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Abstract

This paper proposes parametric two-step procedures for assessing the stability of

cross-sectional dependency measures in the presence of potential breaks in the marginal

distributions. The procedures are based on formerly proposed sup-LR tests in which

restricted and unrestricted likelihood functions are compared with each other. First,

we show theoretically that standard asymptotics do not hold in this situation. We pro-

pose a suitable bootstrap scheme and derive test statistics in different commonly used

settings. The properties of the test statistics and precision of the associated change-

point estimator are analyzed and compared with existing non-parametric methods in

various Monte Carlo simulations. These studies reveal advantages in test power for

higher-dimensional data and an almost uniform superiority of the sup-LR test in terms

of precision of the change-point estimator. We then apply this method to equity returns

of European banks during the financial crisis of 2008.
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1 Introduction

Testing stability of cross-sectional dependence in multivariate time series models has received

considerable attention over recent years, both in terms of methodological advance and in

applications. In financial econometrics, those methods find application to asset price data

subject to financial crisis or policy shocks. In the context of financial crisis, this phenomenon

is usually called shift contagion and has been formally analyzed first by King and Wadhwani

[1990] who use recursively calculated sample correlations to assess stability of the correlation
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over the considered sample. In an important contribution, Forbes and Rigobon [2002] stress

that in equity markets increases in volatility of some equity market often precede an increase

in correlation (or some other dependency measure). Therefore, before testing for constant

correlation, potential changes in variances have to be taken into account. These procedures

test constancy of the marginal distributions in a first step, eliminate potential structural

changes in the margins by suitable transformations and then test constancy of the cross-

sectional dependence in step two. We will call such procedures two-step testing procedures

in the following.

In general, there exist two fundamentally different approaches in a structural change context:

likelihood-ratio-type tests that rely on some parametric model and tests imposing hypothesis

on moments or quantile exceedance-probabilities, that use cumulated sums of empirical

counterparts.

A seminal contribution for the first approach is Andrews [1993] who derived asymptotic tests

for (partial) structural changes in a generalized method of moments framework. One class of

these tests are supremum likelihood ratio type (sup-LR-type) tests. In a multivariate model,

parameters are partitioned into those that change under the null hypothesis of constancy

and the alternative and nuisance-parameters that are invariant under null and alternative

hypothesis. For any change-point candidate, the sample is divided into two sub-samples

and parameter stability is rejected, if the difference between two GMM objective functions

becomes too large. This method has first been applied in the context of constant correlation

by Dias and Embrechts [2004].

Within the latter class one can distinguish tests imposing constancy on cross-moments of the

multivariate system and tests imposing constancy of the copula. Stability is rejected if the

fluctuations in the cumulated sums of their empirical counterparts exceed certain critical

values. Important contributions in an econometric context include Aue et al. [2009] for

covariances, Wied et al. [2012b] for correlations, Bücher et al. [2014] and Rémillard [2017]

for copulas.

In both frameworks, two-step procedures have been proposed. While the latter framework

was tackled in Demetrescu and Wied [2019], Blatt et al. [2015] worked in the first framework

by analyzing shift contagion using a multivariate normal distribution. Our aim is to continue

the work in Blatt et al. [2015] by deriving appropriate sup-LR-type statistics in different

parametric models, which are typically used for financial time series data. The motivation

for using such tests is that, if the assumed model is correct and different from a normal

distribution model, a parametric test might have higher power than a non-parametric test.

To the best of our knowledge, test statistics for different multivariate distributions have not

been explored in the literature before.

Critical values for the tests are obtained by bootstrap approximations. In particular, these

bootstrap approximations are used because it cannot be expected that the usage of trans-

formed/standardized data (using piecewise constant variance estimators, GARCH-residuals

or empirical cumulative distribution functions) in step 2 leaves the asymptotics unaltered.

While Demetrescu and Wied [2019] derived analytic results for the residual effects in non-

parametric models (see also Duan and Wied, 2018), the first contribution of this paper is to

quantify the impact of transforming the original data by Monte Carlo simulations.

Secondly, after showing that the residual effect matters quantitatively in commonly used

models, we move to compare power of the different approaches after correcting for the
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invalidity of standard asymptotics. Moreover, the Monte Carlo study compares the ability

of parametric and non-parametric procedures to detect and date structural changes in the

sequential setup we are interested in. Our simulation study extends simulation results in

Galeano and Peña [2007] who compare Gaussian sup-LR and fluctuation tests in the case

of variance/covariance changes. Apart from Demetrescu and Wied [2019], we also include

the recently proposed tests for constant copulas by Bücher et al. [2014] (embedded in the

two-step-procedure) in our comparison.

If test and estimation procedures are constructed with applications to finance or macroe-

conomics in mind, it is natural to study their behaviour in settings that feature typical

characteristics of financial data. Therefore we allow for conditionally heteroscedastic data

at the margins and adjust our test procedures accordingly. In a first simulation study

parametric and non-parametric methods building on the joint distribution function are ex-

amined using data generated from multivariate Gaussian distributions that allows us to

abstract from issues with non-trivial parameter estimation. Performance of copula-based

methods is compared under non-linear dependence by generating data from t-copulas in a

second simulation study. Due to its practical relevance, dimensionality effects are also taken

into account. Some attention is devoted to the situations where the test procedures are

applied under misspecification, such as choosing the wrong joint distribution function or

copula within the sup-LR framework.

While we find strong empirical power advantages of sup-LR-type tests over fluctuation tests

in when data are sampled from a multivariate Gaussian distribution, results are more mixed

in the case of copulas. Here, the sup-LR test does not necessarily provide the strongest

results, presumably caused by a large degree of parameter uncertainty. Should one operate

in these settings, sup-LR tests under the simplest parametric assumption, namely that

of a multivariate Gaussian distribution or copula, provide a suitable alternative to non-

parametric methods.1 Also one might use both tests and use a simple error correction scheme

like the Boole-Bonferroni method to correct for multiple testing of the same hypothesis.

Results are stronger when it comes to estimating change-points: in almost every considered

case, the parametric sup-LR method yields better estimators in terms of bias and variance,

irrespectively of correct or incorrect model specification. If precise knowledge on the timing

of regime-shifts is of central importance, for example in a portfolio management situation,

one should rather use a parametric method. Even if one does not want to rely on a certain

specification, our results strongly suggest the sup-LR framework under a Gaussian assump-

tion to achieve useful results.

The structure of the paper is as follows: First, section 2 introduces the hypotheses pairs used

in the two-step procedure and the sup-LR test framework, moreover it contains some analyt-

ical high-level background. Section 3 applies these results to several parametric frameworks

in simulation studies, while an illustration of the discussed methods is given in section 4, us-

ing bank equity returns around the financial crisis of 2008. Section 5 gives a conclusion, while

the appendix contains the proofs. In the supplementary material we provide an overview

about all non-parametric test frameworks (moment-based fluctuation and empirical copula

tests) used in the simulation study. With regard to the moment-based fluctuation test,

there are some new analytical derivations. We also present simulation evidence under serial

independence, supporting the validity of our bootstrap scheme and confirming the simula-

1This has also strong computational advantages relative to the correctly specified sup-LR test.
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tion evidence for empirical power and break point estimation from the GARCH-simulations.

Moreover, the supplementary material contains a third application using European govern-

ment bond spreads. In a second application to Oil and EURO STOXX 50 return data, we

demonstrate that ignoring the residual effect can actually lead to wrong test decisions.

2 Theoretical Framework

For t = 1, . . . , n, let Xt ∼ (δ(t), θ(t), η) be a multivariate random variable with dimen-

sion m and joint density ft(·) = (f1,t(·), . . . , fm,t(·)). δ(t) ∈ Θδ ⊂ Rkδ denotes a pos-

sibly time-varying kδ-dimensional parameter vector shaping its dependence structure and

θ(t) = [θ′1,(t), ..., θ
′
m,(t)]

′ denotes a possibly time-varying vector consisting of the parame-

ters shaping the marginal distributions, indexed by i, with θi,(t) ∈ Θθ ⊂ Rkθ . Moreover,

η ∈ Θδ ⊂ Rkη is another parameter vector which is assumed to be constant throughout

all settings. We are interested in changes in δ(t) and/or θ(t) and allow for a time-constant

nuisance parameter η.

Let the change-point corresponding to dimension i be denoted by li and lD the change-point

of the dependency-structure and further assume l1 ≤ l2 ≤ ... ≤ lm ≤ lD. The particular

order of change-points merely eases notation and does not lead to loss of generality, since

the asymptotics in sequential procedures are not affected from switching the change-point

order. Denoting the time index by t, one formally has

Xt ∼ (θ1,1, θ2,1, · · · , θm,1, δD,1) for t = 1, ..., l1

Xt ∼ (θ1,2, θ2,1, · · · , θm,1, δD,1) for t = l1 + 1, ..., l2

· · · · · ·

Xt ∼ (θ1,2, θ2,2, · · · , θm,2, δD,1) for t = lm + 1, ..., lD

Xt ∼ (θ1,2, θ2,2, · · · , θm,2, δD,2) for t = lD, ..., n

with at most m + 1 asymptotically distinct break points. Note that, defining λi := li
n , two

change-points are asymptotically distinct if λ1 6= λ2 as n → ∞. The ordering of the break

dates reflects a situation where shift contagion is present: at first, there is a change in mean

and variance of one variable (e.g. a stock market index of country A), followed by a change

in the second (country B), third (country C) variable and so forth. The correlation between

both markets changes at some later point in time, lD. Note that one could, but does not

have to assume that the Xt are independent between the change-points, see the discussion

in the end of Section 2.

The following hypotheses pairs are relevant for the sequential procedures under consideration

and have appeared in this or slightly different forms throughout the existing literature:

Hypotheses Pair 1 (Marginal Distributions). For every margin i, we test:

H0 : θi,(1) = ... = θi,(n) against

H1 : θi,(1) = ... = θi,(li) 6= θi,(li+1) = ... = θi,(n) for some li ∈ {2, . . . , n− 1}.
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Hypotheses Pair 2 (Dependency, Constant Margins).

H0 : δ(1) = ... = δ(n) with θi,(1) = ... = θi,(n) ∀ i = 1, ...,m against

H1 : δ(1) = ... = δ(lD) 6= δ(lD+1) = ... = δ(n) for some lD ∈ {2, . . . , n− 1}

with θi,(1) = ... = θi,(n) ∀ i = 1, ...,m

If Pearson’s correlation matrix is used to measure cross-sectional dependency, Hypotheses

Pair 2 is in line with the test proposed in Wied et al. [2012b] who extend the covariance test

from Aue et al. [2009] to moment hypothesis on correlations. In a shift contagion situation

it comes natural to extend the first two hypotheses pairs into a joint framework:

Hypotheses Pair 3 (Two-Step Testing Procedure).

H0 : δ(1) = ... = δ(n)

θ1,(1) = ... = θ1,(l1), θ1,(l1+1) = ... = θ1,(n)

· · · · · · · · ·

θm,(1) = ... = θm,(lm), θm,(lm+1) = ... = θm,(n)

for some (l1, . . . , lm) ∈ {2, . . . , n− 1}m against

H1 : δ1 = δ(1) = ... = δ(lD) 6= δ(lD+1) = ... = δ(n) = δ2 for some lD ∈ {2, . . . , n− 1}

θ1,(1) = ... = θ1,(l1), θ1,(l1+1) = ... = θ1,(n)

· · · · · · · · ·

θm,(1) = ... = θm,(lm), θm,(lm+1) = ... = θm,(n)

for some (l1, . . . , lm) ∈ {2, . . . , n− 1}m.

Hypotheses Pair 3 allows for changes in the marginal distributions under both the null and

alternative hypothesis. In particular, there is no stationarity under the null hypothesis.

Under the null, we have constant dependence and under the alternative, we have a two-

regime model in the dependence structure.

We move on to propose a framework which uses fully specified parametric models in order

to evaluate parameter stability and test the hypotheses laid out before. The framework

goes back to the seminal contribution of Andrews [1993] who suggests a method which is

essentially applicable for all GMM-type estimators, such as maximum-likelihood and pseudo-

maximum-likelihood. The framework is the following: The sample is divided into two sub-

samples for any j = π · n, π ∈ [π, π], 0 < π < π < 1, where parameters are divided into

those that change under the null and alternative hypothesis and nuisance parameters that

are invariant under null and alternative, denoted by η. Parameter constancy is tested by

forming a sequence of likelihood-ratio test statistics for all change point candidates. The

testing function is given by the log-likelihood function and the test statistic for a fixed j is

given by the difference of the log-likelihood under the restricted and the unrestricted ML-

or pseudo-ML-estimator. No restriction here means that the parameter, which is tested

for constancy, is calculated based on X1, . . . , Xj and Xj+1, . . . , Xn separately. We note

that, while the framework is based on Andrews [1993], that paper does not look directly

at these test statistics, but on “supLR-type” statistics which are based on the differences

of GMM-objective functions evaluated at the restricted and unrestricted estimator. We use
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the likelihood functions themselves in order to avoid calculating the scores for each of our

parametric models.

In the following, we shortly present the parametric frameworks for the first two hypotheses

pairs, which are known from Andrews [1993]. Hypotheses Pair 3 is discussed afterwards.

Testing constancy of marginal distributions, i.e. Hypotheses Pair 1, is performed with a test

statistic for dimension i that is based on

Ai,j := Aj(θ̂i,0, θ̂i,1, θ̂i,2, η̂) := 2
(
L(θ̂i,1, θ̂i,2, η̂)− L(θ̂i,0, η̂)

)
(1)

with

L(θ̂i,1, θ̂i,2, η̂) =

j∑
t=1

li,t(θ̂i,1, η̂) +

n∑
t=j+1

li,t(θ̂i,2, η̂) and

L(θ̂i,0, η̂) =

n∑
t=1

li,t(θ̂i,0, η̂).

Here, li,t(·) denotes the contribution to the log-likelihood for margin i from observation t con-

ditionally on the observations from 1 to t−1 (with the convention that the first contribution

li,1(·) depends on some initial value), i.e., li,t(θi, η) = fi,t(xt|xt−1, . . . , x1; θi, η). Moreover,

θ̂i,1 = θ̂i,1,j is the ML-estimator for θi based on X1, . . . , Xj , where j := [πn] (the floor func-

tion is omitted in the following for brevity) and θ̂i,2 = θ̂i,2,j the one based on Xj+1, . . . , Xn,

θ̂i,0 the one based on X1, . . . , Xn and η̂ the ML estimator based on X1, . . . , Xn for the

constant nuisance parameter η. The estimation of the parameter θi is always performed

conditionally on η̂.

Regarding Hypotheses Pair 2, we restrict the analysis to the case in which we can consistently

estimate the true dependence parameter δ0 without having to estimate the marginals. Then,

the hypothesis is tested with a test statistic based on

Aj(δ̂0, δ̂1, δ̂2, η̂) = 2
(
L(δ̂1, δ̂2, η̂)− L(δ̂0, η̂)

)
(2)

with

L(δ̂1, δ̂2, η̂) =

j∑
t=1

lt(δ̂1, η̂) +

n∑
t=j+1

lt(δ̂2, η̂) and

L(δ̂0, η̂) =

n∑
t=1

lt(δ̂0, η̂)

and the definitions of lt(·) and the estimators δ̂0, δ̂1, δ̂2 similar to Hypotheses Pair 1.

We now state a theorem concerning the asymptotic distribution of the sequence of LR-

statistics. The result can be indirectly inferred from Andrews [1993] and Andrews and

Ploberger [1995]: As stated by Andrews and Ploberger [1995], the asymptotic distribution

is identical to the asymptotic distribution of the sup-Wald and the sup-LM statistics in-

troduced by Andrews [1993]. Moreover, they are shown to converge to the same limit in

our Theorem 1. On the other hand, we provide a direct proof, which is presented in the

Appendix. Before, we impose some regularity assumptions. Here and in the following, Γk

denotes the stochastic process given by a k-dimensional vector of independent Brownian
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motions.

Assumption 1. For Hypotheses Pair 1, it holds under the null hypothesis for margin i with

the true parameter θi,0:

1. The third derivatives of li,t(θi, η) with respect to θi exist and are uniformly bounded

for t = 1, . . . , n.

2. The estimators θ̂i,1,πn, θ̂i,2,πn and θ̂i,0 fulfill a functional central limit theorem, i.e.,

the stochastic process

T̂1,n(π) :=
√
n

θ̂i,1,πn − θi,0θ̂i,2,πn − θi,0
θ̂i,0 − θi,0


converges in distribution to the stochastic process

T1(π) :=


1
πH
−1/2
i · Γkθ (π)

1
1−πH

−1/2
i · Γkθ (1− π)

H
−1/2
i · Γkθ (1)


in D[0, 1]3kθ , the space of 3kθ-dimensional cádlág functions on the unit interval with

Hi = − lim
n→∞

1

n

n∑
t=1

∂2

∂θi∂θ′i
li,t(θi,0, η̂).

The limit Hi remains the same if θi,0 is replaced by a consistent estimator.

For Hypotheses Pair 2, it holds under the null hypothesis with the true parameter δ0:

1. The third derivatives of lt(δ, θ, η) with respect to δ exist and are uniformly bounded

for t = 1, . . . , n.

2. The estimators δ̂1,πn, δ̂2,πn and δ̂0 fulfill a functional central limit theorem, i.e., the

stochastic process

T̂2,n(π) :=
√
n

δ̂1,πn − δ0δ̂2,πn − δ0
δ̂0 − δ0


converges in distribution to the stochastic process

T2(π) :=


1
πH
−1/2 · Γkδ(π)

1
1−πH

−1/2 · Γkδ(1− π)

H−1/2 · Γkδ(1)


in D[0, 1]3kδ , the space of 3kδ-dimensional cádlág functions on the unit interval with

H = − lim
n→∞

1

n

n∑
t=1

∂2

∂δ∂δ′
lt(δ0, η̂).

The limit H remains the same if δ0 is replaced by a consistent estimator.
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Note that the expression of the limits appears to be natural if it can be assumed that (e.g.)

δ̂1,j−δ0 can be linearized by a Taylor approximation as
(∑j

t=1
∂2

∂δ∂δ′ lt(δ0, η̂)
)−1∑j

t=1
∂
∂δ lt(δ0, η̂)+

op(
√
n) and δ̂2,j − δ0 can be linearized as

(∑n
t=j+1

∂2

∂δ∂δ′ lt(δ0, η̂)
)−1∑n

t=j+1
∂
∂δ lt(δ0, η̂) +

op(
√
n). This follows from standard asymptotic theory for maximum likelihood estimators,

see e.g. van der Vaart [1998].

Definition 1. Consider a k-dimensional Brownian motion Γk. Then, the process Bk with

Bk(π) =
(Γkθ (π)− πΓkθ (1))′(Γkθ (π)− πΓkθ (1))

π(1− π)
(3)

is called standardized tied-down Bessel process of order k.

Theorem 1. Let Assumption 1 be true. Under Hypotheses Pair 1, it holds that Ai,πn, π ≤
π ≤ π, converges to a Bkθ -process. Under Hypotheses Pair 2, it holds that Aπn, π ≤ π ≤ π,

converges to a Bkδ -process. Both convergences take place in D[π, π], the space of cádlág-

functions over [π, π].

As we have the factor π(1 − π) in the denominator, it is clear that Π = [π, π] has to be a

strict subset of the unit interval. To test the null hypothesis of parameter constancy against

a single unknown change point, the sup-functional is applied to the components. Then, for

(2) (and similarly for (1)) and based on the continuous mapping theorem, in the framework

of Andrews [1993],

sup
π·n≤j≤π·n

Aj →d sup
Π
Bkδ(π) (4)

So the null hypothesis is rejected when the (1 − α)-quantile associated with the limiting

process from Theorem 1, defined by cα = P (supπ∈Π Bkδ > cα) = α is exceeded. Critical

values are tabulated in Andrews [1993] and depend on the degrees of freedom of the lim-

iting process and the considered interval Π of candidate change points. In every situation

considered in the following, the supremum of {Aj} is also used to estimate the change-point

by

l̂ = arg sup
πn≤j≤πn

Aj (5)

In practical applications sup- and argsup-functional are replaced by the max- and argmax-

functional, respectively. Following the suggestion of Andrews [1993] the set of potential

change points is chosen to be Π = [0.15, 0.85], the general case will however be maintained

in the notation.

Our testing idea for analyzing Hypotheses Pair 3 is similar to that of Hypotheses Pair 2.

The test statistic is given by

sup
π·n≤j≤π·n

Aj (6)

with Aj given in (2), but with the original data Xt, t = 1, . . . , n, replaced by appropriate

residuals X̂t, t = 1, . . . , n. Here, “residuals” implies that we transform marginal time se-

ries such that they do not exhibit breaks any more, while the dependence structure is not

8



affected by the transformation. In fact, we are interested in the dependence parameters

of the multivariate random vector Xt, but cannot make inference for it directly and need

a proper transformation instead. One simple example would the model Xt = ΣtR, where

Σt = diag(σt1, σt2) and R is bivariate centered normally distributed with covariance matrix(
1 ρ

ρ 1

)
. Here, inference about ρ would be based on X̂t = Σ−1

t Xt.

The type of transformations as well as the particular test statistics depend on the respective

parametric specification, which are derived in the following subsections. For example, the

setting allows for time-varying marginal variances if θ = θ1 for t ≤ j = πθn and θ = θ2

for t > j = πθn. Demetrescu and Wied [2019] discuss such models in detail and also argue

analytically and with numerical evidence why it is not possible to test Hypotheses Pair 3 with

the standard method of Andrews [1993] who assumes stationarity under the null hypothesis.

Allowing for unknown marginal parameters, which have to be estimated, introduces compli-

cations concerning the limit distribution. As pointed out in many studies on that matter,

using estimated parameters and change-point locations in the first step potentially affects

estimation of parameters and change-point locations in the second step, see Qu and Perron

[2007], Chan et al. [2009] and Demetrescu and Wied [2019].

In our setting, the intuition for getting a residual effect is the following: Define with

δ̃πn = (δ̂1,πn, δ̂2,πn) the vector of unrestricted ML-estimators and θ̂t the estimator for

the nuisance parameter θt such that lt(δ̃πn, θ̂t) := lt(δ̂1,πn, θ̂t, η̂) for t ≤ j = πn and

lt(δ̃πn, θ̂t) := lt(δ̂2,πn, θ̂t, η̂) for t > j = πn. We consider the special case that the whole

vector θt breaks at exactly one point πθn, πθ ∈ (0, 1), such that we have two estimators

θ̂1,πθn and θ̂2,πθn for θ1 and θ2, respectively. To ease notation, we omit the dependency of

the likelihood contributions on the nuisance parameter η̂. We impose an additional assump-

tion, which appears to be natural given that both δ̃π and δ̂ are consistent for δ under the

null hypothesis. We leave it as a task for further research to validate these assumptions in

the examples considered below; the theorem should mainly serve as an illustration how the

residual effect looks like in general.

Assumption 2. For Hypotheses Pair 3, it holds under the null hypothesis for the true

parameters θ1, θ2, δ0:

1. The third derivatives of lt(·, θt) with respect to θt exist and are uniformly bounded for

t = 1, . . . , n.

2. In the case of known θ1, θ2, the estimators δ̂1,πn, δ̂2,πn and δ̂0 satisfy a functional

central limit theorem, i.e., the stochastic process

T̂3,n(π) :=
√
n

δ̂1,πn − δ0δ̂2,πn − δ0
δ̂0 − δ0


converges in distribution to the stochastic process

T3(π) :=


1
πH
−1/2
∗ · Γkδ(π)

1
1−πH

−1/2
∗ · Γkδ(1− π)

H
−1/2
∗ · Γkδ(1)


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in D[0, 1]3kδ , the space of 3kδ-dimensional cádlág functions on the unit interval with

H∗ = − lim
n→∞

1

n

πθn∑
t=1

∂2

∂θ∂θ′
lt(δ̃0, θ1)− lim

n→∞

1

n

n∑
t=πθn+1

∂2

∂θ∂θ′
lt(δ̃0, θ2).

and Γkδ denoting a kδ-dimensional vector of independent Brownian motions. The limit

H∗ remains the same if δ0 is replaced by a consistent estimators.

3. The process

Bπn :=
√
n(θ̂1,πθn − θ1)′

1√
n

πθn∑
t=1

∂

∂θ

(
lt(δ̃πn, θ1)− lt(δ̂, θ1)

)
+
√
n(θ̂2,πθn − θ2)′

1√
n

n∑
t=πθn

∂

∂θ

(
lt(δ̃πn, θ2)− lt(δ̂, θ2)

)
converges to some limit process R(π) in D[π, π].

4. The process Cπn := ∂2

∂θ∂θ′
1
n

∑n
t=1

(
lt(δ̃(π), θt)− lt(δ̂, θt)

)
converges to zero in proba-

bility.

Then, we have the following theorem, whose proof is given in the appendix:

Theorem 2. Under Assumption 2, it holds for Aπn(δ̃πn, δ̂, θ̂πn) := Aπn(δ̃πn, δ̂, θ̂πn, η̂) that

Aπn(δ̃πn, δ̂, θ̂πn)⇒d Bl(π) +R(π),

where the residual effect is given by R(π).

Simulation evidence supports using a residual bootstrap scheme, which leads to correctly

sized tests. Under the assumption of proper transformation prior to step two, we can use a

simple residual bootstrap scheme, which is now briefly lined out: Let a sample X̂∗1 , ..., X̂
∗
n

be drawn from X̂1, ..., X̂n. For any bootstrap repetition b, let the sup-LR test statistic from

(1) or (2) be denoted by supAbj , such that the p-value follows as

p̂ =
1

B

B∑
b=1

1{supAbj>supAj} (7)

If the estimation error in the first step could be ignored, it would be reasonable to use the

same critical values as in Hypotheses Pair 2, because the difference of estimated parameters

under alternative and null remains exactly the same.

The way in which the sample X̂∗1 , ..., X̂
∗
n is drawn, depends on the actual assumption on the

serial dependence of the Xt. If one assumes that they are independent between the change-

points, one obtains independent draws with replacement. While this strong assumption is

often violated in practice, there is a certain consensus in financial econometrics that serial

dependence takes the form of (conditional) heteroscedasticity which can be captured by

GARCH or related processes. Some empirical evidence for asset returns can be found in

Cont [2001]. Chuang and Lee [2014] and Bartram et al. [2007] use for example a GJR-

GARCH(1,1)-t model while Candelon and Manner [2010] employ a SWARCH-approach and

Andreou and Ghysels [2003] use GARCH(1,1)-t and GARCH(1,1)-normal models. In order
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to focus on the relevant aspects in two-step testing procedures, we restrict ourselves to the

simplest case of an univariate GARCH(1,1)-structure from Bollerslev [1986] for all marginal

distributions and apply appropriate univariate filters, e.g. we consider GARCH residuals.

When testing constant marginal distribution, the serial dependence is taken into account by

using an appropriate covariance-matrix as in Blatt et al. [2015]. Before testing for constant

cross-sectional dependence, we estimate piecewise or full-sample GARCH-residuals, depend-

ing on the test result in the first step. This way, we deal with almost i.i.d. data, as Bücher

et al. [2015] do with the rationale that the dependence structure is not affected by this

kind of filtering. Consequently we can draw independent draws with replacement from the

GARCH residuals in the second step. If one assumes other forms of serial dependence, one

might have to resort to a block-bootstrap scheme. Our numerical results however indicate

validity of the bootstrap with replacement in the presence of volatility clustering, consistent

with evidence from the references given above.

With these preliminary remarks out of the way, the sup-LR framework obviously requires

assumption of a particular parametric model, while the particular moments which are subject

to structural changes need to be specified in the fluctuation test framework. We therefore

turn to a description of models that we use in our simulation study and the way they enter

the testing procedures.

3 Simulation Evidence for Selected Parametric Models

This section uses several commonly used parametric settings, to evaluate finite sample prop-

erties of the parametric and non-parametric tests. We assume GARCH(1,1)-margins with

mean zero and at most one change in the unconditional variance σ22. We denote the con-

ditional variance by h2
i,t. The state and volatility memory factors (α, β) are regarded as

time-invariant nuisance parameters. In both testing frameworks we therefore employ the

HAC-consistent estimator proposed by Andrews [1991] to obtain correctly sized tests in the

first step. GARCH-residuals are computed the usual way, either over the full sample or

piece-wise, if the test for constant variance rejects Hypotheses Pair 1.

The main part of interest is step two: first, empirical rejection rates under H0 are reported,

i.e. the correlation coefficient is kept constant while there are changes in the unconditional

variance (scenario 1). The extent to which the unconditional variance changes is controlled

by a tuning parameter s. We report the asymptotic and bootstrapped critical values to

demonstrate the failure of standard asymptotics. In a second study we compute empirical

power under changing dependency parameters (scenario 2). Additionally the Monte Carlo

bias and Mean Squared Error of each break point estimator reveal a superiority of the

sup-LR framework that is robust to model misspecification.

3.1 Gaussian Distribution

The easiest way to model cross-sectional dependence is a multivariate Normal distribution,

parametrized in terms of correlations. Although most likely not the best choice in many

cases, it provides a good starting point and offers some useful insight into more complicated

models. We impose the regularity condition that variances are bounded away from zero. In

2Often these methods are applied to daily equity returns, where it is reasonable to assume zero means.
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such a situation, one can test Hypotheses Pair 3 by setting θi = σ2
i and δi = Pi. In the

fluctuation test framework, this specification boils down to the CUSUM of squares test from

Wied et al. [2012a].

Test Statistics The sup-LR-analogue follows from the probability density of a Gaussian

random variable

f(Xi,t;σ
2
i ) =

1√
2πσ2

i

exp
(
−
X2
i,t

2σ2
i

)
the log-Likelihood for full-sample estimation is given by

L(Xi, σ
2
0) = −n

2
log(2π)− n

2
log(σ2

0)−
n∑
t=1

X2
t,i

2σ2
0

Dividing the sample at any j yields

L(Xi, σ
2
i,1, σ

2
i,2) =− j

2
log(2π)− j

2
log(σ2

i,1)−
j∑
t=1

X2
i,t

2σ2
i,1

− n− j
2

log(2π)− n− j
2

log(σ2
i,2)−

n∑
t=j+1

X2
i,t

2σ2
i,2

for the log-likelihood, where σ2
i1

and σ2
i,2 are the partial-sample estimators. Evaluating the

difference of the log-likelihood under full-sample and partial-sample estimators gives after

some simplifications the test statistic for a fixed j:

Aj(Xi; σ̂
2
i,0, σ̂

2
i,1, σ̂

2
i,2) = n log(σ̂2

i,0)− j log(σ̂2
i,1)− (n− j) log(σ̂2

i,2)

The limiting process of {Aj} is of the form of equation (3) and has k = 1 degrees of freedom.

Since we allow for volatility clustering, critical values depend on the HAC-consistent variance

estimator (Qu and Perron [2007] and Blatt et al. [2015]). Conditional on the test decision,

the data are standardized by

ĥ2
i,t = ĉi,0 + α̂i,0Xi,t−1 + β̂i,0h

2
i,t−1

Ẑi,t =
Xi,t

ĥi,t

if no break was detected or by

ĥ2
i,t = ĉi,1 + α̂i,0Xi,t−1 + β̂i,0h

2
i,t−1

Ẑi,t =
Xi,t

ĥi,t
for t = 1, ..., li

ĥ2
i,t = ĉi,2 + α̂i,0Xi,t−1 + β̂i,0h

2
i,t−1

Ẑi,t =
Xi,t

ĥi,t
for t = li, ..., n

(8)

For the piecewise standardized data, full-sample and partial-sample ML-estimators follow
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from the simplified log-likelihood, now given by

L(Ẑ;P0) =− n

2
log |P0| −

1

2

n∑
t=1

Ẑ
′

tP
−1
0 Ẑt

L(Ẑ;P1, P2) =− j

2
log |P1| −

1

2

j∑
t=1

Ẑ
′

tP
−1
1 Ẑt −

n− j
2

log |P2| −
1

2

n∑
t=j+1

Ẑ
′

tP
−1
2 Ẑt

yielding

P̂0 =
1

n

n∑
t=1

(
Ẑ1,tẐ2,t · · ·
· · · Ẑm−1,tẐm,t

)
, and

P̂1 =
1

j

j∑
t=1

(
Ẑ1,tẐ2,t · · ·
· · · Ẑm−1,tẐm,t

)
, P̂2 =

1

n− j

n∑
t=j+1

(
Ẑ1,tẐ2,t · · ·
· · · Ẑm−1,tẐm,t

)

where it was used that
∑j
t=1 Ẑ

2
i,t = 1 and

∑n
t=j+1 Ẑ

2
i,t = 1 for every dimension i by construc-

tion of Ẑ. Given j, the likelihood-ratio test statistic for centered and standardized Gaussian

data is obtained as

Aj = n · log(|P̂0|)− j · log(|P̂1|)− (n− j) · log(|P̂2|)

Had one based the test statistic on the unobserved Zt, a reasonable approximation for

the critical value associated with the sup-functional sup
π·n≤j≤π·n

Aj would be given by the

appropriate quantile of sup
π∈Π
B(m−1)m/2(π).

Finite-Sample Properties In the first Monte Carlo exercise we apply both sequential

testing procedures to data generated according to

Zt
i.i.d.∼ N(0, P1) for t = 1, ..., lD

Zt
i.i.d.∼ Nt(0, P2) for t = lD, ..., n

h2
1,1 = 1 , h2

1,t = αZ2
1,t−1 + βh2

1,t−1 for t = 2, ..., n

X1,t = h1,tZ1,t for t = 1, ..., l1

X1,t = sh1,tZ1,t for t = l1, ..., n

h2
2,1 = 1 , h2

2,t = αZ2
2,t−1 + βh2

2,t−1 for t = 2, ..., n

X2,t = h2,tZ2,t for t = 1, ..., l2

X2,t = sh2,tZ2,t for t = l2, ..., n

· · · · · · · · ·

h2
m,1 = 1 , h2

m,t = αZ2
m,t−1 + βh2

m,t−1 for t = 2, ..., n

Xm,t = hm,tZm,t for t = 1, ..., l2

Xm,t = shm,tZm,t for t = l2, ..., n

with l1 < l2 < lD. The change points are chosen to be distinct for the first margin, all
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other margins, and the joint distribution, consistent with the interpretation that dimension

one corresponds to the ’origin country’ of a financial crisis which spreads to other countries

(dimensions i > 1) with a certain time lag. To ensure comparability of results across different

sample sizes, we set λ1 ≡ l1
n = 0.5, λ2 ≡ l2

n = 0.6, and λD ≡ lD
n = 0.7. The sample sizes are

set to 100, which seems reasonable for quarterly data, 500 which should be reached either

in long macroeconomic time series or (daily) financial market data and 1500 to approximate

asymptotic behavior. Depending on the sample size, change-points therefore are given by

n l1 l2 lD

100 50 60 70

500 250 300 350

1500 750 900 1050

For scenario 1 the correlation is kept constant by setting ρ2 = 0.4. In order to focus on

the important aspects, the magnitude of parameter changes in each marginal distribution

is identical and ranges over s ∈ [1, 1.5, 2, 2.5, 3]. The case of s = 1 corresponds to testing

Hypotheses Pair 2 while all other cases s1 = s2 6= 1 test Hypotheses Pair 3 where H0 is true.

The nominal significance level is set to 5 %, the corresponding are either taken from Kiefer

[1959] for the fluctuation tests and Andrews [1993] for the sup-LR test or simulated using

1000 Monte Carlo repetitions on a discrete grid with 10.000 elements. We use 1000 Monte

Carlo repetitions for each parameter constellation.

Results are shown in table 1: the test for constant marginal distributions has higher power

for X1 than for X2, which is consistent with both theory and previous studies, as we set

λ1 = 0.5 and λ2 = 0.6.
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Table 1: Multivariate Gaussian, Scenario 1: Rejection Rates under H0

s n = 100 n = 500 n = 1500
Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test

Margins X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2

1 0.213 0.197 0.127 0.149 0.063 0.052 0.041 0.043 0.032 0.025 0.034 0.025
1.5 0.774 0.716 0.577 0.489 0.981 0.952 0.874 0.767 1 1 0.998 0.997
2 0.975 0.950 0.917 0.857 1 1 1 0.995 1 1 1 1

2.5 0.997 0.997 0.992 0.974 1 1 1 1 1 1 1 1
3 1 1 1 0.998 1 1 1 1 1 1 1 1

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 2 asym. boot. asym. boot. asym. boot. asym. boot. asym. boot. asym. boot.

1 0.028 0.040 0.065 0.038 0.021 0.030 0.052 0.044 0.035 0.042 0.048 0.036
1.5 0.022 0.035 0.101 0.053 0.014 0.024 0.078 0.070 0.022 0.030 0.068 0.054
2 0.016 0.026 0.101 0.058 0.020 0.025 0.068 0.052 0.026 0.035 0.061 0.051

2.5 0.020 0.040 0.092 0.050 0.014 0.025 0.064 0.053 0.028 0.035 0.062 0.053
3 0.019 0.049 0.088 0.052 0.014 0.026 0.067 0.051 0.029 0.037 0.063 0.052

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 3 asym. boot. asym. boot. asym. boot. asym. boot. asym. boot. asym. boot.

1 0.026 0.048 0.142 0.058 0.037 0.047 0.061 0.046 0.036 0.045 0.057 0.045
1.5 0.019 0.041 0.164 0.072 0.015 0.021 0.111 0.081 0.029 0.033 0.083 0.071
2 0.023 0.038 0.143 0.054 0.019 0.024 0.094 0.067 0.034 0.040 0.086 0.065

2.5 0.020 0.041 0.151 0.048 0.018 0.029 0.090 0.065 0.033 0.043 0.088 0.067
3 0.010 0.040 0.161 0.051 0.022 0.028 0.082 0.059 0.029 0.038 0.089 0.064

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 4 asym. boot. asym. boot. asym. boot. asym. boot. asym. boot. asym. boot.

1 0.014 0.031 0.164 0.037 0.040 0.049 0.079 0.055 0.051 0.056 0.089 0.064
1.5 0.018 0.032 0.177 0.050 0.029 0.034 0.137 0.095 0.041 0.046 0.119 0.096
2 0.017 0.029 0.185 0.047 0.030 0.032 0.126 0.079 0.041 0.048 0.119 0.088

2.5 0.020 0.038 0.181 0.048 0.032 0.034 0.117 0.074 0.041 0.046 0.113 0.088
3 0.011 0.029 0.188 0.040 0.026 0.033 0.119 0.076 0.044 0.047 0.117 0.093

The simulations reveal presence of the residual effect for every sample size, which appears

as soon as s 6= 1. In this case the bootstrap corrections increase the rejection rate of the

fluctuation close to the nominal significance level of 5 %, while the sup-LR test is corrected

for the increased rejection rates under H0. As n increases, we observe correctly sized test

decisions at each margin in both test frameworks. To obtain results on empirical power, the

correlation of the first regime is set to ρ1 = 0.4 and ρ2 varies symmetrically around ρ1 from

−0.1 to 0.9 in steps of 0.1. The dashed lines in figure 1 - 3 represent empirical power, if the

incorrect asymptotic critical values are used, in this way one can quantify the residual effect

on empirical power.
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Figure 1: Bivariate Gaussian, n=100, Scenario 2: Empirical Power
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Figure 2: Bivariate Gaussian, n=500, Scenario 2: Empirical Power
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Figure 3: Bivariate Gaussian, n=1500, Scenario 2: Empirical Power
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If one compares the bootstrap-corrected versions indicated by solid lines, the results for

testing constant correlation uniformly favor the sup-LR test. Although the fluctuation test

for constant marginal distributions outperforms the sup-LR test across all sample sizes

(see the upper panel of table 1), this result does not carry over to the second step of the

procedure, where the parametric framework delivers significantly higher power when testing

constant correlation. For example, at ρ2 = 0.6 and n = 500, the 95 %-confidence intervals

are [0.700, 0.755] for the sup-LR test and [0.231, 0.285] for the fluctuation test.

Next we consider dimensionality effects for different sample sizes. As can be seen from the

lower two panels of table 1, the residual effect slowly declines with dimension m in the

fluctuation test framework and even increases with m in the sup-LR-test framework. Hence,

empirical power in figure 4 - 6 is compared only using the respective bootstrap schemes.
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Figure 4: Multivariate Gaussian, n=100, Scenario 2: Empirical Power
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Figure 5: Multivariate Gaussian, n=500, Scenario 2: Empirical Power

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation for t>350

re
je

ct
io

n 
ra

te

fluct, m=2
fluct, m=3
fluct, m=4
sup−lr, m=2
sup−lr, m=3
sup−lr, m=4

18



Figure 6: Multivariate Gaussian, n=1500, Scenario 2: Empirical Power
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Across all sample sizes, the performance of the sup-LR test increases with the dimension

m. For n = 500 and ρ2 = 0.6, empirical power increases to 85 % (90 %) in the three

(four)-dimensional case, from around 65 % in the bivariate case. The dimensionality effect

is largely absent in the fluctuation test framework, where in the case of increasing correlation

empirical power even declines with the dimension m. Consequently the size advantage is now

even wider, the confidence intervals being [0.825, 0.870] for the sup-LR test and [0.142, 0.188]

for the fluctuation test in the three-dimensional case. Finally, in table 2, we consider Monte

Carlo bias and root mean-squared error of the break point estimator.

Table 2: Multivariate Gaussian, Scenario 2: Break Point Estimation

ρ2 n = 100 n = 500 n = 1500
Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test

m = 2 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -7.12 15.52 -4.99 18.50 -15.90 31.19 0.30 28.67 -24.86 48.19 3.63 20.10
0.1 -11.85 22.58 -10.63 24.28 -27.49 54.98 -13.31 65.87 -48.15 92.74 5.31 61.23
0.3 -17.07 27.62 -15.91 28.64 -70.63 124.07 -78.39 139.11 -136.95 268.24 -141.85 334.66
0.5 -17.94 28.12 -15.42 28.41 -81.37 136.53 -58.51 119.45 -178.67 341.36 -108.79 271.80
0.7 -13.42 22.41 -6.22 20.00 -33.39 72.49 -3.29 28.50 -39.56 109.57 -3.06 23.60
0.9 -8.77 16.08 1.28 5.61 -14.38 40.12 1.24 5.07 -12.41 50.33 0.90 3.84

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 3 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -6.04 12.92 -2.60 14.39 -11.48 11.04 2.17 11.26 -19.44 45.56 3.03 9.31
0.1 -11.85 20.36 -10.73 23.95 -21.94 41.99 -3.38 42.12 -38.49 99.70 6.80 27.92
0.3 -16.50 24.74 -17.27 29.60 -73.02 114.19 -75.60 136.95 -146.71 340.15 -97.70 279.38
0.5 -18.13 25.37 -14.83 28.50 -96.84 134.16 -57.00 118.38 -211.63 254.20 -65.65 207.47
0.7 -15.77 22.30 -3.51 17.40 -43.67 77.62 -0.62 17.49 -36.49 67.02 -1.23 12.75
0.9 -11.36 17.70 2.21 3.80 -16.55 39.81 1.64 2.72 -10.29 34.16 1.54 2.59

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 4 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -6.14 12.07 -0.16 9.59 -10.38 18.78 1.94 6.28 -15.29 26.51 2.04 5.10
0.1 -10.29 18.14 -6.78 20.63 -22.20 43.03 -2.99 35.95 -34.07 57.30 4.05 19.06
0.3 -15.78 23.42 -15.73 29.20 -72.64 109.31 -71.08 130.44 -145.14 240.08 -87.12 262.16
0.5 -17.56 24.13 -14.98 28.89 -101.63 131.12 -46.20 109.92 -231.42 332.23 -47.67 180.04
0.7 -17.54 23.20 -3.43 17.85 -77.96 83.47 1.08 11.46 -48.84 118.42 0.41 9.11
0.9 -14.79 20.39 2.63 4.09 -24.42 44.31 1.86 2.37 -8.22 41.38 1.74 2.22
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Table 2 paints a very clear picture: except for n = 100, m = 2 and small ρ2 both bias and

variance are considerably smaller for the sup-LR test. The fluctuation test underestimates

ld even for a change from ρ1 = 0.4 to ρ2 = 0.9 and n = 1500 as compared to the sup-LR

test, which has a negligible bias even for ρ2 = 0.7 (second panel). Results in the higher-

dimensional case (the bottom two panels) also favour the parametric framework: while using

the sup-LR framework the regime shift is estimated very accurately in the 4-dimensional

case compared to the (also precise) estimates in the two and three-dimensional set-up, break-

point estimation is not considerably improved with m in the fluctuation test framework.

This is especially true for situations of shift contagion, namely for increases in P . Since

scenarios with potential shift contagion are usually associated with increasing correlation,

the preceding findings suggest to use the sup-LR test, in particular when a precise estimation

of the change-point is desired.

Although there is some inconclusiveness for small samples we summarize from the simulation

results laid out in this section, that in moderate to large samples the sup-LR test with the

residual-bootstrap scheme has acceptable size properties under H0 and outperforms the

fluctuation test with a wild bootstrap scheme both in terms of detecting and estimating

regime-shifts.

3.2 t-copula

Test Statistics An increasingly popular way to model marginal and joint distribution

in separate steps is the use of copulas. When the copula is specified in some parametric

form, our testing framework directly can be directly applied. More specifically we explore

a setting where the cross-sectional dependence structure follows a t-copula. We still impose

GARCH-processes at each margin, such that step 1 of the sequential testing procedure

remains unchanged. Given the test result at step 1, data are standardized and subsequently

transformed by the cumulative distribution function of the Gaussian distribution, denoted

F (Xi,t, θi,t) evaluated at the ML-estimator σ̂i:

Ûi,t = F (Xi, σ̂i,1) for i = 1, ..., l̂i

Ûi,t = F (Xi, σ̂i,2) for i = l̂i + 1, ..., n if the test rejects

Ûi,t = F (Xi, σ̂i,0) for i = 1, ..., n̂ if not

(9)

The test for a constant t-copula is now based on Û . From the probability density of the

t-copula

c(Ût;P, ν) =
Γ(ν+m

2 )
(
Γ(ν2 )

)m−1(
Γ(ν+1

2 )
)m|P |0.5

(
m∏
i=1

(
1 +

Ŷ 2
i,t

ν

) ν+1
2

)(
1 +

1

ν
Ŷ

′

t P
−1Ŷt

)

with Ŷi,t = F−1(Ûi,t, ν) denoting the quantile function of a standardized t-distribution and

lΓ the log−Γ-function, the log-likelihood follows as

L(Û ;P0, ν) =n ·
(
lΓ(

ν +m

2
) + (m− 1)lΓ(

ν

2
)−m · lΓ(

ν + 1

2
)− 0.5 log |P0|

)
+

j∑
t=1

(
ν + 1

2

m∑
i=1

log

(
1 +

Ŷ 2
i,t

ν

)
− ν +m

2
log

(
1 +

Ŷ
′

t P
−1
0 Ŷt
ν0

))
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for the full-sample and

L(Û ;P1, P2, ν) =j ·
(
lΓ(

ν +m

2
) + (m− 1)lΓ(

ν

2
)−m · lΓ(

ν + 1

2
)− 0.5 log |P1|

)
+

j∑
t=1

(
ν0 + 1

2

m∑
i=1

log

(
1 +

Ŷ 2
i,t

ν0

)
− ν1 +m

2
log

(
1 +

Ŷ
′

t P
−1
1 Ŷt
ν0

))

(n− j) ·
(
lΓ(

ν +m

2
) + (m− 1)lΓ(

ν

2
)−m · lΓ(

ν + 1

2
)− 0.5 log |P2|

)
+

n∑
t=j+1

(
ν + 1

2

m∑
i=1

log

(
1 +

Ŷ 2
i,t

ν

)
− ν +m

2
log

(
1 +

Ŷ
′

t P
−1
2 Ŷt
ν

))

for the partial samples. ML-estimation requires numerical methods, such as EM-algorithms.

Let (P̂0, ν̂) and (P̂1, P̂2) denote the full-sample and partial-sample ML-estimator, we have

for a fixed j:

Aj = 2

(
L(Û ; P̂1, P̂2, ν̂)− L(Û ; P̂0, ν̂)

)

It is reasonable to approximate the distribution of the corresponding sup-LR test statistic

by the distribution sup
π∈Π
B(m−1)m/2(π) under the null hypothesis, if the residual effect could

be ignored. Full ML-estimation of the t-copula is extremely time-consuming, particularly in

higher dimensions, Demarta and McNeil [2005] therefore suggest a semi-parametric pseudo-

ML procedure sharing the asymptotic properties of full ML-estimation. In a first step, the

empirical Kendall’s tau matrix P̂ τ of the residuals is calculated as

P̂ τ =


ρ̂τ (Ẑ1, Ẑ1) · · · ρ̂τ (Ẑ1, Ẑn)

...
. . .

...

ρ̂τ (Ẑn, Ẑ1) · · · ρ̂τ (Ẑn, Ẑn)


where each element is given as the empirical pairwise Kendall’s tau coefficient.

ρ̂τ (Ẑn, Ẑn) =

(
n

2

)−1 ∑
1≤t1<t2≤n

sign
(
(Ẑt1,i − Ẑt2,i)(Ẑt1,j − Ẑt2,j)

)
The empirical Kendall’s tau matrix serves to construct a method-of-moments estimator for

P by P ∗ = sin(π2 P̂
τ ) and subsequently estimate νC , holding P ∗ fixed. Since the estimator

ν̂C does not have a closed-form solution, we follow Mashal and Zeevi [2002] and perform a

simple bisection algorithm over the first-order condition of the log-likelihood with respect

to νC . As pointed out by Mashal and Zeevi [2002] using Pseudo-ML-estimators affects the

limit distribution. This is unproblematic in our case, because a bootstrap scheme that could

also be used to approximate the appropriate limit distribution in small samples, is already

at hand.

In our simulations, we also consider the effects of misspecification of the t-copula. More

precisely, we assume that the marginal distributions are correctly specified and tested but

that the underlying copula is mistakenly assumed to be Gaussian, which (as a by-product)

reduces the computational effort in higher dimensions. The deviation of the test statistic

is relegated to appendix D. One could of course also discuss effects of misspecification at
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the margins. As this section is concerned with the performance of non-parametric and

parametric copula tests, the issue is omitted here.

Finite-Sample Properties Finite-sample properties are evaluated with data generated

from a t4-copula and subsequently transformed using the same GARCH(1,1)-process from

as before:

Ut
i.i.d.∼ Ct(P1, 4) for t = 1, ..., lD

Ut
i.i.d.∼ Ct(P2, 4) for t = lD, ..., n

Z1,t = Φ−1(U1,t)

Z2,t = Φ−1(U2,t)

h2
1,1 = 1 , h2

1,t = αZ2
1,t−1 + βh2

1,t−1 for t = 2, ..., n

X1,t = h1,tZ1,t for t = 1, ..., l1

X1,t = sh1,tZ1,t for t = l1, ..., n

h2
2,1 = 1 , h2

2,t = αZ2
2,t−1 + βh2

2,t−1 for t = 2, ..., n

X2,t = h2,tZ2,t for t = 1, ..., l2

X2,t = sh2,tZ2,t for t = l2, ..., n

with

P1 =

(
1 0.4

0.4 1

)
, P2 =

(
1 ρ2

ρ2 1

)

Generalizations to higher-dimensional cases are obtained by extending the correlation matrix

and subsequently transform data with the quantile function accordingly. Change-points are

set as before, however we restrict our attention to the cases of n ∈ {100, 500} and m ∈ {2, 3}.
Under this DGP we compare the non-parametric benchmark-test based on the empirical

copula from Bücher et al. [2014], lined out in appendix A, with the sup-LR test under

correct specification and under misspecification as Gaussian copula.
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Table 3: t-copula, Scenario 1: Rejection Rates under H0

s n = 100 n = 500
m = 2 EC-test t-Cop Gauss EC-test t-Cop Gauss

asym boot asym boot asym boot asym boot
1 0.043 0.031 0.032 0.247 0.043 0.051 0.053 0.040 0.316 0.046

1.5 0.043 0.045 0.055 0.261 0.054 0.048 0.076 0.054 0.322 0.050
2 0.034 0.044 0.053 0.247 0.068 0.050 0.067 0.048 0.310 0.054

2.5 0.037 0.042 0.047 0.249 0.054 0.051 0.069 0.046 0.316 0.053
3 0.042 0.039 0.045 0.242 0.051 0.052 0.066 0.044 0.311 0.051

m = 3 EC-test t-Cop Gauss EC-test t-Cop Gauss
asym boot asym boot asym boot asym boot

1 0.051 0.020 0.040 0.249 0.037 0.053 0.049 0.039 0.391 0.058
1.5 0.037 0.039 0.052 0.248 0.046 0.058 0.077 0.064 0.406 0.058
2 0.033 0.047 0.062 0.257 0.052 0.053 0.078 0.054 0.402 0.055

2.5 0.035 0.028 0.055 0.246 0.045 0.057 0.077 0.053 0.395 0.053
3 0.037 0.032 0.046 0.236 0.050 0.061 0.074 0.056 0.392 0.053

The empirical copula test keeps its size when testing for a constant copula, indicating that

piecewise standardization appropriately accounts changes in the margins and the i.i.d. mul-

tiplier process can be applied. Except for the case of moderate changes at the margins,

where Hypotheses Pair 2 is rejected too frequently, this also holds for the correctly speci-

fied sup-LR test, suggesting that the residual effect is present but less prominent than in

the previous section. Unsurprisingly, the misspecified sup-LR test does not keep its size

given the nominal level of 5 %, this is however appropriately corrected by the residual boot-

strap. Using the scheme lined out in section 2, empirical rejection rates are similar to the

bootstrapped sup-LR test under correct specification.

Figure 7: bivariate t-copula, n=100, Scenario 2: Empirical Power
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Figure 8: bivariate t-copula, n=500, Scenario 2: Empirical Power
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Figure 9: 3-variate t-copula, n=100, Scenario 2: Empirical Power
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Figure 10: 3-variate t-copula, n=500, Scenario 2: Empirical Power
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In contrast to before, results are mixed as no test is strictly superior. It appears that

the fluctuation test has slightly higher power if ρ2 < ρ1 while the result is flipped for

ρ2 > ρ1. This would be a prime situation for using both tests together with the Boole-

Bonferroni correction. Remarkably, the sup-LR test under misspecification does not perform

consistently worse than its correctly specified counterpart.

Table 4 however reveals that the sup-LR test yields considerably better results in estimating

the change-point, irrespective of whether the model is correctly specified or not. Even for

n = 500 and ρ2 = 0.9, lD is visibly biased in the fluctuation test framework, while lD is

already precisely estimated for ρ2 = 0.7. We also observe similar or even better results

of the misspecified sup-LR test compared to its correctly specified counterpart for samples

that might be too small for reliably estimating a t-copula. In addition, using the potentially

misspecified sup-LR test with a Gaussian copula has also large computational advantages.

Therefore we suggest using the sup-LR test whenever precise estimation of the change-point

is required. Within the sup-LR framework usage of any advanced model is only advantageous

if one has high confidence on the model’s appropriateness and the sample size (relative to

dimension) permits reliable estimation.
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Table 4: Multivariate t-copula, Scenario 2: Copula-Break Point Estimation

n = 100 n = 500
ρ2 EC-test sup-LR sup-LR, mis. EC-test sup-LR sup-LR, mis.

m = 2 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -10.09 18.02 -8.22 20.84 -8.76 21.06 -16.99 36.51 -2.30 36.03 -6.59 36.59
0.1 -14.06 21.95 -13.29 25.60 -12.81 25.36 -33.93 67.26 -24.15 76.52 -33.71 83.62
0.3 -17.93 25.32 -17.88 29.47 -16.17 28.46 -80.81 117.94 -81.27 113.03 -88.56 143.59
0.5 -20.52 27.01 -17.55 28.95 -15.80 27.93 -90.09 124.42 -79.34 112.89 -85.13 141.39
0.7 -16.82 23.06 -10.04 22.56 -9.71 22.42 -37.46 64.75 -4.99 38.94 -13.56 41.27
0.9 -10.41 15.85 -1.47 10.76 -0.37 10.67 -14.43 25.56 0.00 9.19 2.12 9.43

ρ2 EC-test sup-LR sup-LR, mis. EC-test sup-LR sup-LR, mis.
m = 3 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -8.06 13.18 -4.21 14.26 -3.50 14.06 -12.22 22.26 0.72 12.88 0.94 12.90
0.1 -12.32 19.03 -8.62 21.14 -10.62 22.03 -23.45 45.57 -10.17 52.72 -17.04 54.46
0.3 -17.32 24.03 -14.49 26.63 -15.27 27.06 -74.73 107.64 -79.06 137.33 -88.67 143.08
0.5 -18.94 25.09 -16.16 28.12 -14.22 27.05 -79.08 79.84 -69.52 127.49 -73.79 129.87
0.7 -13.36 19.72 -8.18 20.32 -6.05 19.56 -22.87 38.31 -2.97 26.25 -1.85 26.15
0.9 -6.70 11.65 -0.18 7.18 0.98 7.24 -8.21 13.93 0.40 4.20 2.12 4.69

4 Application to European Financial Sector Stocks

In a second practical example, we apply the non-parametric methods testing constant cop-

ula as lined out in section 3.2 to EURO STOXX 50 bank equity data around the finan-

cial crisis following the Lehman Brothers insolvency. Therefore we take daily log-returns

of BNP Paribas, Santander, ING Group, BBVA, Intesa Sanpaolo, Société Générale, and

Deutsche Bank from April-01-2004 to April-01-2010. All margins are assumed to follow a

GARCH(1,1)-process. Based on critical values 12.35 for the demeaned sup-LR test on con-

stant unconditional variances and 1.628 for the CUSUM of squares test (at 99 % nominal

level respectively), Hypotheses Pair 1 is rejected at each margin. Although there are some

minor differences in the break point estimates, this can also be seen graphically from rolling

(annualized) volatilities in section 4. Here, change-point and partial-sample estimators for

σi,1 and σi,2 are based on the results of the sup-LR test. Before moving to the second

step, we perform two diagnostic tests on the piecewise GARCH-residuals, reported in the

leftmost columns of section 4: the Ljung-Box test for autocorrelation does not reject the

null hypothesis for any dimension at the 10 % level, indicating that serial dependence is

eliminated by computing GARCH-residuals sufficiently well. We report the test result for

a lag-size of four, results are robust to different lags. The Kolmogorov-Smirnov test against

normality rejects in four of seven dimensions at the 1 % level and always at the 10 % level,

such that we operate the sup-LR test under misspecification.

Table 5: Estimation of EURO STOXX Financial Sector Stocks

Empirical copula test sup-LR test, Gauss-Copula Diagnostic tests

Qi λ̂i σ̂1 σ̂2 Ai λ̂i σ̂1 σ̂2 LB KS
BNP Paribas 4.92 2008-01-18 20.58 59.09 825.17 2008-01-17 20.48 59.10 0.48 0.09
Santander 5.41 2008-01-15 17.59 48.17 759.58 2008-01-14 17.48 48.20 0.89 1.4e-4
ING Group 5.47 2008-09-15 23.76 98.88 1579.87 2008-01-17 18.62 85.97 0.53 1.1e-7
BBVA 5.51 2008-01-15 17.11 44.92 698.93 2008-01-14 17.03 44.94 0.11 4.8e-5
Intesa Sanpaolo 4.83 2008-07-11 20.13 57.15 805.61 2008-07-10 20.00 57.20 0.76 0.02
Société Générale 5.93 2008-01-18 21.95 62.42 855.56 2007-07-25 19.23 58.40 0.11 0.04
Deutsche Bank 5.54 2008-07-01 22.06 72.15 1028.61 2008-06-24 21.86 71.94 0.84 2e-04
Copula (p-value) 0.0025 2007-06-05 0 2008-01-15
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As for the correlation matrix P , the null hypothesis of parameter stability is overwhelm-

ingly rejected; almost all 21 pairwise correlations increase after the change-point. From the

simulation results on l̂D in section 4.4, 2008-01-15 might be the more reliable change-point

estimate, largely coinciding with variance change-points of the single stocks. In addition, the

change-point estimate delivered by the non-parametric test is somewhat peculiar, since it

falls into a period before the actual extent of the financial turmoil became publicly known.

Using a sequential procedure again avoids biased change-point estimates, something that

could well occur using non-sequential procedures.

Figure 11: EURO STOXX Banks, Rolling Volatilities
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(e) Intensa Sanpaolo
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5 Concluding Remarks

We have proposed and analyzed parametric two-step procedures for assessing the stability

of cross-sectional dependency measures in the presence of potential breaks in the marginal

distributions. We have focused on sup-LR tests and it could be interesting or further research

to also look at sup-Wald, sup-LM or exponentially weighted test statistics in the spirit of

Andrews and Ploberger [1994]. Moreover, while we have tackled the case of serial dependence

when discussing volatility filtering, it might be interesting to also investigate e.g. changes

in VAR-filtering in the first step of the procedure.

Proofs

Proof of Theorem 1

We sketch the proof for Hypotheses Pair 2 with the proof for Hypotheses Pair 1 being similar.

The proof is based on Taylor approximations of li,t(θi, η̂) around the first component. First,

it holds

1

2
Ai,πn =

πn∑
t=1

(
lt(δ̂1, θ̂0, η̂)− lt(δ̂0, θ̂0, η̂)

)
+

n∑
t=πn+1

(
lt(δ̂2, θ̂0, η̂)− lt(δ̂0, θ̂0, η̂)

)
.

As we consider ML estimators, the first derivatives cancel so that we obtain with the as-

sumption on the third derivatives

Ai,πn =
(
δ̂0 − δ̂1

)′ πn∑
t=1

∂2

∂δ∂δ′
lt(δ̂1, θ̂0, η̂)

(
δ̂0 − δ̂1

)
+
(
δ̂0 − δ̂2

) n∑
t=πn+1

∂2

∂δ∂δ′
lt(δ̂2, θ̂0, η̂)

(
δ̂0 − δ̂2

)
+op(1).

With the assumption on the process convergence of the estimators and the continuous map-

ping theorem, we obtain that this term converges in process distribution to

(√
πΓk(1)− 1√

π
Γk(π)

)′(√
πΓk(1)− 1√

π
Γk(π)

)
+

(√
1− πΓk(1)− 1√

1− π
Γk(1− π)

)′(√
1− πΓk(1)− 1√

1− π
Γk(1− π)

)
.

Some algebra using that it holds for a Brownian motion that Cov(Γkδ(s),Γkδ(t)) = min(s, t)Ikδ
(see Webel and Wied [2016]) reveals that this has the same distribution as

(Γk(π)− πΓk(1))′(Γk(π)− πΓk(1))

π(1− π)
.

�

Proof of Theorem 2
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A Taylor approximation of Aπn(δ̃πn, δ̂, θ̂πn, η̂) in the third component around θπn yields

Aπn(δ̃πn, δ̂, θ̂πn) =

n∑
t=1

(
lt(δ̃πn, θ̂t)− lt(δ̂, θ̂t)

)
=

n∑
t=1

(
lt(δ̃πn, θt)− lt(δ̂, θt)

)
+

n∑
t=1

(
∂

∂θt

(
lt(δ̃πn, θt)− lt(δ̂, θt)

)
(θ̂t − θt)

)

+
1

2

n∑
t=1

(θ̂t − θt)′
∂2

∂θt∂θ′t

(
lt(δ̃πn, θt)− lt(δ̂, θt)

)
(θ̂t − θt)

+ op(1)

= Aπn(δ̃πn, δ̂, θt) +Bπn +
1

2
Cπn + op(1).

It holds that

Cπn =
√
n(θ̂ − θ)′ ∂2

∂θ∂θ′
1

n

n∑
t=1

(
lt(δ̃(π), θ)− lt(δ̂, θ)

)√
n(θ̂ − θ)

Then, Cπn ⇒p 0 and Bπn ⇒d R(π). So, Aπn ⇒ Bk(π) +R(π). �
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