiting distribution.
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OA.3.2 Proof of Theorem 3:

Consider some h > h∗. We first analyze

n∑
t=1

(Ŷt+h|t − Ŷ h)(Yt+h − Y
h
) =

n∑
t=1

Ŷt+h|t(uh,t − uh).

An important problem with analysing this expression is that the estimation error in Ŷt+h|t =

µh,t(θ̂t) is correlated with uh. To sidestep this difficulty we decompose the forecast into one

component, where the estimator is computed at t = 0 such that µh,t(θ̂0) is uncorrelated with

{u1+h, . . . , un+h} and show that the remaining component is asymptotically negligible. Applying

a mean value expansion yields

Ŷt+h|t = µh,t(θ̂0) +Dh,t(θ̄t)
′(θ̂t − θ̂0)

where Dh,t(θ) = ∂µh,t(θ)/∂θ and θ̄t denotes some value between θ̂0 and θ̂t. Note that µh,t(θ̂0)

and u1+h, u2+h, . . . , un+h are uncorrelated as the forecast errors are uncorrelated with the past.

Next we analyze

n∑
t=1

[
µh,t(θ̂0) +Dh,t(θ̄t)

′(θ̂t − θ̂0)
]

(uh,t − uh) = AT,n +B1
T,n +B2

T,n

where

AT,n =

n∑
t=1

µh,t(θ̂0)(uh,t − uh)

B1
T,n =

n∑
t=1

Dh,t(θ̄t)
′(θ̂t − θ̂0)uh,t

B2
T,n = uh

n∑
t=1

Dh,t(θ̄t)
′(θ̂t − θ̂0).

Another mean value expansion around the true value θ with µh,t(θ) = µ (the null hypothesis)

yields

AT,n = (θ̂0 − θ)′
n∑
t=1

Dh,t(θ̄0)uh,t − uh(θ̂0 − θ)′
n∑
t=1

Dh,t(θ̄0)

= A1
T,n +A2

T,n

where θ̄0 is again some value between θ̂0 and θ. Since θ̂0 and Dh,t(θ̄0) are uncorrelated with

uh,t it follows that A1
T,n = Op(T

−1/2)Op(n
1/2) and A2

T,n = Op(T
−1/2)Op(n

−1/2)Op(n). Thus,

AT,n is Op(
√
n/T ). Under the null hypothesis θ̂t − θ̂0 and Dh,t(θ̄t) are uncorrelated with uh,t.
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Furthermore, Assumptions 3 (ii) and (iii) imply

n∑
t=1

||θ̂t − θ̂0||2||Dh,t(θ̄t||2u2
h,t = Op

( n
T 2

) n∑
t=1

||Dh,t(θ̄t||2u2
h,t = Op

(
n2

T 2

)
.

and, therefore,

B1
T,n =

n∑
t=1

(θ̂t − θ̂0)′Dh,t(θ̄t)uh,t = Op

(n
T

)
.

Since

n∑
t=1

(θ̂t − θ̂0)′Dh,t(θ̄t) = Op

(√
n

T

) n∑
t=1

Dh,t(θ̄t)

= Op

(
n3/2

T

)

it follows that B2
T,n = Op(n

−1/2)Op(n
3/2/T ) = Op(n/T ). As n/T → 0 It follows that√

T

n

n∑
t=1

(Ŷt+h|t − Y h)(Yt+h − Y h) =

√
T

n
(AT,n +B1

T,n +B2
T,n)

=

√
T

n
AT,n +Op

(√
n

T

)
=
√
T (θ̂0 − θ)′

1√
n

n∑
t=1

Dh,t(θ̄0)(uh,t − uh) +Op

(√
n

T

)
.

Next we analyze

n∑
t=1

(Ŷt+h|t − Ŷ h)2(Yt+h − Y h)2 =
n∑
t=1

(Ŷt+h|t − Ŷ h)2(uh,t − uh)2.

Using the above mean value expansions we obtain

Ŷt+h|t = µh,t(θ̂0) +Dh,t(θ̄t)
′(θ̂t − θ̂0)

= µ+Dh,t(θ̄0)′(θ̂0 − θ) +Dh,t(θ̄t)
′(θ̂t − θ̂0)

Ŷt+h|t − Ŷ h = D̃h,t(θ̄0)′(θ̂0 − θ) + Ψ̃h,t(θ̂t, θ̂0)
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where

D̃h,t(θ̄0) = Dh,t(θ̄0)− n−1
n∑
s=1

Dh,s(θ̄0)

Ψ̃h,t(θ̂t, θ̂0) = Dh,t(θ̄t)
′(θ̂t − θ̂0)− 1

n

n∑
s=1

Dh,s(θ̄s)
′(θ̂s − θ̂0).

It follows that

n∑
t=1

(Ŷt+h|t − Ŷ h)2(Yt+h − Y h)2 =
n∑
t=1

(θ̂0 − θ)′D̃h,t(θ̄0)D̃h,t(θ̄0)′(θ̂0 − θ)(uh,t − uh)2

+

n∑
t=1

Ψ̃h,t(θ̂t, θ̂0)2(uh,t − uh)2

+ 2
n∑
t=1

(θ̂0 − θ)′D̃h,t(θ̄0)Ψ̃h,t(θ̂t, θ̂0)(ut+j − uh)2

= C0
T,n + C1

T,n + 2C2
T,n .

For the leading term we obtain

C0
T,n = Op(T

−1)Op(n) = Op(n/T )

For the second term C1
T,n we note that

n∑
t=1

||θ̂t − θ̂0||2||Dh,t(θ̄t)||2(uh,t − uh)2 = Op

( n
T 2

) n∑
t=1

||Dh,t(θ̄t||2(uh,t − uh)2 = Op(n
2/T 2).

Since the mean adjustment does not affect the order of magnitude we conclude that

C1
T,n = Op(n

2/T 2).

For the last term C2
T,n we have

n∑
t=1

(θ̂0 − θ)′Dh,t(θ̄0)Dh,t(θ̄t)
′(θ̂t − θ̂0) = Op

(
1√
T

)( n∑
t=1

Dh,t(θ̄0)Dh,t(θ̄t)

)
Op

(√
n

T

)
= Op(n

3/2/T )

and, since the mean-adjustments do not affect the order of magnitude,

C2
T,n = Op(n

3/2/T 3/2).
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Combining these results yields

T

n

n∑
t=1

(Ŷt+h|t − Ŷ h)2(Yt+h − Y h)2

=
1

n

n∑
t=1

√
T (θ̂0 − θ)′D̃h,t(θ̄0)D̃h,t(θ̄0)′

√
T (θ̂0 − θ)(ut − uh)2 +Op

(√
n

T

)
.

In the same manner we can analyze the estimator for the long run variance. Let V̂n,T = Γ̂0,n,T +

2
∑h−1

j=1 Γ̂j,n,T with

Γ̂j,n,T =
1

n

n∑
t=1+j

(Ŷt+h|t − Ŷ h)(Ŷt+h−j|t − Ŷ h)(Yt+h − Y h)(Yt+h−j − Y h)

T

n
Γ̂j,n,T =

1

n

n∑
t=1

√
T (θ̂0 − θ)′D̃h,t(θ̄0)D̃t+h−j(θ̄0)′

√
T (θ̂0 − θ)′(uh,t − uh)(ut+h−j − uh) +Op

(√
n

T

)
.

It follows that

T

n
V̂n,T = E

 1

n

(
n∑
t=1

√
T (θ̂0 − θ)′D̃t+h(θ)(uh,t − uh)

)2
+ op(1).

Finally we obtain

1√
nVn,T

n∑
t=1

(Ŷt+h|t − Ŷ h)(uh,t − un) =

1√
n

n∑
t=1

(θ̂0 − θ)′D̃h,t(θ)(uh,t − uh)√√√√E

[
1
n

(
n∑
t=1

(θ̂0 − θ)′D̃h,t(θ)(uh,t − uh)

)2
] + op(1)

d→ N (0, 1)
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OA.4 Critical values of dmT,h

Table OA.7: Critical values of dmT,h depending on π

π α = 0.01 α = 0.05 α = 0.10

0.05 −8.84 −6.11 −5.01
0.10 −7.98 −5.33 −4.26
0.15 −7.42 −4.83 −3.80
0.20 −6.96 −4.48 −3.46
0.25 −6.60 −4.16 −3.18
0.30 −6.16 −3.87 −2.93
0.35 −5.84 −3.62 −2.72
0.40 −5.54 −3.40 −2.53
0.45 −5.22 −3.16 −2.33
0.50 −4.93 −2.96 −2.16
0.55 −4.60 −2.73 −1.99
0.60 −4.29 −2.52 −1.82
0.65 −3.97 −2.32 −1.65
0.70 −3.65 −2.11 −1.49
0.75 −3.27 −1.89 −1.32
0.80 −2.91 −1.65 −1.15
0.85 −2.46 −1.40 −0.96
0.90 −2.00 −1.12 −0.76
0.95 −1.38 −0.76 −0.51

0.96 −1.23 −0.68 −0.46
0.97 −1.06 −0.58 −0.39
0.98 −0.86 −0.47 −0.31
0.99 −0.61 −0.33 −0.22

Note: π denotes the ratio T/ (T + n) where n is the
size of the evaluation sample and T + n is the full
sample size. H0 is rejected at the significance level
α if dmT,h is smaller than the critical value. Critical
values are based on 1 million simulations.
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