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Abstract

We suggest a simple improvement of recent VaR-backtesting procedures

based on time intervals between VaR-violations and show via Monte

Carlo that our test has more power than its competitors against various

empirically relevant clustering alternatives.

Keywords: backtesting, power, value at risk

JEL: C52, C53, C58

1Research supported by DFG-Sonderforschungsbereich 823. We are grateful to Daniel

Vogel and an anonymous referee for helpful discussions and comments.
2TU Dortmund, Faculty of Statistics, e-mail: walterk@statistik.tu-dortmund.de
3corresponding author, University of Cologne, Institute for Econometrics and Statistics,

Albertus-Magnus-Platz, 50923 Cologne, Phone: 0221/470-4514, Fax: 0221/470-5084 / TU

Dortmund, Faculty of Statistics, email: wied@statistik.tu-dortmund.de

1



1 Introduction

Despite various well known shortcomings, value at risk (V aR) is still the most

popular measure of portfolio risk in practice. Therefore, there is interest in

the statistical properties of methods employed in its production.

Ideally,

P (yt ≤ V aRt(p)) = p ∀t (1)

where yt is the sequence of returns of the security or the portfolio of securities

in question, p is the probability (usually 1%) speci�ed by the user of an extreme

event, V aRt(p) is an estimator of the p-quantile of the return-distribution at

t based on information available up to t− 1, and

P (yt ≤ V aRt(p), ys ≤ V aRs(p)) = P (yt ≤ V aRt(p))× P (ys ≤ V aRs(p)).

(2)

Condition (1) (unconditional coverage) requires that VaR does what it is sup-

posed to do, while condition (2) implies that information available up to t− 1

is used e�ciently. Both conditions combined can also be rephrased as

Pt−1(yt ≤ V aRt(p)) = p ∀t, (3)

where Pt−1 is the probability conditional on information up to t−1 (conditional

coverage).

While there is a large literature on how V aRt is best produced (see Ardia et

al. (2014)) or Herwartz et. al. (2015) for recent contributions), and various

tests of (1) have also been around for quite a while, testing the conditions

(2) or (3) has received much less methodological attention. Below we build

upon Christo�ersen (1998), Christo�ersen and Pelletier (2004), Haas (2005),

Candelon et al. (2011) and Ziggel et al. (2014) to construct a simple proce-

dure to test this independence requirement which has high power to detect
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violations which occur in clusters. This appears important in practice, since a

correct forecast of VaR is extremely important in periods of �nancial turmoil,

where large losses often happen in succession. Then a cluster of exceedances

implies that the particular VaR-measure employed has not been su�ciently

adjusted downwards, risking losses that are even larger than expected. The

practical relevance of weeding out VaR-procedures which are prone to this type

of mistake is obvious.

2 A new test for independent VaR-violations

Let y1, ..., yT be the returns under consideration, let t1, ..., tn be the times where

VaR-violations occur, and let t0 = 0. Unconditional coverage requires that

E
(n
T

)
= p. (4)

Independence of VaR-violation requires, that, in addition, waiting times be-

tween violations (durations) follow a geometrical distribution, in particular,

that

E(ti − ti−1) =
1

p
. (5)

Christo�ersen and Pelletier (2004) and Haas (2005) propose twin tests of (4)

and (5) against parametric alternatives. Ziggel et al. (2014) improve upon

these procedures by looking at squared durations, which are better able to

detect various nonparametric deviations from the null: Given the number of

exceedances, the sum of squared durations increases as the inequality among

the durations increases, which points to a violation of equation (5).

In this paper we propose another nonparametric improvement which is likewise

focused on condition (5). To that extent, let

di := ti − ti−1, i = 1, . . . , n (6)
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be the n durations between successive VaR-violations. We include the waiting

time up to t1, but exclude the time elapsing from tn to the end of the sample

period, as this does not follow a geometric distribution. We then suggest

to directly look at the inequality of the di's (as measured by any inequality

coe�cient such as the Gini-index) as an indicator of possible violations of

independence. As conventional inequality measures g are both homogeneous

of degree zero, i.e.

g(d1, . . . , dn) = g(ad1, . . . , adn) (a > 0), (7)

and population invariant, i.e.

g(d1, . . . , dn) = g(d1, . . . , dn, d1, . . . , dn), (8)

this test is asymptotically insensitive to violations of unconditional coverage,

and focused on violations of independence. To the extent therefore that joint

tests of unconditional coverage and independence involve some trade-o� of

power, our new test might be better able to detect violations of independence

alone.

For concreteness, we argue in terms of the Gini-coe�cient, which may be

de�ned (among various equivalent de�nitions) as

g(d1, ..., dn) =
1
n2

∑n
i,j=1(di − dj)

2d̄
, (9)

i.e. Gini's mean di�erence divided by twice the arithmetic mean. For geomet-

rically distributed d's, the population Gini coe�cient is

g(d) =
1− p
2− p

(10)

(Dorfmann (1979)), which is between 0 (p→ 1) and 1/2 (p→ 0). Therefore we

suggest a one-sided test of independence which rejects whenever g(d1, . . . , dn)

is too large. While independence might also be violated by having the observed

VaR-violation too equally spaced in the [1, T ]-interval, this does not seem to
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induce a problem in practice, as illustrated by Figure 1.

0 T
a) Gini-coe�cient of waiting time "large"

t

0 T
b) Gini-coe�cient of waiting time "small"

t

Figure 1: Two types of violation of the independence assumption

3 Finite sample power

It is certainly possible to base an asymptotically valid test on the limiting dis-

tribution of the di�erence between sample and population Gini (after plugging

an estimator of p into formula (10)), i.e., to rely on the test statistic

√
T

(
g(d1, . . . , dn)− 1− n/T

2− n/T

)
.

Instead, we here use the simulated �nite sample null distribution. This appears

preferable as, even for large T , the number n of VaR-violations is rather small,

and asymptotic arguments are hard to justify. Therefore, for �xed T and n,

we obtain critical values by simulating the Gini-index 10, 000 times.

For ease of comparison with previous results, we use a simulation setup similar

to Ziggel et al. (2014) who consider two types of alternatives; on the one hand

dependent VaR-violations, on the other hand non-identical distributions. Both

alternatives tend to produce clusters in the ti.

5



For the dependence case, we have

yt = σtzt, with σ1 = 1 and (11)

σ2
t = (1− 2λ) + λσ2

t−1 + λz2t−1, 0 ≤ λ ≤ 1/2, t > 1, (12)

where the zt are i.i.d. standard normal and λ measures the degree of depen-

dence: For λ = 0, we have serial independence (i.e., the null is true) and serial

dependence increases as λ → 1/2. By construction, the unconditional vari-

ance remains equal to 1 and a VaR-violation occurs when yt drops below the

empirical p-quantile of all y′s.

Table 1 gives the results, based on 10, 000 simulations. LRmar
iid is the likelihood

ratio test for independence proposed by Christo�ersen (1998) against a �rst-

order Markov alternative. (Here and elsewhere, we do not include results

for additional tests for unconditional and conditional coverage, as we think

it would be unfair to check these outside their home territory, so to speak.)

GMMiid is the χ
2-type test in the GMM framework proposed by Candelon et

al. (2011) based on empirical moments of orthonormal polynomials, evaluated

at the di. Under the null, these moments have expectation 0 and the test

rejects if a suitable quadratic form in these empirical moments is too large.

MCSiid is the test based on squared durations proposed by Ziggel et al. (2014).

For all the tests concerned, critical values are obtained by Monte Carlo to make

their power more easily comparable (no size distortions). It is seen that, or

this particular alternative, our test outperforms MCSiid, but is dominated by

LRmar
iid .

Next, we consider non-identical distributions. Following Ziggel et al. (2014),
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Table 1: Empirical rejection probabilities for dependent durations (α = 0.05)

p λ T Our test LRmar
iid GMMiid MCSiid

0.05 0 252 0.050 0.044 0.043 0.049

1000 0.052 0.050 0.049 0.056

2500 0.056 0.051 0.048 0.062

0.1 252 0.078 0.111 0.056 0.060

1000 0.108 0.086 0.067 0.084

2500 0.158 0.253 0.079 0.105

0.2 252 0.110 0.178 0.069 0.082

1000 0.203 0.217 0.109 0.127

2500 0.350 0.627 0.164 0.192

0.3 252 0.156 0.243 0.091 0.102

1000 0.339 0.394 0.190 0.189

2500 0.611 0.858 0.336 0.327

0.4 252 0.222 0.308 0.125 0.142

1000 0.514 0.556 0.308 0.280

2500 0.838 0.956 0.597 0.500

0.01 0 252 0.050 0.050 0.050 0.052

1000 0.046 0.047 0.047 0.053

2500 0.050 0.049 0.053 0.047

0.1 252 0.063 0.088 0.056 0.060

1000 0.067 0.152 0.053 0.060

2500 0.081 0.228 0.065 0.061

0.2 252 0.076 0.128 0.066 0.065

1000 0.092 0.254 0.067 0.077

2500 0.118 0.441 0.086 0.085

0.3 252 0.090 0.165 0.068 0.079

1000 0.113 0.313 0.082 0.095

2500 0.167 0.562 0.126 0.123

0.4 252 0.107 0.177 0.066 0.087

1000 0.145 0.354 0.097 0.119

2500 0.214 0.626 0.161 0.156

these are generated by

It =



i.i.d∼ Bern(p− 2δ), 1 ≤ t ≤ T
4

i.i.d∼ Bern(p+ δ), T
4
≤ t ≤ T

2

i.i.d∼ Bern(p− δ), T
2
≤ t ≤ 3T

4

i.i.d∼ Bern(p+ 2δ), 3T
4
≤ t ≤ T,

(13)
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where It are indicator variables that are equal to 1 for a VaR-violation and

where the degree of instationarity is measured by δ; δ = 0 means identical

distributions, i.e., the null hypothesis is true. As δ increases, the expected

values of the It become more di�erent over time.

Tables 2 gives the results. It shows that, for this alternative, our test is slightly

worse than the Ziggel et al. (2014) test, but outperforms all the others. The

empirical rejection probabilities of our competitors are taken from Ziggel et al.

(2014) (Table 4,5).

4 Conclusion

We have shown that it is easy to improve upon existing tests for independent

VaR violations for certain alternatives when possible violations are highly clus-

tered. As this is at the same time the situation most dangerous in applications,

our procedure seems to have considerable practical appeal. However, none of

the procedures considered by us uniformly dominates the others.
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